

Expected Runtimes of a Simple Multi-objective Evolutionary Algorithm

Oliver Giel?

FB Informatik, LS 2, Univ. Dortmund

44221 Dortmund, Germany

oliver.giel@uni-dortmund.de

Abstract- The expected runtime of a simple multi-

objective evolutionary algorithm for the Boolean deci-

sion space is analyzed. The algorithm uses independent

bit flips as mutation operator and, therefore, searches

globally. It is proved that the expected runtime is O(nn)

for all objective functions {0, 1}n →
� m . This worst-

case bound is tight and matches the worst-case bounds

for fundamental evolutionary algorithms working in the

scenario of single-objective optimization. For the bicri-

teria problem LOTZ (Leading Ones Trailing Zeroes), it

is shown that the expected runtime is O(n3). Moreover,

the runtime is O(n3) with an overwhelming probability.

Finally, the function x 7→ (x
2, (x − 2)2) that serves as a

test function in the continuous decision space is adapted

to the Boolean decision space, and bounds on the run-

time are derived.

1 Introduction

Randomized search heuristics are applied to optimization

problems in situations where problem-specific algorithms

are not available. The lack of such algorithms can have

various reasons. Problem-specific algorithms might be un-

known for the considered problem, there might be not

enough time and not enough experts to devise a problem-

specific algorithm, or there might be only little knowledge

about the structure of the problem. General search heuristics

that do not employ problem-specific knowledge are of par-

ticular interest in theoretical investigations. In applications,

these heuristics are often combined with problem-specific

modules. Evolutionary algorithms (EAs) are such random-

ized search heuristics. They are not only applied to single-

objective optimization problems but also to multi-objective

optimization problems. Practical knowledge on the design

of multi-objective EAs has increased considerably in recent

years but theoretical works are rare. A common approach to

learn how EAs work is to analyze basic EAs. In this work,

we analyze the expected runtime of a very simple but fun-

damental multi-objective EA.

Theoretical analyses of the runtime of basic EAs in the

scenario of single-objective optimization have been car-

ried out in recent years. Most results giving time bounds

consider discrete search spaces (e.g., Droste, Jansen, and

Wegener (1998), Garnier, Kallel, and Schoenauer (1999),

Droste, Jansen, and Wegener (2002), Wegener and Witt

(2003)). Rigorous proofs on the runtime in a con-

tinuous search space have only been obtained recently

(Jägersküpper (2003)). For an overview, refer to Wegener

(2001) and Beyer, Schwefel, and Wegener (2002).

Works on the analysis of multi-objective EAs have

mostly focused on the limit behavior (convergence), i. e.,

the question under what conditions an algorithm can find the

set of optimal solutions when time goes to infinity (Rudolph

(1998a,b, 2001), Rudolph and Agapie (2000)). It is not pos-

sible to derive sharp bounds on the (expected) runtime with-

out taking into account some properties of the function (the

problem) to be optimized. Scharnow, Tinnefeld, and We-

gener (2002) have analyzed the expected runtime of a vari-

ant of the (1+1) EA on a multi-objective formulation of the

single-source shortest-path problem. However, the objec-

tives of the problem are non-conflicting. Laumanns, Thiele,

Zitzler, Welzl, and Deb (2002) have been the first to ana-

lyze the (expected) runtime of two local search algorithms

(SEMO and FEMO) for a problem with two conflicting ob-

jectives (LOTZ). In this work, we consider a closely related

algorithm that searches globally by the use of a mutation

operator that flips each bit independently.

The next section describes the scenario of multi-

objective optimization in the framework of a partially or-

dered objective space and defines the goal of algorithms

working in this scenario. Section 3 introduces the algorithm

studied in subsequent sections and derives tight bounds on

the expected runtime in the worst case. Sections 4 and 5

consider the (expected) runtime of the algorithm for some

bicriteria example problems, including the LOTZ function.

2 Scenario and Basic Definitions

In the scenario of multi-objective optimization, m incom-

mensurable and often conflicting objectives of a solution to

some problem have to be optimized at the same time. The

objective space F can be thought of as a set of real-valued

vectors such that each of m components of a vector repre-

sents an objective of a solution. We assume all objectives to

be maximized. Obviously, an objective vector x is not better

than another vector y if each component of x is not larger

than the corresponding component of y. However, one can-

not tell which of two distinct vectors is better in general.

There is no natural total order on the objective space if the

objectives are incommensurable. In this scenario, the aim of

optimization is to find solutions such that an improvement

regarding one objective can only be achieved at the expense

of another objective. We follow Rudolph (1998a, 2001) for

basic definitions.

?Supported by the Deutsche Forschungsgemeinschaft (DFG) as part of the Collaborative Research Center “Computational Intelligence” (SFB 531).

Definition 1 (preorder, partial order). Let F be a set and

� a binary relation in F. The relation � is called a pre-

order if it is reflexive and transitive. The pair (F,�) is

called a partially ordered set (poset) if � is an antisymmet-

ric (∀ x, y ∈ F : x � y ∧ y � x ⇒ x = y) preorder.

Distinct x and y are incomparable, denoted x ‖ y, if neither

x � y nor x � y. Otherwise, if x � y or x � y, x and y

are comparable. In particular, x is comparable to x.

The relation in the set of real-valued vectors described

above is a partial order.

Definition 2 (domination and maximal elements). If

x � y, we say y weakly dominates x. We say y dominates x,

denoted x ≺ y, if x � y and x 6= y. An element x ∗ ∈ F

is called maximal element of the preordered set (F,�) if

there is no x ∈ F such that x∗ ≺ x. M(F,�) is the set of

all maximal elements in (F,�).

If F is a finite set, the set M(F,�) is finite and complete.

M(F,�) is said to be complete if for each x ∈ F there

exists an x∗ ∈ M(F,�) such that x � x∗.

In the framework of multi-objective optimization with-

out constraints, we have the decision space X (the set of all

possible solutions), the partially ordered objective space F

(the poset of objective vectors), and an objective function

f : X → F . The aim of multi-objective optimization is

not to compute the set of maximal elements in the objective

space. We are rather interested in a set of best solutions in

the decision space, the preimage of the maximal elements in

the objective space. As the objective function is generally

not a bijection, the preimage might be empty or consider-

ably large. We must take care with regard to the definition

of the aim in solving a multi-objective optimization prob-

lem.

Definition 3 (� f). Let X be the decision space and

let (F,�) be the partially ordered objective space. Let

f : X → F be a mapping. Then f induces a preorder � f

on X by the following definition:

x ≺ f y :⇔ f (x) ≺ f (y),

x = f y :⇔ f (x) = f (y),

x � f y :⇔ x ≺ f y ∨ x = f y.

In general, the preorder � f is not a partial order since

x � f y ∧ y � f x 6⇒ x = y.

We use the notion of Pareto optimality if f =

(f1, . . . , fm) is a vector-valued objective function, i. e., if

F is a subset of � m .

Definition 4 (Pareto front, Pareto set). Let X be a finite

decision space, let F := f (X) = { f (x) | x ∈ X} ⊆ � m

be the objective space, and let the partial order � in F be

defined by

(y1, . . . , ym) � (z1, . . . , zm) ⇔ ∀i : yi ≤ zi . (1)

The set of all maximal elements F∗ = M(F,�) in the ob-

jective space is called Pareto front. An element x ∈ X

in the decision space is Pareto optimal if f (x) belongs to

the Pareto front F∗. The set of all Pareto optimal elements

X∗ = f −1(F∗) is called Pareto set.

Definition 4 provides a surjective mapping f and ensures

that the objective space (F,�) is a finite poset with a finite

(and complete) set of maximal elements, the Pareto front.

In the following, we assume the scenario of Definition 4.

Roughly speaking, the goal of multi-objective optimiza-

tion is to compute the Pareto set X∗. This goal can

be too ambitious if the Pareto set is fairly large. How-

ever, if the Pareto set is large (e.g., exponential size)

and the Pareto front is small (e.g., polynomial size) there

are solutions x1, . . . , xk with the same objective value

f (x1) = · · · = f (xk). In this case, a set of solutions should

imply only one solution x ∈ {x 1, . . . , xk}. Provided that the

Pareto front is not too large, a set A ⊆ X∗ representing

each objective value in the Pareto front F∗ at least once is a

reasonable set of solutions.

Definition 5 (approximation set). A set A′ ⊆ F is called

an approximation set (for the Pareto front) if no element in

A′ is weakly dominated by any other element in A′ with re-

spect to�, i. e., any two distinct elements are incomparable.

In Definition 5, we can replace weak domination by domi-

nation: For distinct elements in a poset, weak domination is

equivalent to domination.

Definition 6 (set of representatives). A set of representa-

tives for a set A′ ⊆ F is a set A ⊆ f −1(A′) such that

f (A) = A′ and |A| = |A′|.

In this work, the goal of an algorithm is to compute a set

of representatives for the Pareto front. Clearly, if f is not

injective on the Pareto set, the Pareto set is not a set of rep-

resentatives for the Pareto front. The computed set of solu-

tions will be a subset of the Pareto set.

3 The Algorithm

The following evolutionary algorithm requires that the de-

cision space is X = {0, 1}n and that there is a partial or-

der relation � defined in the objective space F = f (X).

In particular, it applies to the scenario of multi-objective

optimization in the Boolean decision space. The idea of

the algorithm is that for each point of time t , the popula-

tion At is a set of representatives for the approximation set

f (At). The approximation set f (At) is meant to approach

the Pareto front F∗ as t increases.

Algorithm 1 (global SEMO).

choose x ∈ {0, 1}n uniformly at random

determine f (x)

A← {x}

loop

select x ∈ A uniformly at random

create x ′ by flipping each bit of x indep. with prob. 1/n

determine f (x ′)

if ∀ z ∈ A : x ′ 6� f z

A← {z ∈ A | z 6� f x ′} ∪ {x ′}

end if

end loop

An implementation of the set A needs to store search

points x together with their objective values f (x). For the

ease of notation, this aspect is not explicitly expressed in

the description of Algorithm 1. Obviously, the initial popu-

lation A1 = {x1} is a set of representatives for the approxi-

mation set { f (x1)}. The loop can be interpreted in the fol-

lowing way. At time t , the algorithm adds the offspring x ′
t

to the population At if there is no element in At that weakly

dominates x ′
t , i. e., each element in At is either dominated by

x ′
t or incomparable to x ′

t . If x ′
t is added to At , all elements in

At dominated by x ′
t are removed from At at the same time,

i. e., afterwards all elements of At are incomparable with re-

spect to � f . Hence, at each point of time t , At is a set of

representatives for the set f (At). The latter set is an approx-

imation set since for x, y ∈ At , x ‖ f y ⇒ f (x) ‖ f (y).

In applications, Algorithm 1 needs a stopping criterion.

In this work, we are interested in the first point of time that

the aim of the optimization process is reached and define

the runtime of Algorithm 1 in the following way.

Definition 7 (runtime). Let At , t ∈ � , denote the popu-

lation after the (t − 1)th iteration of the loop, i. e., after t

objective function evaluations. The random number T f is

the minimum t such that f (At) = F∗. T f is called the

runtime of Algorithm 1 for f .

The assumption is that objective function evaluations are

expensive and dominate the costs of all other operations in

the loop. Then it is reasonable to call T f the runtime of Al-

gorithm 1 for f . This measure is well accepted, particularly

for evolutionary algorithms. It is also used in theoretical

analyses of algorithms working in the black-box scenario

(Droste, Jansen, Tinnefeld, and Wegener (2003)). From a

practical point of view, the measure may not be fair if the

population A becomes very large. If �(|X |) elements of

(X,� f) are incomparable, the population may grow to size

�(2n). That means, the algorithm is only applicable if there

is a much better bound for all |At |.

Algorithm 1 is almost the same algorithm as the one

studied in Laumanns, Thiele, Zitzler, Welzl, and Deb (2002)

– there called SEMO (Simple Evolutionary Multi-objective

Optimizer). The only difference is the mutation opera-

tor. Algorithm 1 flips each bit independently with proba-

bility 1/n whereas SEMO flips exactly one bit. That means

SEMO searches locally in the manner of a hill climber. If

there is a subset of non-Pareto optimal points X̂ in the search

space such that all Hamming neighbors of these points out-

side X̂ are (weakly) dominated by the points in X̂ , SEMO’s

population cannot escape from X̂ if the entire population is

contained in X̂ . The following example problem with two

objectives shows that this can happen with an overwhelm-

ing probability. The first objective is the number of ones in

a solution x if this number is even, otherwise it is 0. The

second objective is the number of zeroes if this number is

strictly less than (1/4)n, otherwise it is 0. Clearly, Pareto

optimal solutions have at least (3/4)n ones. By Chernoff

bounds (e.g., Motwani and Raghavan (1995)), the proba-

bility of choosing an initial string x with i < (2/3)n ones

is 1− e−�(n), i. e., exponentially close to 1. If this happens

and i is odd, the objective value of x is (0, 0). The Hamming

neighbors have objective values (i − 1, 0) or (i + 1, 0) and

dominate x . One of them is created first and replaces x in

the population. Now, either by the initial step or by the first

mutation, the algorithm is in the situation that the number of

ones in the only individual x in the population is even and at

most (2/3)n. All Hamming neighbors of x have objective

values (0, 0) and are dominated by x . Hence, the popula-

tion gets stuck with an overwhelming probability before it

reaches any point in the Pareto set. Therefore, SEMO has no

finite expected runtime in the general case of an arbitrary f .

In our example, restarts (multiple runs) do not help much

since the probability of choosing a bad initial point is expo-

nentially close to 1. The same applies to a variant of SEMO

in Laumanns, Thiele, Zitzler, Welzl, and Deb (2002) called

FEMO (Fair Evolutionary Multi-objective Optimizer). We

conclude that local search strategies like SEMO and FEMO

can only be applied if we have some intuition of the opti-

mization problem that suggests that such strategies are not

very likely to get trapped.

In contrast to local search strategies, Algorithm 1

searches globally, and its population will not get stuck in

local optima forever. Local search strategies are typically

easier to analyze than global search strategies. Neverthe-

less, the analysis of local search strategies can give insight

into the problem at hand and is often a good starting point

for the analysis of global search strategies. Our first step is

to study the expected runtime of Algorithm 1 in the worst

case, i. e., the expected runtime if the objective function is

chosen by an adversary. It is easy to see that for n = 1, the

runtime of Algorithm 1 is at most 2. In the remainder of

this paper, we assume that the dimension n of the Boolean

decision space is at least 2.

Theorem 1. For any f : {0, 1}n → � m , the expected run-

time E(T f) is bounded above by (1 + o(1))nn . There are

functions f where E(T f) ≥ nn .

We need the following lemma in the proof of Theorem 1.

Lemma 1. Given a set A of at least n2dlog ne points in

{0, 1}n and a point x ∈ {0, 1}n \ A. For more than half

of the points in A, the Hamming distance to x is at most

n − dlog ne.

Proof. The number of points y ∈ {0, 1}n with Hamming

distance H (y, x) = k is
(

n
k

)
. The number of points with a

Hamming distance to x of at least n − dlog ne + 1 is

∑

n−dlog ne+1≤k≤n

(
n

k

)
≤ dlog ne

(
n

dlog ne

)
≤ ndlog ne

Consequently, A contains at least n2dlog ne − ndlog ne >

(1/2)n2dlogne points y with H (x, y) ≤ n − dlog ne.

Proof of Theorem 1. Whenever Algorithm 1 produces an

offspring y such that f (y) is in the Pareto front F∗ and

f (y) /∈ f (A), the algorithm adds y to A. As y is Pareto

optimal, y will never be removed from A. Before A is a set

of representatives for the Pareto front, such an individual y

exists. At time t , let Yt ⊆ X∗ be the set of Pareto opti-

mal decision vectors whose corresponding objective values

are not yet represented by any decision vector in At . For-

mally, we define the target set Yt by Yt := X∗\ f −1(f (At)).

The algorithm would accept each y j ∈ Yt in the next muta-

tion step. During a run of the algorithm, Yt ⊃ Yt+1 holds

only if a new Pareto optimal point is added to At and other-

wise Yt = Yt+1. We define A0 to be the empty population

in the initialization step (Step 0) and, therefore, Y0 = X∗.

Let X∗ = Y0 ⊇ · · · ⊇ YT f = ∅ be the random sequence

of target sets produced by the algorithm. Note that, for

k = |F∗|, there are exactly k + 1 mutually distinct sets

X∗ = Yik ⊃ · · · ⊃ Yi0 = ∅ in this sequence and |Yi j | ≥ j .

Let E(Ti j) denote the expected number of steps spent for

the set Yi j . Then the expected runtime is

E(T f) =
∑

k≥ j≥2

E(Ti j)+ E(Ti1).

The probability that the initial step selects a Pareto opti-

mal search point is
|Yik

|

2n ≥
n−1
nn (|Yik | − 1). For t ≥ 1,

let x ∈ At denote the individual selected for mutation and

let Yt = {y1, . . . , y|Yt |} be the target set at time t . There

is at most one y j ∈ Yt such that the Hamming distance

H (x, y j) = n, namely if y j = x . In all other cases,

H (x, y j) is at most n − 1. Hence, the probability that the

algorithm creates an offspring in Yt is lower bounded by

∑

1≤ j≤|Yt |

(1/n)H(x,y j)(1− 1/n)n−H(x,y j)

≥
∑

1≤ j≤|Yt |−1

(1/n)n−1(1− 1/n) =
n − 1

nn
(|Yt | − 1),

and for |Yi j | ≥ 2 the expected value E(Ti j) is at most
nn

(n−1)(|Yi j
|−1)

. Since |Yi j | ≥ j , we have

E(T f) ≤
nn

n − 1

∑

k≥ j≥2

1

j − 1
+ E(Ti1). (2)

Now we estimate the right-hand side of the last equation

according to two cases.

The first case is k ≥ n2dlog ne + 1. We consider the steps

when the target set is Yi1 , i. e., the algorithm has discovered

k−1 representatives for k−1 = |F∗|−1 points of the Pareto

front before. Hence, |A| = k − 1 ≥ n2dlog ne, and there is

only one point x ′ in the Pareto front that is not in f (A). Let

x ∈ f −1(x ′) = Yi1 . By Lemma 1, the probability that the

algorithm selects an individual in A such that the Hamming

distance to x is at most n − dlog ne is at least 1/2. Thus,

E(Ti1) is bounded above by

(
(1/2)(1/n)n−dlog ne(1− 1/n)dlog ne

)−1
≤ 2enn−dlog ne.

Using k = |F∗| ≤ |X∗| ≤ 2n , we can upper bound (2) by

nn

n − 1

2n∑

j=2

1

j − 1
+2enn−dlog ne ≤ nn

(
H2n−1

n − 1
+

2e

ndlog ne

)
.

The last expression is strictly smaller than nn for n large

enough since the harmonic number H2n−1 is bounded by

ln(2n − 1)+ 1 ≤ 0.7n + 1.

The second case is k ≤ n2dlog ne. When the target set

is Yi1 , the probability that the next mutation step creates a

point in this set is at least 1/nn . In the initial step, the prob-

ability is at least k/2n ≥ 1/nn . Hence, E(Ti1) ≤ nn , and

(2) is bounded by

nn

n − 1

k∑

j=2

1

j − 1
+ nn = nn

(
Hk−1

n − 1
+ 1

)
= (1+ o(1))nn,

using Hk−1 ≤ ln(k − 1) + 1 ≤ 0.7 log n2dlog ne + 1 ≤

1.4dlog ne2 + 1.

For the lower bound, we consider the function

f (x) =

 ∏

1≤i≤n

xi ,
∏

1≤i≤n

(1− xi)

 .

Obviously, the objective space is F = {(0, 0), (1, 0), (0, 1)}

and only (0, 0) is not maximal. Let x be the Pareto opti-

mal decision vector found first by the algorithm, i. e., either

x = 0n or x = 1n . Since x dominates all decision vectors

found before, the population now is A = {x}. The Ham-

ming distance to the second Pareto optimum x is n. Hence,

the expected waiting time is nn .

Theorem 1 states a 2(nn) bound in the worst case. Note

that the upper bound is independent of the number of objec-

tives m and that the lower bound is obtained from a bicri-

teria problem. The scenario of multi-objective optimization

includes the scenario of single-objective optimization. The

(1+1) EA is perhaps the most fundamental evolutionary al-

gorithm for single-objective optimization in the Boolean de-

cision space {0, 1}n. Interestingly, it has the same expected

runtime 2(nn) in the worst case (Droste, Jansen, and We-

gener (2002)). If applied to a monocriteria problem, Al-

gorithm 1 behaves almost like the (1+1) EA. One can also

obtain �(nn) bounds for Algorithm 1 from some monocri-

teria problems that have been analyzed for the (1+1) EA,

e.g., the problem DISTANCE considered in Droste, Jansen,

and Wegener (2002).

4 LOTZ – Leading Ones Trailing Zeroes

The LOTZ function has been studied in Laumanns, Thiele,

Zitzler, Welzl, and Deb (2002) for the algorithms SEMO

and a variant of SEMO called FEMO. Flipping exactly 1

bit in each step simplifies the analysis of these algorithms

for this function. The effect is that the population size is

bounded by 1 until the first point in the Pareto set is discov-

ered, and then the algorithms explore the Pareto set without

accepting solutions that are not Pareto optimal. Both prop-

erties do not carry over to Algorithm 1. The selection mech-

anism of FEMO has been adapted to the LOTZ function,

and in fact FEMO performs better on LOTZ. The expected

runtimes for SEMO and FEMO are 2(n3) and 2(n2 log n),

respectively. In this section, we show that using indepen-

dent bit flips with SEMO (i. e., Algorithm 1) does not in-

crease the runtime substantially. Moreover, the runtime is

O(n3) with a probability exponentially close to 1. It is not

known whether independent bit flips increase the runtime of

FEMO for LOTZ.

Definition 8. The functions LO, TZ : {0, 1}n → � and

LOTZ : {0, 1}n → � 2 are defined by

LO(x) :=

n∑

i=1

i∏

j=1

x j ,

TZ(x) :=

n∑

i=1

n∏

j=i

(1− x j),

LOTZ(x) :=
(

LO(x), TZ(x)
)
.

LO(x) is the number of leading ones in x and TZ(x) the

number of trailing zeroes. We define the relation � in � 2
0

according to (1) and consider the partially ordered objective

space (� 2
0 ∩LOTZ({0, 1}n),�) and the preordered decision

space ({0, 1}n,�LOTZ). In the remainder of this section, we

omit the subscript “LOTZ” in our notation.

Proposition 1. The Pareto front F∗ is the set {(i, n − i) |

0 ≤ i ≤ n}, and the Pareto set X∗ is the set of all strings

1i 0n−i , 0 ≤ i ≤ n. The Pareto set X∗ is the only set of

representatives for the Pareto front F∗.

Proof. The set {(i, j) | 0 ≤ i + j ≤ n, i + j 6= n − 1}

is the objective space, and only the elements (i, n − i),

0 ≤ i ≤ n, are not dominated by any other element. Obvi-

ously, LOTZ−1(i, n − i) is the singleton set {1i0n−i }.

Proposition 2. Let A be a set of representatives for an ap-

proximation set A′. The cardinality of A is at most n+ 1. If

A 6= X∗, the cardinality of A is at most n.

Proof. As |A| = |A′|, it suffices to show |A′| ≤ n + 1.

The characteristic function of the objective space F ⊆

{0, . . . , n}2 can be viewed as a triangular matrix with

1-entries at (i, j), 0 ≤ i + j ≤ n and i + j 6= n − 1.

The row index i gives the number of leading ones, the col-

umn index j the number of trailing zeroes. Since A′ is an

approximation set, i. e., no element in A′ is dominated by

any other element in A′, there is at most one element from

each of the n + 1 rows in A′. The same applies to columns.

This shows that |A′| ≤ n + 1. Assume |A′| = n + 1. Then

A′ chooses exactly one element in each row and each col-

umn. Hence, the characteristic function of A′ can be viewed

as a permutation matrix. As A′ ⊆ F , the 1-entries in the

permutation matrix are also 1-entries in the triangular ma-

trix representing F . It is easy to see that there is only one

choice for A′, namely all elements placed on the diagonal

(i, n − i), 0 ≤ i ≤ n. Hence, A′ = F∗.

Theorem 2. The expected runtime of Algorithm 1 for

LOTZ is O(n3). The runtime is O(n3) with a probability

1− e−�(n).

Proof. As the Pareto set X∗ is the unique set of representa-

tives for F∗ (Proposition 1), the population becomes static

if A = X∗. It can change at any time before this event

happens. We discern two epochs in a typical run of the al-

gorithm. The first epoch starts after the initialization and is

finished by the step producing the first individual x ∈ X ∗.

The following epoch lasts until A = X∗.

First we show that a phase of s := den3e steps finishes

the first epoch with a probability 1 − e−�(n). We consider

the initial individual x0 and the (random) sequence of in-

dividuals x1, x2, x3, . . . in the first epoch such that x i+1

causes x i to leave the population (because x i+1 � x i).

When the dominating individual x i+1 is created, either the

number of leading ones compared to x i is increased and the

number of trailing zeros compared to xi is not decreased

or vice versa. That implies that there are at most n in-

dividuals in the above sequence that starts with x 1. If an

offspring dominates its parent then it will be accepted and

replace the parent individual. We estimate the probability

to create x i+1 in the next step by the probability that x i is

chosen for mutation and the algorithm flips either only the

leftmost 0 or only the rightmost 1. We call this event a suc-

cess. Using Proposition 2, the probability of a success is at

least (1/n) · 2 · (1/n) · (1 − 1/n)n−1 ≥ 2/(en2). Within

the first phase, the expected number of successes is at least

2n. By Chernoff bounds, the probability of less than n suc-

cesses is e−�(n). The first phase of s steps finishes the first

epoch with a probability exponentially close to 1. To obtain

an upper bound on the expected number of steps, we ob-

serve that our estimations also hold if we start a new phase

with a population of up to n non-optimal solutions. The

expected number of phases is upper bounded by 2. This im-

plies that the expected number of steps in the first epoch is

O(s) = O(n3).

Next we show that, starting with at least one Pareto op-

timal element in A, after a phase of s ′ = d2en3e steps,

X∗ = A with a probability 1 − e−�(n). The Pareto set

can be viewed as a path from 0n to 1n that visits all strings

1i0n−i , 0 ≤ i ≤ n. Obviously, each individual on the path

has at least one Hamming neighbor on the path. As long

as A 6= X∗, there exists at least one x ∈ A with a Ham-

ming neighbor x ′ ∈ X∗ \ A and by Proposition 2, |A| ≤ n

holds. The probability of creating x ′ in the next step is at

least (1/n) · (1/n) · (1 − 1/n)n−1 ≥ 1/(en2). Within s′

steps of a phase, the expected number of such successes is

at least 2n. Using Chernoff bounds again, the probability

of less than n successes is e−�(n). Analogously to the first

epoch, the expected number of steps is O(n3), too.

Combining the results for both epochs yields the bounds

in the theorem.

5 A Test Function

The functions considered in this section are inspired by the

well-known function x 7→ (x2, (x − 2)2). The latter often

serves as a test function for algorithms that work in the con-

tinuous decision space � (e.g., Srinivas and Deb (1994)).

We adapt this function to the Boolean decision space in two

different ways. The first variant uses a kind of unary encod-

ing of integer numbers, the second one the standard binary

encoding.

Definition 9. For x = xn−1, . . . , x0 ∈ {0, 1}n, let ‖x‖ =∑
0≤i≤n−1 xi denote the number of ones in x and BV(x) =∑
0≤i≤n−1 xi 2

i the binary value of x. The functions fa,b,

0 ≤ a < b ≤ n, and ga,b, 0 ≤ a < b ≤ 2n − 1, are defined

by

fa,b(x) =
(
(‖x‖ − a)2, (‖x‖ − b)2

)
,

ga,b(x) =
(
(BV(x)− a)2, (BV(x)− b)2

)
.

For both functions, the goal is to minimize the two objec-

tives. We adapt the basic definitions to the case of minimiza-

tion. In particular, we redefine (1) by y � z :⇔ ∀i : yi ≥ zi .

Proposition 3. The Pareto set and Pareto front of fa,b are

X∗ = {x | a ≤ ‖x‖ ≤ b} and F∗ = {(i2, (b − a − i)2) |

0 ≤ i ≤ b− a}, respectively.

Proof. Any point x with ‖x‖ < a (‖x‖ > b) is not Pareto

optimal since the value of both objectives decreases as ‖x‖

increases (decreases) by 1. Consider a point z, a ≤ ‖z‖ ≤ b.

We show that z is not dominated by any point w, i. e., z is

Pareto optimal. If ‖z‖ = ‖w‖ then z = fa,b w. If ‖z‖ < ‖w‖

then (‖z‖− a)2 < (‖w‖− a)2 holds and implies z 6� fa,b w.

If ‖z‖ > ‖w‖ then (‖z‖ − b)2 < (‖w‖ − b)2 holds and im-

plies z 6� fa,b w. For all z with ‖z‖ = a+ i , the correspond-

ing objective vector is (((a + i)− a)2, ((a + i)− b)2).

Proposition 4. The Pareto set and Pareto front of ga,b are

X∗ = {x | a ≤ BV(x) ≤ b} resp. F∗ = {(i2, (b−a− i)2) |

0 ≤ i ≤ b− a}, and |X∗| = |F∗|.

Proof. Can be carried out analogously to the proof of

Proposition 3.

Theorem 3. The expected runtime of Algorithm 1 for fa,b

is

O
(
n log n + n(b − a) log(b − a)

)
.

Note that b−a+1 is the cardinality of the Pareto front. If a

and b are constants (as in x 7→ (x 2, (x−2)2)), the expected

runtime is O(n log n).

Proof. We partition the process into two epochs. The first

epoch is the time before the first search point in the Pareto

set is produced and the second epoch is the remaining time

until the image of the population is exactly the Pareto front.

For the first epoch, note that the population size |A| is

bounded by 2. At any time, there is at most one search

point x low such that ‖x low‖ < a because any other point

with this property would either dominate x low or be dom-

inated by x low. For the same reason, there is at most one

search point xhigh such that ‖xhigh‖ > b. Let x ∈ A in

the first epoch. From a local point of view, the aim for x

is to increase (decrease) the number of ones if ‖x‖ < a

(‖x‖ > b) . If we consider only x , the scenario is similar

to the situation where the (1+1) EA optimizes the function

OneMax (ZeroMax). The expected runtime of the (1+1) EA

for OneMax is known to be 2(n log n) (Droste, Jansen,

and Wegener (2002)). We make the upper bound for Al-

gorithm 1 explicit here. At any time, let x be the individual

in the population such that d = |‖x‖ − a| takes the smaller

value; ties broken arbitrarily. The d-value is non-increasing

in the first epoch since d2 is the first objective of individ-

ual x , and x can only be dominated by a new individual

with a d-value that is not larger. Notice that we can always

specify d bits of x such that flipping these bits would de-

crease the d-value to 0. The probability that the d-value

decreases in the next step is lower bounded by the probabil-

ity that the next step chooses x for mutation and flips solely

one bit out of d specified bits in x . The latter probability is

at least (1/2)d(1/n)(1−1/n)n−1 ≥ d/(2en). The expected

time until the first Pareto optimal search point is produced

is at most

∑

n≥d≥1

2en

d
= 2enHn = O(n log n),

where Hn denotes the nth harmonic number.

We argue that for each point of time t < T fa,b in the sec-

ond epoch, the size of the population is at most b − a. If

there are only Pareto optimal search points in the popula-

tion, this property follows from Proposition 3 as A 6= X ∗

in the second epoch. Now consider the case that there are

non-Pareto optimal points in A. We have already seen that

there are at most two individuals x low, xhigh ∈ {0, 1}n − X∗

in the population, where ‖x low‖ < a and ‖xhigh‖ > b. If

only one of them exists, say x low (implying a ≥ 1), then we

have to show that there are strictly less than b − a points

of the Pareto set in the population. As the minimum value

of the first objective of x low is 1, we can exclude at least

all points in X∗ whose first objective takes a value of 0 or 1,

i. e., all points x ∈ X∗ with ‖x‖ ∈ {a, a+1}. The remaining

b−a−1 points in the Pareto front are represented by at most

that many individuals. If only x high exists (implying b < n),

we can exclude all points x ∈ X∗ with ‖x‖ ∈ {b− 1, b} us-

ing analogous arguments. If both x low and xhigh exist, we

can exclude all points in X∗ with ‖x‖ ∈ {a, a+1, b−1, b}.

In the last case, there are at most b − a − 3 Pareto optimal

points in the population plus x low and xhigh.

Now we estimate the probability pi , a ≤ i ≤ b, that a

search point with i ones is created in the next step, given that

there is already a search point x in the population with i −1

or i + 1 ones. The algorithm selects x for mutation with a

probability of at least 1/(b−a). The probability that the mu-

tation step creates a string with exactly i ones from a string

with i −1 ones is at least (n− i+1)(1/n)(1−1/n)n−1; the

probability that the mutation step creates such a string from

a string with i+1 ones is at least (i+1)(1/n)(1−1/n)n−1.

We only underestimate the probability pi if we use the

bounds

pi ≥

n−i+1
b−a

1
n

(
1− 1

n

)n−1
≥ n−i+1

(b−a)ne
if i > n/2,

i+1
b−a

1
n

(
1− 1

n

)n−1
≥ i+1

(b−a)ne
if i ≤ n/2.

Let Ti denote the waiting time until a string with i ones is

created given that a string with i − 1 or i + 1 ones has been

created before. Then E(Ti) is at most 1/pi . Let j be the

number of ones of the first point in the Pareto set created by

the algorithm. The expected duration of the second epoch is

at most

E(T j−1)+ · · · + E(Ta)+ E(T j+1)+ · · · + E(Tb).

Our bounds for E(T0) and E(Tn) are the largest, namely

(b− a)ne/1. For E(T1) and E(Tn−1), they are (b− a)ne/2

and so on. Hence, the last sum is upper bounded by the sum

of the b − a largest bounds. The latter is at most

(b− a)ne · 2

(
1

1
+

1

2
+

1

3
+ · · · +

1

d(b− a)/2e

)

= 2en(b− a)Hd(b−a)/2e = O
(
n(b − a) log(b − a)+ n

)
.

The function becomes much harder for Algorithm 1 if

we switch to the standard bit representation of integer num-

bers. The reason is that there can be large Hamming cliffs

in the Pareto set. We show that, for each d ∈ {2, . . . , n},

one can choose a and b such that the expected runtime is

2(nd).

Theorem 4. Let a = 2k − 1, b = 2k , and 1 ≤ k ≤ n − 1.

The expected runtime of Algorithm 1 for ga,b is 2(nk+1).

Moreover, for 0 < c < 1, the runtime is at least nc(k+1)

with a probability of at least 1− 1
n(1−c)(k+1) and at most nk+2

with a probability 1− e−�(n).

Proof. According to Proposition 4, the Pareto set is X ∗ =

{BV−1(a), BV−1(b)} = {0n−k1k, 0n−k−110k}, and the

Pareto front is F∗ = {(0, 1), (1, 0)}. (BV−1(i) denotes the

bit representation of a non-negative integer i .) We partition

the run of the algorithm into two consecutive epochs. The

first epoch lasts until the first Pareto optimal search point

BV−1(a) or BV−1(b) is created. For the first epoch, we

prove only a weak upper bound because the second epoch

dominates the runtime; however, we must take care that our

bound holds with a probability 1− e−�(n).

Note that the population size |A| is bounded by 2 in the

first epoch. There is at most one search point x low such that

BV(x low) < a because any other point with this property

would either dominate x low or be dominated by x low. For

the same reason, there is at most one search point x high such

that BV(xhigh) > b. We subdivide the first epoch into two

subepochs such that the first subepoch lasts until an individ-

ual x with BV(x) < 2k+1 is created. Clearly, the population

is A = {xhigh} in the first subepoch. If solely the leftmost

one of xhigh flips, BV(xhigh) is at least halved. We call this

event a success in the first subepoch. The probability that

a step is a success is (1/n)(1 − 1/n)n−1 ≥ 1/(ne). As

the initial value of BV(xhigh) is at most 2n − 1, a number

of n − (k + 1) successes are sufficient in the first sube-

poch. In the second subepoch, the binary value of each

individual in A is less than 2k+1, i. e., all prefix bits cor-

responding to the weights 2n−1, . . . , 2k+1 are 0-bits. For

x ∈ A, let d(x) := min{|BV(x)− a|, |BV(x)− b|}, and

let d(A) = min{d(x), x ∈ A}, i. e., d(A) is the smallest dis-

tance from a point in A to a point in the Pareto set in terms of

binary values. At any time, let x ∈ A be the point with the

smaller d(x)-value; ties broken arbitrarily. Note that if x is

removed from A, a new individual with a d-value that is not

larger enters the population at the same time. Consequently,

the d(A)-value only decreases with time. If BV(x) > b then

xk = 1 and d(A) = BV(x)− b =
∑

0≤i≤k−1 xi 2
i . Flipping

solely the leftmost 1-bit in the suffix xk−1, . . . , x0 reduces

the d(A)-value at least by a factor of 1/2. If BV(x) < a

then xk = 0 and d(A) = a−BV(x) =
∑

0≤i≤k−1(1−xi)2
i .

Flipping solely the leftmost 0-bit in the suffix xk−1, . . . , x0

reduces the d(A)-value at least by a factor of 1/2. The

algorithm selects x for mutation with a probability of at

least 1/2. Hence, the next step decreases the d(A)-value

at least by a factor of 1/2 with a probability of at least

(1/2)(1/n)(1 − 1/n)n−1 ≥ 1/(2en). We call this event

a success in the second subepoch. A number of k successes

are sufficient for the second subepoch, and less than n suc-

cesses are sufficient for the first epoch. In a sequence of

12n2 steps, the expected number of successes is at least 2n

and, by Chernoff bounds, the probability of less than n suc-

cesses is e−�(n).

By the time that the second epoch starts, the algorithm

has found either BV−1(a) or BV−1(b) first. The point

BV−1(a) (BV−1(b)) dominates all other points in the de-

cision space except BV−1(b) (BV−1(a)). Therefore, the

population is {BV−1(a)} or {BV−1(b)}, and no offspring

except BV−1(b) resp. BV−1(a) will be accepted. Only a

mutation step flipping solely the k + 1 rightmost bits cor-

responding to the weights 2k, . . . , 20 will be accepted. The

corresponding probability is (1/n)k+1(1− 1/n)n−(k+1). It

is upper and lower bounded by 1/nk+1 and 1/(enk+1), re-

spectively. Thus, the expected waiting time for this event

is upper and lower bounded by the expectations of random

variables following the geometric distribution with param-

eter 1/(enk+1) and 1/(nk+1), respectively. Hence, the ex-

pected runtime (for both epochs) is 2(nk+1).

The probability that a number of steps in the second

epoch succeeds in producing the second Pareto optimal

point is upper bounded by the sum of the success proba-

bilities in each step. Hence, the probability that the first

nc(k+1) steps in the second epoch are not successful is lower

bounded by

1−
1

n(k+1)
nc(k+1) = 1−

1

n(1−c)(k+1)
.

Remember that the first epoch is finished after 12nk+1 steps

with an overwhelming probability 1 − e−�(n). The first

nk+2−12nk+1 steps in the second epoch succeed in finding

the second Pareto optimum with a probability of at least

1−
(

1−
1

enk+1

)nk+2−12nk+1

≥ 1− e−�(n).

Although one of the two Pareto optima is found quickly

by the algorithm (almost surely in time O(n2)), a large

Hamming distance to the second Pareto optimum ensures

a large (expected) runtime. For k = 2(n), the runtime is

n2(n) with a probability exponentially close to 1. Appar-

ently, Algorithm 1 would not always find the same Pareto

optimum first. Multiple runs could help to detect the entire

Pareto set if each instance of the algorithm is halted after

12n2 steps and non-dominated solutions in the union of the

final populations are computed.

6 Conclusion

The expected runtime of simple multi-objective EAs that

search globally can be analyzed. In the worst case, the

presented algorithm has an expected runtime that matches

the expected worst-case runtime of simple EAs working in

the scenario of single-objective optimization. Explicit time

bounds for simple objective functions can be derived, e.g.,

for the LOTZ function. For each d ∈ {2, . . . , n}, we have

exhibited a function such that the expected runtime of the

algorithm is 2(nd).

Acknowledgments

I am grateful to Marco Laumanns for discussions on multi-

objective EAs and their analysis. I thank Carsten Witt

for helpful comments and Ingo Wegener, who gave a hint

that improved the upper bound in Theorem 1 from 3nn to

(1+ o(1))nn .

Bibliography

Beyer, H.-G., Schwefel, H.-P., and Wegener, I. (2002). How

to analyse evolutionary algorithms. Theoretical Com-

puter Science 287, 101–130.

Droste, S., Jansen, T., Tinnefeld, K., and Wegener, I. (2003).

A new framework for the valuation of algorithms for

black-box optimization. Proc. of the 7th Foundations of

Genetic Algorithms Workshop (FOGA 7), 253–270.

Droste, S., Jansen, T., and Wegener, I. (1998). On the opti-

mization of unimodal functions with the (1+1) evolution-

ary algorithm. Proc. of the 5th Conf. on Parallel Problem

Solving from Nature (PPSN V), LNCS 1498, 13–22.

Droste, S., Jansen, T., and Wegener, I. (2002). On the analy-

sis of the (1+1) evolutionary algorithm. Theoretical Com-

puter Science 276, 51–81.

Garnier, J., Kallel, L., and Schoenauer, M. (1999). Rigorous

hitting times for binary mutations. Evolutionary Compu-

tation 7(2), 173–203.

Jägersküpper, J. (2003). Analysis of a simple evolutionary

algorithm for minimization in Euclidian spaces. Proc. of

the 30th Internat. Colloq. on Automata, Languages, and

Programming (ICALP 2003), LNCS 2719, 1068–1079.

Laumanns, M., Thiele, L., Zitzler, E., Welzl, E., and Deb,

K. (2002). Running time analysis of multi-objective evo-

lutionary algorithms on a simple discrete optimization

problem. Proc. of the 7th Internat. Conf. on Parallel

Problem Solving From Nature (PPSN VII), LNCS 2439,

44–53.

Motwani, R. and Raghavan, P. (1995). Randomized Algo-

rithms. Cambridge University Press.

Rudolph, G. (1998a). Evolutionary search for minimal el-

ements in partially ordered finite sets. Proc. of the 7th

Annual Conf. on Evolutionary Programming, 345–353.

Rudolph, G. (1998b). On a Multi-Objective Evolutionary

Algorithm and Its Convergence to the Pareto Set. Proc. of

the 5th IEEE Conf. on Evolutionary Computation, 511–

516.

Rudolph, G. (2001). Evolutionary search under partially or-

dered fitness sets. Proc. of the Internat. NAISO Congress

on Information Science Innovations (ISI 2001), 818–822.

Rudolph, G. and Agapie, A. (2000). Convergence properties

of some multi-objective evolutionary algorithms. Proc. of

the 2000 Congress on Evolutionary Computation (CEC

2000), 1010–1016.

Scharnow, J., Tinnefeld, K., and Wegener, I. (2002). Fitness

landscapes based on sorting and shortest paths problems.

Proc. of the 7th Conf. on Parallel Problem Solving from

Nature (PPSN VII), LNCS 2439, 54–63.

Srinivas, N. and Deb, K. (1994). Multiobjective optimiza-

tion using nondominated sorting in genetic algorithms.

Evolutionary Computation 2(3), 221–248.

Wegener, I. (2001). Theoretical aspects of evolutionary

algorithms. Proc. of the 28th Internat. Colloq. on Au-

tomata, Languages, and Programming (ICALP 2001),

LNCS 2076, 64–78.

Wegener, I. and Witt, C. (2003). On the optimization of

monotone polynomials by the (1+1) EA and randomized

local search. Proc. of the Genetic and Evolutionary Com-

putation Conf. (GECCO 2003), LNCS 2723, 622–633.

