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A Collective-Based Adaptive Symbiotic Model for
Surface Reconstruction in Area-Based Stereo

John Yannis Goulerma#lember, IEEEand Panos Liatsjviember, IEEE

Abstract—This paper proposes a novel optimization algorithm ical primitives) in one retina are matched with their conjugate
for image-space matching and three-dimensional space analysis,features in the other retina. These pairs give rise to a set of
using an adapted scheme of evolutionary computation that em- gigparities or parallax values between the two image retinas,

ploys the concept of symbiosis in a collective of homogeneous pop-, . ; . . :
ulations. Itis applied to the automatic generation of disparity sur- which by using certain geometrical transformations and camera

faces used for depth estimation in stereo vision. The global task of Parameters can produce the sought measurements [1]-[3]. In
approximating the complete disparity surface is decomposed to a the last two decades, stereo vision has been receiving a rapidly
large number of smaller local problems, each solvable by a smaller increasing appeal in a multitude of application domains. These
processing unit. Coevolution is sustained in such a way as to coun-include vehicle navigation, teleoperation, robotics, manufac-
teract the arhitrary decomposition of the original super-problem, turing, medicine, terrain analysis, entertainment, etc.

so that the local evolutions of all the subproblems become inter- Th bl f findi . ¢ irs bet .
locked. This, in the long run, provides a consistent global solution, € problem of Tinding conjugate palrs beiween images

and it does so via an asynchronous and massively parallel architec- iS called the stereo correspondence problem (SCP), which in
ture. The entire surface is partitioned to a set of adjoining patches essence is an optimization problem of a very large solution
represented by distinct species or populations, with phenotypes space. Many different optimization methods with diverse

corresponding to different polynomial functionals. The credit as- . .
signment functions take into account both self and symbiotic terms properties have been employed in the past, such as local search

in an adaptive and dynamic manner, in order to produce disparity [4], dynamic programming [5]-{[7], relaxation [8], variational
patches that are fit within their own domain and at the same time fit methods [1], [9], [10], gradient methods [11], graph methods
in association with their symbionts. This persistent propagation of [12], hybrid techniques such as ones combining graph and
Iocal.llntera.ctlonfs to a global scale throughout evolution generates gradient methods [13], [14], neural networks [15], [16], sim-
a unified disparity surface composed of the many smaller patch ) ' - Lo '
surfaces. ulated annealing [17], evolutionary optimizations [18]-[21],
Index Terms—mage-space matching, parallel optimization and others. In general, there are two kinds of matctees:
population collective, stereo corresponaence problem, surfaée _ture-pasedandarea-basedTh_e f(_)rmer rely on the geometric
approximation, symbiosis. invariance of the scene projections, match extracted features
such as edge structures, and generate sparse disparity measure-
ments. The latter are based on the photometric invariance, that
is, preservation of the intensity profiles between the views,
ACHINE VISION is the science concerned with theand generate dense disparity maps. This kind of matcher can
computational modeling, processing, and interpretatidse more computationally demanding as compared with the
of the two-dimensional (2-D) projections of three-dimension#ature-based ones their search space is significantly broader.
(3-D) physical scenes by computer algorithms. A significamrea-based matchers, however, do not need interpolating steps
field of machine vision relates to the recovery of the originab fjll the gaps and their naturally dense output is more suitable
physical 3-D information, so that visible ;urface recon.st.ructiqg modern applications of stereo, such as view synthesis and
and depth measurements become possible. Stereo vision refgtsye hased rendering [22]. Comprehensive details for all such
to one su_ch mechanism of obtam_lng surface _estlmat!ons u_sl'aghniques can be found in the reviewing texts [22]-[28] and
naninirusive camera-based Sensing to acqu[re.multlple V€W references therein. In this paper, we relate to the latter type
of the same real-world scene, in a manner similar to the way q produce dense disparity output

many biological beings with eyes of overlapping fields of view . o . :
perceive depth, In order to measure the distance between .HkPrewous applications of genetic algorithms (GAs) to the SCP,

observer (camera system) and each of the scene elements fude [18], which used a GA to find the optimum disparity
ver ( Y ) 3 a set of discrete values precalculated by aggregation win-

the pair of captured images, it is required that certain ima%%WS .

features (which correspond to the 2-D projections of 3-D phyge o 1o efficiency, however, the search was bounded by the

quality of the precalculated values and no interblock smooth-
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chromosomes were again discrete, and their quality dependeeimbers. Furthermore, each objective function evaluation does
on aregion extraction preprocessing scheme used to preset thetrrequire the repetitive composition of the global disparity so-
structure. Also, synchronous serial execution was used for flagon for the individual credit assignments, but only the data
GAs, and since chromosomes consisted of portions of constprdvided by the aforementioned local communication. Finally,
disparities, surfaces were biased toward frontoparallel ones. By&chronization between the members is unnecessary. Even if
method proposed in [21] used a quadtree to adaptively decogome processing units miss transmitted information or fail tem-
pose the image to areas of different sizes represented as geégurily, the overall performance does not falter.
leafs with explicit smoothness handling between the leafs. How-The structure of this paper is as follows. In Section II, a con-
ever, each area had a constant discrete disparity value and thgi survey of coevolutionary applications is given. Section Il
scheme was not arranged for parallelization. presents the details of the stereo matching problem and the pro-
Our proposed algorithm, which is an extension of [26] angosed decomposition scheme. Section IV explains the chromo-
[29], uses a particular type of GA, called symbiotic (SGA)some encoding scheme, while Section V describes the GA op-
and is.distinctly differer)t from previous gpproaches. The enFig@aﬂon sequencing and the employed genetic operators. The
disparity surface map is decomposed into a set of equal-siz&gthod used to hybridise the initial populations of the collective
patches with local only support, and the optimization of eagl oytiined in Section VI, while the description of the credit as-

patch is assigned to a single processing unit. Although suglnments is given in Section VII. Section VIII describes some
surface decomposition is again employed for efficiency, we U§8sign and implementation issues. Finally, Sections IX and X

continyous surfgces thatsupportsubpixel Qisparity accuracy 3RQude results and conclusions, respectively.

modeling of arbitrary surfaces. The objective function of every

population is configured in a way that takes into account two

types of objectives. The first is composed of the self scores of II. PREVIOUS COEVOLUTIONARY PARADIGMS

the intrapatch intensity profiles and the geometrical scene con-, : S . .
. - ; Computational models utilizing coevolutionary strategies

straints. The second, the symbiotic score, enforces mterpaﬁ%e been studied in various cases. The first perhaps application

continuities on the participating surfaces. While each populaf— coevolution in [31] used a po ulétion of re%l coc?ed pgtterns

tion searches for a best-fit surface within its own domain, it colr lav a simple game of okepr IFE)ach attern encodedz olution

tinuously takes into account currently available solution quali piay a simple game of p - =ach patte evolut

)arameters and betting probabilities. During coevolution each

information from the neighboring populations; these popul laved ber of . | d
tions are considered to constitute the symbiont species of eﬁaﬁtem played a number of games against an opponent selecte

evolving patch. In this way, the incessant propagation of lociP™ the population. The losing patterns were eliminated,
information allows each GA to be directed to a region of its s§/Nie the winning ones were allowed to reproduce. Reference
lution space that exhibits high surface compatibility with othép2] €mployed parasitic GAs to search for minimal sorting

proximal patches. networks of fixed cardinality. The two involved popule_ltions
We design symbiosis in a way that counteracts the global diéereé the networks (hosts) and the test cases (parasites) and
parity surface decomposition and enables a parallelisable sdfif fitness of a host depended on its ability to solve tests,
tion of the super-problem. Evolution of each population is imVhile the fitness of a parasite depended on the frequency it
plemented by an autonomous processing unit: however, coe$s solved incorrectly by the networks. References [33]—[35]
lutionary dependencies are sustained through shared elemé&agyolved one population of constraints and one of solutions
in the credit assignment functions of all participating SGAs. In{0 solve constraint satisfaction problems. The fitness of a
portantly, each species/patch does not have to interact withsflution depended on the number of satisfied constraints over
others in the entire collective but only with its immediate neigt® number of interpopulation encounters, while the fitness of a
bors. Despite such locality, global consistency is propagat@@nstraint depended on the number of times it made a solution
from short-term regional interactions to gradually more distat fail. Reference [36] also used one population of test cases
populations, so that a globally acceptable solution is achievalaled one of solutions to evolve cellular automata with density
in the long term. Toward the end of evolution, the best patch s@tassification capabilities. The work evaluated the usefulness
faces from all populations are collected to integrate the solutiofiresource-sharing fitness functions, where solutions received
of the super-problem, i.e., the complete disparity map. high fitness if they could solve test cases that were difficult to a
In addition to the typical advantages of evolutionary optiarge set of other solutions. Reference [37] used a population of
mization [30] (e.g., global search, no need for continuity, difReural networks (game strategies) to evaluate board positions in
ferentiability, unimodality, etc.), our novel framework incorpoa tree search playing checkers. At each generation, all parents
rates certain advantages over the standard GA, as well as samé offspring competed for survival, by having each network
previous coevolutionary models described in Section Il. Firgilayed against other population members and preserving
it allows for the use of a very large number of simple popuhe best.
lations, so that it can be implemented in a massively parallelin the field of optimization, [38] used symbiotic popula-
system. Each processing unit (CPU or network node) can éisns for minimization ofn-dimensional functions, with each
sume evolution of one or more populations. Also, communicpepulation encoding a different decision variable. The fitness
tion between the interacting units is frugal. Not only each popf each member was calculated by partnering that member with
ulation needs to communicate with just its nearby neighborimgpod representatives from the other populations. A similar con-
species, but communication is restricted to the simple transmiigjuration was also applied in rule-based robot learning [39].
sion of partial phenotypic information of some representatiifferent partnering methods were considered to make fithess
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calculations more realistic. Reference [40] also used two ders of each object and another population encoded the layering
evolving populations for the minimax problem; one for miniof the objects. Fitness evaluation involved repetitive partnering
mization on one decision variable, while the other for maximizaf selected members from all populations to derive a predicted
tion of the other variable. Reference [41] applied an evolutidrame and compare it with the actual segmented video sequence.
strategy to coevolve two populations, one of decision variablBeference [54] provided an antagonistic coevolution to segmen-
and one of Lagrange multipliers to solve efficiently generic noration of textured areas. There were two populations encoding
linear constrained problems, formulated as a zero-sum minimaxtural descriptors for two types of texture, which competed for
problem. Reference [42] used coevolution of one host and areritories of different texture. The fitness value was the combi-
parasitic population to enhance the search for useful schemaadion of the responses of the descriptors applied on their own
during evolution. The host GA searched for good solutions textures, as well as the textures of the opposing population. Ref-
the problem at hand, while the parasitic one explored the sokrence [55] applied symbiotic optimization of snakes to object
tion space for schemata that improved the search within the hasicking, where different populations were used to search for
A probabilistic gene transcription mechanism from the parasitadjoining snake segments. Fitness evaluations used self criteria
to hosts was employed for fitness evaluation. The work was ap-minimize the snake’s internal energy, as well as symbiotic
plied to function optimization, while it was extended in [43] forcriteria based on the proximity of segment control points and
constraint satisfaction problems. their Fourier descriptors. Reference [56] applied symbiosis to
Other applications involve the work of [44] and [45], whiclthe discrete optimization problem of sparse feature-based cor-
evolved neural networks by using one population to encode caaspondence. A different population was assigned to each scan
nectivity and weights of individual neurons and a second popline to solve a weighted bipartite graph matching problem, but
lation to encode complex combinations of neurons from the fifte cost function took into account edge-linking similarity in-
population, in order to form complete network solutions whicformation from the adjacent species.
were evaluated upon their classification ability. Reference [46]
used symbiosis for designing a fuzzy controller by evolving a
population of different types of fuzzy rules. Fitness evaluation
was performed by selecting a set of rules, then, evaluating thelhe input to the algorithm is a stereo péit, R} with each
performance of the controller with the problem data, and finallynage of dimensioné x w pixels. Matching pairs up a left
accumulating part of the overall fithess value to the participatimixel (y;, z;) with a right pixel(y,., z,) and gives rise to a dis-
rules. Reference [47] applied coevolution to the design of miparity functiond(y;, z;) = z; — z, (y andz are used to denote
imax controllers for uncertain environments by using one poprage rows and columns, respectively). Imdge used as the
ulation of controllers and one of plants. Each controller indreference retina. Without loss of generality, we assume canon-
vidual was scored according to its performance over the plaoal camera configuration with vertically registered retinas, so
parameter population, while each plant was scored accordihgt the epipolar constraint [25], [28] forces within scan-line
to its simulation results with each given controller. Referencesatching, that isy; = y,.. A user-defined disparity rangk =
[48] and [49] proposed a generalized society model for coevolidh,i,, dmax] iS also enforced so that search is restricted by
tion, which was applied to radial-basis neural networks for fun€e; — dimax, £1 — dmin]-
tion approximation. The genome of each population encodedAs mentioned earlier, we employ a partitioning of the
basis functions of the same type (centers and variances) andglubal surface spanning the entire retina to small rectangular
fitness for each member took into account its similarity witpatches. We have also considered various alternatives for such
representatives from other populations. Reference [50] used faetitioning. We could, for instance, create populations each
idea of shared memory in the coevolution of two populationsprresponding to a single image row and apply symbiotic
one of painters and one of whitewashers for the solution of tdependency to interrow smoothness between each epipolar row
room-painting problem. The shared memory enhanced the eéfird its adjacent ones. Although this would give risé tGAS,
ciency of the partnering strategy by storing fertile partnershipise solution space of each GA could be very large, since each
instead of discarding them as soon as fitnesses were evaluatbdomosome could be of length, giving a discrete search
Reference [51] used a particular epistatic problem to test vapace (ignoring occlusions and uniqueness for simplicity) of
ious partnering strategies for generational and steady-state G#i8e (dimax — dmin + 1)". Since we wish to achieve massive
such as random, best, selection-based, distributed, and joinegiafallelism, a higher number of populations each solving a
different type of work from [52] used a computational model teimpler problem is more prudent. Comparing this with the
demonstrate the learning capability of the immune system. Tipiartitioning to rectangular patches of sizg x w,, we obtain
was modeled as a population containing bit-coded antibodi@smnuch larger number of populations, each of a smaller search
capable of memorizing pattern information. First, an antigespace of sizéd ax — duin + 1) >,
population immunized (trained) the system, and then, a differentThe simple partitioning scheme we used is shown in Fig. 1,
antigen population was used to assess the learning of patteirere each patch is centered at the pgjnt) of a uniformly
classification problems. spaced grid and overlaps with its adjacent ones by one pixel. We
In the field of machine vision, coevolution has also been apsed;;(y, z) to denote a 2-D continuous function with domain
plied successfully. The work of [53] usedt 1 coevolving pop- limited by the patch boundaries (note that such surface depends
ulations to estimate motion and layer informationmo¥ideo on both coordinateg andz at each image location. In addition,
objects.n populations encoded the motion transform param#é-the epipolar constraint were not used, two such independent

I1l. PROBLEM DEFINITION AND PARTITIONING



GOULERMAS AND LIATSIS: COLLECTIVE-BASED ADAPTIVE SYMBIOTIC MODEL 485

patch boundaries grid-points - Xt

X X

\ i
| Z B4
(& ele|le]|e]e
_C‘.l?: . L] L] L] (]
h E— sjleo|e]|e]e it
| =~ J o |e t::. .

I
|
A4 i=0, ..., Wg-1
4+

w

partitioning of the reference retina

Fig. 1. Partitioning ofL into h, x w, rectangular patches. The disparities within each patch are computed by the valuggof ) in the domairy;, y}] x
[x7,xF].
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functionals would be needed to model the disparity vector). The V. GA CONFIGURATION

range of eacﬁj’i(y’ ‘T) Correiponds to Te setof disparities span- We allocate a separate populatiBy at each(, <) grid point,

ning the pixel qoma”['yj 1 Yj Ixfag, 2] =1 (hy ~ L), (G + responsible for controlling the disparity surfatg(y, ). Every

1) (hp = 1)] x [i-(wp —1), (i+1)-(w, — 1)]. Image pointgy, z) population contains a fixed number ¢f,,. chromosomes of

are indexed by‘: 0, e h—1andz = 01' -, w =1, while 7(N) real values each and at each generajigns members are

p"?‘tCh centergj, i) byj =0,....hg—1andi =0,...,wy 1, replenished. The calculation of the objective value of evegry

with hy = [h/(h, —1)] andw, = [w/(w, - 1)]. chromosome;;, € P;; is described in Section VII. This con-
figuration gives a collective of populations that are algorithmi-

IV. GENOME ENCODING cally homogeneous; it is only the problem instance that changes

and, not the type of the underlying problem. All GAs are set-up

To obtain phenotypes that are low-order disparity surfacegmilarly to themod-GAproposed in [59] with each generation
we model the chromosomes as bivariate polynomials of degi@snpleting in the following steps.

N Step 1) Seledls;i..-g.nia distinct survivors for the next gen-
eration.
dji(y, 1) = Y Zap-y" -2’ (1) step2) Select parents from the current population and breed
a+b<N Jenira Offspring from them, with each parent allowed

to mate only once.
Step 3) Replace the current population with the survivors
and the new offspring and evaluate objective values

wherez,; is the coefficient of each term; for example, the bi-
quadratic polynomial is given g -y + 202 - 22 + 211 -y -z +
210 - Y + 201 - ¢ + 2zp0- We choose to model such a chromosome

- . accordingly.
as a coefficient vector, for instandesg, zo2, 211, 210, 201, 200)s gy

since real-valued representations have been shown to result i;ll—hIS scheme has certa_un advantages over standard genera-
tmgal replacement techniques [59], as both parent and child

faster and more consistent searches for continuous probl T .
%ave a good chance of appearing in the next generation. Also,

[57]-[59]. In addition, we have the benefit of continuou - . . . .
subpixel disparity measurements. The lengthV) of such the finite population slots are exploited better since survivors
| are distinct. They.,pqa parameter defines deterministically the

(N +2 .
chromosomes ig =\~ | = (N +1) - (N +2)/2, thatis, ratio of population replacement. In the above steps, we add the
the number of positive integer solutionsof- b < N. elitismoperator to preserve the best members as unconditional

Note that modeling local disparity with low-order po|yn0_survivors. The fitness allocation mechanism uUsesar ranking
mials has also been used in [60]-[62] but in a different opti®4] and employs Baker’s ranking formula [65] to explicitly
mization context. Low-order functionals are preferred here §8ntrol selective pressure and the balance between exploration
they naturally incorporate the smoothness constraint. If the d2d exploitation (using the parametgf..x). This scheme
parity surface has an unconstrained form, then explicit regui&¥@s shown to mitigate significantly treuper-individualand
ization terms must be added to the cost function. This is beose-raceeffects [57], [66].
cause the SCP is an ill-posed problem and regularization theory
is needed to recover acceptable solutions [63]. Various smocfh- S€arch Operators
ness terms with different nullspace properties have been usedn order to have better control over the search, we split the
with typical examples including the square-Laplaci@p, + breeding in step 2) above. Offspring are produced either by
dz.)? [1], the quadratic-variatiod?, +2-d2, +d2, [10], [11], crossover or by mutation, i.e., these two operators are not ap-
and the square-gradiemj + d? [63]. The computational over- plied sequentially. At each generatienevery GA performs
head of these operators, however, is avoided here by employingumber of cycles: of selecting the next genetic operator
low-order surfaces. to be applied until all newj.,i1q Offspring are collected. At
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each cycle, crossover is applied with probabifityand muta- z,; in various ways. If the two parents are near fit because of
tion with probability (1 — p.). As explained in Section V-Al, some promising depth attributes of their phenotypic polyno-
we use four crossover operators: three quadratic ones gemaial surfaces, such as curvature components or intercept, then
ating two offspring each and one binary generating one offie children have potentially the chance of inheriting these at-
spring. Thus, the average of individuals generated by crossotrdsutes, by either exchanging (C-1) or by arithmetically recom-
is 7/4 = 1.75. Mutation (see Section V-A2) always generatebining (C-II, C-1lI, C-IV) the related coefficient groups. We ob-
one new offspring. Sincg.-n-1.75+(1—p.)-nis equaly.nia, Served a faster search when this combination of crossovers was
crossover and mutation produt®s - p./(0.75 - p. + 1)% and used instead of any single one. Once the GA has decided to use
(1-p.)-100/(0.75-p. + 1)% of all the offspring, respectively. crossover as the next breeding operation, a scheme from the
We use an initial value gf. = 0.6, which gives 72% and 28% library is selected in random. Note that all crossover schemes
offspring for the two operators, respectively. guarantee offspring with alleles within the permissible alphabet
We have adopted a simple experimental heuristic to impro®e = [z, 2max] (S€€ Section VI), apart from C-IV. A max-
search. Since the initial generations contain adequate diversityum of five attempts for reselectingis allowed for this oper-
the exploitation facility of crossover is more desirable. Lateator until @ is respected.
when diversity is decreased, the exploration of new regions by2) Mutation: The mutation operator also uses a library of
the mutation operator is more useful. To take this into accoumgrying schemes with different properties, exploiting the real-
pe is halved automatically upon a predefined generation cowalued representation. A single parent member is selected and
t.. Thus, for generations,,...,tnax, @ value ofp. = 0.3 each allele is mutated with a probability, = 0.25 (with a
changes the contributions from crossover and mutation to 43#tnimum of one mutant allele per member). The following mu-
and 57% ofg.nu4q, respectively. tation schemes are adopted.
1) Crossover: As we have used a real-valued chromosomd-l:  Uniform: The my;, mutant allelec;;;[m] is reassigned a
representation, standard point crossovers employed in bit-string random value fronfz,,in, Zmax]-
GAs may not be adequate. Previous research on function &fHl: Nonuniform [59]: The new allele valuegik[m] depends
timization [58], [59], [67] has shown the usefulness of spe- on the age of the population and is calculated by
cialised operators for real-valued representations. In this paper,
for two selected parents;; andc;; € P;;, we use the following iplm] = { 2
crossover library.

cjik[m] + J (t, Zmax — cjie[m])
ciirlm] = J (t, cjix[m] — Zmin)

C-l:  Classic x-point [59]: x break-sites are selected ran- where the two choices are decided in random with a
domly and c;;, and cj contribute accordingly to probability of 0.5. The added/subtracted value is given
produce two offspring. Since(N) is small, a small by
fixed symmetric value ofy = 2 is adequate. This (1=t /tmae)”
crossover generates offspring at the corners of the J(tz) =z (1 -r ) ®)
h_ypercgbe de_fmed by the two parents. ) wheret is the current generation,,. is the length of

C-ll:  Line arithmetical [58], [59], [67]: A random uniform

numberr € [0, 1] is generated and then, two offspring
are produced through the linear combinations of the

evolution,b is a system dependent parameter set to 4.0,
which reflects the degree of uniformity, ands [0, 1] is
a uniform random number. This function gives a value

parental vectorsr - cjir+(1 — 7) -¢;y and (1 — r)
-cjit + 7 - ¢jir. This crossover produces offspring lying
along the line segment joining the two parent points in
the 7(NV)-dimensional solution space. Note that C-ll is
a general case of treveragearithmeticalcrossover for
fixedr = 0.5.
C-lll: Intermediate arithmetical [59], [67]: This works as C-II,
however, a different,,, is generated for each,, al-
lele c;ix[m] and ¢u[m] of the two parents, forn =
1,...,7(N). The two offspring are given by the com-
binationsr,,, - cjir[m] + (1 —rwm) - ¢ju[m] and(1 — 7y, ) -
cjik[m]+7m -cin[m]. This generates offspring within the
boundaries of the hypercube defined by the two parents.
Heuristic arithmetical [58], [59]: This operator gener-
ates only one offspring given by- (¢jix — ¢jit) + Cjiks In order to restrict the range of the search during initial-
for a randomr € [0,1] given thatf(c;ix) < f(cju). ization and evolution, we provide a chromosome alphabet
The generated offspring lie at the line passing through = [zmin, zmax] that represents the set of all permissible
the parents similarly to C-Il, but the comparison of thealues for the gene coefficients,. To set its limits to some
objective values biases the operator to search toward tieasonable values, we use the disparity radgand assign
most promising direction. Zmax = —Zmin = 1.5 X max(|dmax|, |dmin|). We also scale the
As seen by the geometric interpretation of the above opedzemain[y;yj*] x [z;,x]] of each patch tdo, 1]2. Then, to
tors, they support combinations of the polynomial coefficientsbtain the initial populations, we randomly select framall

within [0, z] which is closer to zero with higher prob-
ability, as more generations elapse. Thus, in the early
stages, the search space is sampled uniformly, while
later on, a local fine-tuning is performed.

Boundary [59]: This changes the mutant allele to either
Zmin OF Zmax With a probability of 0.5.

When anindividual is selected for mutation, one of M-I, M-I,
and M-lll schemes is chosen with probabilities 0.4, 0.4, and
0.2, respectively; we do so since M-Il is more disruptive. This
composite mutation scheme was found sufficient in sampling
new points of the coefficient space and managing diversity loss.

M-III:

C-IV: VI. POPULATION INITIALIZATION
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coefficientsz,;, excluding the constant ong,. Subsequently,  Step 3) For all the patches that failed the test, calculate their
zoo IS recalculated via d;; values using the average values of their eight-
connected neighbors, which have defined dispari-

L‘/Jvr zt . .
_ 1 J : - ties. If some patches do not have such neighbors at
Zoo = dji — o h Z Z Z zap -y - (4) all, iteratively apply this step, until all missing values
PP y=yy e=a; 0<atbsN are gradually filled up.

- . . : .. The above test is used to reject disparities which are of low
whered;; € A is an estimated value of the average disparity .. o . : )
. . onfidence and possibly incorrect, while the median value is
of patch(j,7). If (4) produceszoy ¢ @, then the operation — X . o
) . . used for rejection of the outliers. This heuristic was found to
can be repeated. The proposed heuristic combines a simple an A . . :
. . : e very effective in providing the SGAs with good estimates
very fast mechanism for generating random solutions near

feasible regions of the search space without, however, sacflr- the starting populations. Note that although there is a single

ficing the genomic diversity of the initial populations. Note that?* for.all the c_hromoso_mes of each po_pulatlB)_g, the starting

those few elementsy, z) that may have disparities outside |verS|ty.ofP].»i is high, since the coefficients of its members can
’ . . have quite different magnitudes.

are handled by the penalty terms of the credit assignment (see

Section VII).
) VIl. CREDIT ASSIGNMENT TERMS

A. Hybridization Phase A. Self Contributions

Itis beneficial to hybridise the initial populations, so that the The primary goal of each populatidry; is to locate a surface
search is deployed from prosperous regions of the feasible g9 that optimally conforms with the photometric similarity of
lution spaces. In GAs, various methods for hybridization hatRe two images by matching each poiat z) € [yj_7y;'] X
been used [57], [59]. Here, we adapt an inexact but fast stereo ;] in L with apoint(y, = — d;i(y, z)) in R. Given thek,
matcher (thebidirectional local search(BLS) similar to the chromosome;;, in Pj;, we use (6), shown at the bottom of the
one used in [4] and [68]), to calculate approximate disparitiggge, minimizing error ternfi,; to achieve this. The above ob-
for each patch and generate reasonahleestimates for (4). jective penalises the out-of-range disparities by a per pixel con-
In BLS, each pixel(y, z;) in L is assigned its most preferredstant cost, since the problem constraints are violated (note that,
(within A) pixel (y, z,) in R and only if this preference is mu- for simplicity, we use:;;x(y, ) to denote the disparity valuk;
tual then the pairing is accepted. For preference evaluation, w&responding to the coefficients of:1. at pixel (y,z)). The
use thezero-mean normalized cross-correlatiof,xcc) score  pair { Lo, Ry} denotes the original pixel intensity tables, while
[68] as in (5), shown at the bottom of the page, where the coy,, R} and{L,., R, } are the vertical and horizontal gradient
parison is performed withif2-£+1) x (2-k+1) windows (with  fields of the images, respectively. These are calculated by con-
k = 4) centered at the two pixels addy, ;) and(y, =) are  volving the original images with the corresponding derivatives

the average intensities. _ ~ ofaGaussian kernel of scale= 0.4 in order to reduce the ef-
Using the above, we employ the following hybridizatiofects of noise and quantization. Since the values in the tRree
procedure. tables are accessed at a subpixel level, we use a simple parabolic

Step 1) Apply BLS to alk, - w, patches independently andinterpolation along the row. We also truncate the responses of
for each patch evaluate whether the number of ithe absolute differences in (6) to a small valug pfor each of
pixels with defined disparities is above a thresholthe three terms prior to summation, in order to limit the contribu-

v - hy - wp, Wherey is a user-defined percentage. tion of large errors [22]. Finally, note that although we used the

Step 2) For each patcly,:) that passes the test, set itsum of absolute differences, any dissimilarity/similarity metric
d;; value equal to the median of its disparitycould have been used, such as correlation or metrics based on

distribution. rank statistics [4], [69], [70], which exhibit robustness to linear
k k ' _ _ ' . _
,Ek ‘ Zk (L(y + jsw + 1) = L(y,z1)) - (R(y + j, 0 +14) — Ry, 21))
Sznce(y, v, mr) = - ]_k_ — — (5)
. . = 2 . . = 2
'Zk 'Zk (L(y +j,.’171 + Z) - L(y7‘171)) : ‘Zk 'Zk (R(y +J>‘T7’ + /L) - R(yxr))
J=—ki1=—Kk 1=—K J)=—K

1 - - 3 if cjie(y, 2) ¢ [dmin, dmax]
3wy - hy ’ Z Z { Y n=oye | Ln(y,2) — Ra(y, x — cjur(y,x))|, otherwise. (6)

y=y; =z,

fu(ejin) =
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and certain nonlinear intensity variations but are more compu-
tationally expensive.

A second error term can be designed by taking into account
certain scene constraints. The uniqueness constraint (UC), for
instance, requires a one-to-one matching. In the above formula-
tion, this is not guaranteed since a right point can be the conju-
gate of multiple left points. A further improvement can be ob-
tained using the ordering constraint (OC). Both constraints are
in fact constraints on the possible scene objects and their use can
reduce the search space of the SCP. The UC implies that each
physical point occupies a unique position in the 3-D space and
assumes opaque scene objects, while the OC disallows thin oc-
cluding scene objects at large separations that cause projection
reversals [2]. R inter-patch

Here, we satisfy both constraints simultaneously as follows. e Ol CRmANS,
Suppose that at two nearby poifits ) and(y, x + Ax) in L,
whereAz > 0, the corresponding disparities afgy, =) and

d(y,z + Az). Then, the OC implies that their conjugate pointsig. 2. ~Symbiotic dependency between spedies and its four symbionts.
in R preserve their order, that is R’_egularlzmg forces at the patch bql_mdanes can enforce surface continuity
disrupted by the problem decomposition.

symbiont
populations

(T g.i-1) T

WY

M
|
I
[

nAErnnnnn

(z 4+ Az)—d(y,z + Az) >z — d(y, )

_ Ay a+ Aw)—dly,x) | (7) toP(y = y;), bottom(y = 1/]'") left (z = a77), and right
Az (z = x}) sides, as shown in Fig. 2. This is given by the error
which, for Az — 0, restricts the horizontal derivative to anterm
upper bound of 1.0. This has also been observed in [60] and
used in the energy minimization framework of [11]. Here, W?CO(
explicitly incorporate the violations of this term via the penalty
term fo defined as

Cjik) =
yt
1 . J B .
o+ + ﬁ{ﬁ(%kvcﬁ—ﬂhp Z |Cjik(y7$i )_Cji—l(yv$?—_1)|
1 Lo if 0dis(yz) y=y;
fO(Cj7k) = Z Z {1, |f Ox = 1 . (8) o g .

wy * hp 07 otherwise left adjacency

y=y; =,

y*
In this way, the OC is not enforced as a hard constraint as in ok ~ o -
dynamic-programming-based algorithms, since if the stereo pair + Bcjin, Ciga)hp Z |jin(y, 2i0) = ciga (v, 573))|

contains objects that cause reversals, the photometric figrm y=Y; )
has potentially the ability to outweigfp apd admit a djsparity right adjacency
surface that violates the OC. However, since the majority of the ot

7

scene objects are expected to abide by the OC, an additional " _ "
) P y + B(¢jik, €j_1:)wp Z |ejin(yy @)=y (y)y, @)

improvement can be achieved.

r=x_
B. Symbiotic Contributions h top adiacency g
As mentioned in Section IV, intrapatch smoothness is man- a7t
. _ i * + * -
aged effectively by the low-order polynomials. However, due B(Cjiks € y1:)Wp Z |Cjik(yj vx)_cj+1i(yj+17z)|
to the difference between the views and the noise, the surface o
continuity across the patches breaks down. Increasing the size — ~ J
of the patches may alleviate this problem, however, it causes bottom adjacency
loss of resolution and increases the errors at object boundaries, 9)

where discontinuities must be allowed. Thus, since minimizing
the self errorsfy, and fo is a necessary but not adequate optiwhich measures the weighted sum of absolute side disparity dis-
mization strategy, we have to impose extra terms to enforce orepancies between the surface of chromosemeunder eval-
terpatch regularization. We design such terms based on symtation and the currently best local solutioffs ; ;,, of each
otic interlocking in order to proscribe each patch from evolvingf the four symbionts?; 1 ;+1. £ in (9) are adaptive weights,
independently of its neighbors. Fig. 2 pictures such dependengyich are discussed in Section VII-Eg is scaled by the sum
between each populatiaB;; and its four-connected symbiontof all 2 - (h, + w,) weights/ to normalize them to a sum of
speciesP;41 i+1. unity.

The first such term attempts to suppress the stimogaic The effect from the minimization of ¢ is illustrated in
effectby enforcing zeroth-order), (or positional) continuity at Fig. 3(a) for a simplified 1-D analog. The two end points of
the boundary disparities with each of the four neighbors in tlilee curved; try to obtain similar values with the adjacent
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error: error:
di(x)-d.1 (%7 1)) i1 (%4 1)-dic))|

di+1

q=di.i(xt-1) = 1(xi1) error:
. s=di(x))  |(t-9)-(r-q)|
r—‘d(x,+1

d;
Xi-1 Xi1 Xi xl Xi+1 x:+l
= NS NG J
' '
i-1 i i+

€Y (b)

Fig. 3. One-dimensional (1-D) analogues for the enforcemefit @ndC, continuities. (a)f-, minimizes the disparity jumps at the patch boundaries. A likely
minimization of the errors between the patchesid: + 1 could produce the dotted joining curves. (b) Minimization of flag error reduces the peak effect.

sides of each neighbak;.{, in order to attenuate the disparitysponding 1-D case of Fig. 3(b) exemplifies the situation. Al-
jumps. Since the curvature of each surface is limited by ttieough the closest endpoint§ , andz; of d;_; andd; have
polynomial degreéV, each curve is forced toward altering itssimilar values, their rapidly and similarly sloping neighboring
entire profile to create a surface that is continuous with thmints z; ,—1 andz; +1 cause a peak, which is likely un-
neighboring ones. A likely outcome is shown as a dotted curwanted due to the inherent smoothness of the physical world.
in Fig. 3(a). In this way, by evolving all populations in parallelThe minimization offc; ensures suppression of this effect by
local interactions are propagated to a global scale to yieldaggregating such errors at discrete side pixel locations [finite
globally smooth disparity map. The benefit gained fay, is differences are used instead of derivatives since (6) has already
twofold; not only patch boundary discontinuities are reducedalculated the disparity values at those pixels] as in (10), shown
but also each surface itself is regularised to the matches thathe bottom of the page.
are consistent with its neighbors. For examplel;ihas many  Note that the above two discontinuities are also undesirable
mismatched elements, its neighbais.; have a good chancein computer graphics, where boundary-based object repre-
of rectifying its profile to support more consistently their owrsentations are sought. When, for instance, splines are used to
possibly stronger surface profiles. model different regions of an object’s surface, similar surface
Since the lack of first-ordef’; continuity can give rise to a continuities are needed. In these cases, rigid conditions, such
peak effectt the patch boundaries, we also use a second teas equality and colinearity are imposed on selected spline
fc1 to produce more smoothly flowing surfaces. The corresontrol points [71], [72]. For the current work, we could use

y+

1 * *
fea(ejin) _Z_ B(cjir C]z 1) Z |Cﬂk (y, 27 +1) = cjin(y, ;) — cji_l(y, ‘T?—l) + Cji—l(y'/ 33?——1 - 1)|

y=y;
N

~

~
left adjacency

+ B(cjik; C]z+1 Z |Cﬂk Y 3: -1)- Cjik(yvl'?—) - C;i+1(y7wi_+1) + C;i+1(y7$i_+1 + l)l
Yy=
right a:igacency
xzt
+ Blejins €or) ~wp Y Jejinyy +1,2) = cin(yy @) = €_pi(yiow) + ¢ nilyiy — Lo

r=x
i
v

~
top adjacency

2T
i

+B(cins CGprs) - wp - D |eiin(y) = La)—ciin(y], #) =€ 11i(Uj 10 2) (Wi + L) ¢ (10)
r=x.

~
bottom adjacency
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splines instead of polynomials and enforce such smoothnelsscrepancies between and the neighboring symbionts need

symbiotically in exactly the same manner. more minimization. This weight is defined as the truncated line
The final symbiotic error ternfc is another form of conti- lu(ct, c2)|
nuity and measures the local coherency between patch surfaces f1 = max <1 - u—’7 0) (12)

by enforcing nearby patches to have similar disparity values. . . . _ .
This coherency error uses a local geographic neighborho@blereun.x is a fixed threshold which depends on the intensity
N(P;;) around every patchP;; to aggregate the absolutedifferences between all the symbiotically associated patch pairs
differences of average disparity values between the currémthe collective.

chromosome;;;, and the elite ones,,,, of each symbiont as B2 is designed to decrease when the symbigritas higher
error thane; . It is defined as

> BlCjins Cun) - |Ejik — Eunl 3, = Eseir(c1) 13
fC(Cji,k) _ Ppn €X(P;;) . 1) Pa Esolf(61) + Esclf(CQ) (13)
26 whereFE.¢(c¢) consists of the combined errofs; and fo of ¢

as defined in (15). In this way, continuity or coherency as dic-
The symbols: denote the averaged patch disparities®i;;) tated by a symbiont, is less trustworthy when its internal en-
contains all patches within a fixed distance of approximately 3Qqy F..;; is higher than the energy @f (note that only the
pixels around and excluding;;. self-errorsE,.;; are used here since thg.,,,.., part of (15),

It can be seen that in (9)—-(11), we have solely used the bagtich combines ¢, fc1 and f¢ is not calculated yet fot, ).
members:* from each symbiont. This partnering strategy (see Finally, 83 regulates the dominance between a symbignt
variations in Section 1l) is a rather greedy one, since insteadd its peers involved in the evaluationsf We define it as
of evaluating a chromosome with the currently elite represen- Fromi(c2)
tatives, more auxiliary evaluations with various combinations By =1— —otal%)
of weaker representatives could be used to allow for more real- ; Eiotal(c)
istic symbiosis. However, experimentation showed that such a

expensive scheme is not needed. The reason lies in the fact . .
b and (8)—(11). The denominator is summated over all sym-

we have used (see ensuing subsections) symbiosis in an a htsc of c; (that is the fourct, , .., for (9) and (10) or all

gllrztr;;;ner that compensates for the greedy behavior of t |sé ¢ i R(P.) for (11)). In this way,3s controls the influ-

. . . ence of the participating symbionts by biasing coevolution to be
Anot_her Important pow_lt to be mentioned about t_hese thr gre compliant with the fitter species. Note that althog@glis
terms, is that the continuity and coherency assumptions can d during evolution as it depends solely on the image inten-
hold near object boundaries. At these areas, nearby patches Q"f}Y

. . : gs,/fg and 3 adapt constantly to the errors. Such adaptive
to be allowed to dlv_erge n ord.er to model the depth separati avior has the advantage of making the global propagation of
between scene object. For this reason, we make the three e

terms robust by truncating each of the absolute difference con Ei%%ig?ﬁ“mlzatlons more realistic and avoid the local optima

butions to a small fixed value @fp. In this way, discontinuities '

between different surfaces will be allowed and not smoothegl pynamic Multiobjective Optimization

ou_tr.he above five error familiega;, fo, foo, for, andfe are . The need for simultaneou; sa_tisfac_tion of the fiv_e error fam-

embedded in the evolutionary optimization framework of thi<> fu, fo, feo, fo1, and fc gives rise to a multiobjective
or vector) optimization problem; such problems are typically

revi ion ing tw f weights; nes th
Ea?anocuestfleec;tn%i\zduusal g;mgi(t){i?:eso?wtribitgilor:ss, 5313 ;Z;ezt StUdie.d using Pgrgto (_)ptimality theory [.73]' In the_ context of
used to combine/scalarise all the errors. evolutionary optimization, there are various techniques to en-
able recovery of multiple solutions from the Pareto optimal set
[74]-[81]. In this paper, however, due to the large-scale of the
C. Adaptive Symbiotic Forces problem, we use a weighted-sum approach from the field of
classical multiobjective theory [73] to recover a single Pareto
optimal point. We directly scalarise the five terms in a single-
valued performance index as the mixture of the following two
energies:

(14)

?reEtotal is the total error defined in (16), which combines

The weight3(c1, ¢2) adjusts dynamically the effect of evalu-
atinge; (the current membey;;;, under evaluation) with respect
to ¢, (the best member; ., ;. orcy,, in (9) and (10) or (11),
respectively). It can be envisaged as a measure dcfytimbiotic
forcebetween the two species members. Each such weightisthe  E.ar(cjir) =fm(cjin) + Ao - fo(cjir)
direct product of three further quantiti¢s € [0, 1] described Fsymb(cjir) =Aco - foolcjin) + Aot - for(cji)
below. F e - folem) (15)

(1 is a monotonically decreasing function of the difference @ JeATk
u(eq, co) of the average pixel intensities ih within the two where)p, Aco, Ac1, and¢ are fixed user-defined weights.
patches corresponding tg andc,. This is because the more However, at the beginning of evolution, the,..;, energy
similar the intensities of the two patches, the more likely thapay not be as effective as later on. Also, some unfortunate phe-
belong to the same object region. In such cases, the disparittypic arrangement in the initialization phase among nearby
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Fig. 4. Testimages of the Tsukuba, Sawtooth, Venus, and Map pairs, from top to bottom. The first two columns show each stereo pair, while therthird colum
the provided ground truths.

patches of low symbiotic errors, may lock optimization to local TABLE |

minima owing to the nature of our decomposition. For these ATTRIBUTES OF THEFOUR STEREOPAIRS

reasons, we combin&,.; and Fsyn, Using a time-varying Tsukuba | Sawtooth Venus Map

weighting as Dimensions hixw | 288x384 | 380x434 | 383x434 | 216x284
Range A [0,15] [0,19] [0,19] [0,29]

Fiotai(Cjik) =Fseir(¢jir) + A(t) - Esymb(Cjir) ]S;T:I‘;E jg ]80 180 180
A(t) = min <ti7 1.0) (16)
S

the optimization toward the self energies first and gradually in-
wheret, is a user-defined generation threshold aiglthe cur- troduces the importance of symbiotic interactions. At generation
rent generation. In this way, tteymbiotic strength\(¢) biases t¢,, the symbiosis culminates and for the remaining evolution
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Fig. 5. The provided occluded areas (black) and the discontinuity areas (white). The surrounding black border is ignored from evaluation.

TABLE I
ALGORITHM PARAMETERS USED FOR THEEXPERIMENTS

_Nmax Umax | 8size | &echita | Pe Pm t 1 Y N hpxwp Pr Pp 5 /10 1C0 ACI j'(,’
1.6 | 300 | 50 25 0.6 1025|100 12001 03 | 1 4x4 602020015010 30| 15

Acos Ac1, Ac assume their full strength, so thattat, the col- We designed each population object to maintain a memory
lective converges to a global equilibrium. buffer to store all these values. Their update occurs when the
Eiota1(cjix) is the principal GA objective function used inP,,,, object completes the generation. We have implemented
each of thew, - h, populations of the collective. Note that theno buffer synchronization for these values. When a member
time-varying strength\(¢) and the error-adaptive forces give c¢;;, needs to have its error calculated, the above values are read
rise to a nonstationary optimization environment. Such opfrom all its P,,,,, symbionts without waiting. In an asynchronous
mizations of dynamic problems have attracted recent interesiiimplementation, however, it may be the case that an oljjggt
various domains [82]. A primary problem in such cases is thist currently updating its internal buffer, when somg’s are
convergence may lead to population diversity loss, making, thusneed of its contents. To test this effect (and also evaluate the
the system insensitive to environmental changes after some giime savings in a parallel version—see Section IX-D), we have
eration and various mechanisms have been devised to counteatst implemented a parallel version of the above queue setup
this effect. In this paper, this is another reason that (as descrilusthg multithreaded programming. A user-defined number of
in Section V-A), we increase mutation by halving the crossovéhreads access and evolve different objects from the queue

probability p. during evolution. simultaneously and in random order. Again, the system behaved
robustly despite the lack of thread locking and synchronization,
VIII. | MPLEMENTATION AND EXECUTION SCHEDULING which would undermine parallelism.

We h totvoed th d algorithm in C++. wh A final remark relates to the number of function evaluations,
¢ have prototyped the proposed a'gorithm in » WNelthich is an essential ingredient in the complexity estimation of

the collective of species is implemented as a queue of GA pAp; evolutionary approach. Assuming an average,of gener-

ulation objects. Each object is evolved by one generation in tWhons for each of thé.. - w populations, the collective needs
and the entire queue is processed for a total.gf cycles. How-  , toco1 e, 0 (gsi de n i’max - genina) evaluations forE..i;
ever, in order to demonstrate the behavior of a real-world asyf};47, . g g 7 (1 + tmax) €valuations o, ; this gives

g size max symbo

chronous parallelimplementation, the queue is perturbed ate%%vgerhead O, - w, - tmax - (gsive — genila) additional eval-
cycle to model the fact that one processing unit (processor ptiions for the latter term. This is because reevaluatidb.gf
network node) may be slower than others or fail temporarily not needed for old population members but only for the new
to communicate. The scheduler object reshuffles the queug;at , offspring. Symbiotic termgymp,, however, need reeval-
every cycle, so that the order of evaluation is changing. Wetion for all members both old and new at each generation since
have experimented with different perturbation schemes, with gfe symbiont populations are in flux and their buffers’ contents
bitrary eliminations and/or duplications of population objecttay change. Some lazy evaluation scheme can be devised by
within the queue, with no noteworthy differences in the prachecking whether the symbionts’ top member have changed in
duced results. Due to the way symbiosis is sustained, the sysisialer to save time, but for simplicity, we have not implemented

is resistant to the lack of such synchronization. such a scheme here.
The only interspecies communication arises when seme
needs evaluation of itBy,; (i) energy term. As discussed IX. EXPERIMENTS AND RESULTS

before, each related speci€s,,, has to make available to its
symbionts the following data pertaining to its currently to
memberc},,,: the 4(h, + w, — 4) disparity values calculated Until recently, it had been exceedingly difficult to evaluate

from the two outermost pixel perimeters of its patch, its averagfee quality of the SCP algorithms found in the literature due
disparity é;,,,, and the values oE.is(c},,,) and Esymi(cl,,,)- 1o the lack of common test imagery and accurate ground truth

mn?

6. Test Imagery and Evaluation Criteria
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Fig. 6. Resulting disparity maps for the four test cases. Error maps contain bad pixels (in black), correct pixels (in white) and excluded oodlbsiolessa
(in grey). The percentages for the three types of errors are shown in the right column.

information. The latest reviewing work of [22], however, has Error statistics for each test case in [22] are gathered within
provided the means for a systematic evaluation of differetitiree areas:

matchers with controlled imagery of known ground truth. In Bp: all pixels in nonoccluded regions;

this paper, we use the same test cases and evaluation criteria fos B.: all pixels in regions without texture;

quantitative evaluation of the produced disparity maps, as well « B, all pixels near discontinuities.

as for comparison with other methods. _ The first type of error is calculated across the entire image,
Fig. 4 shows the left and rightimages of the four stereo paifgpije the other two within regions where matching is difficult in
referred to as Tsukuba, Sawtooth, Venus, and Map. The rigltier to provide a more focused analysis to problematic image
column of the figure shows the four actual scaled disparity mapsyions. In all cases, the occlusions shown in Fig. 5 are excluded
used to estimate the disparity errors. Table | summarizes theglsm evaluation. The error in each of these areas is expressed
mensions, disparity search ranges, borders and scaling faciishe percentage of bad pixels, that is, pixels with computed

of the disparity maps for these pairs. In addition to the groungsparities different from the actual ones. The first error, for ex-
truth, there is information about occlusions, discontinuities anghple, is defined as

texture. In Fig. 5, forinstance, occluded areas are shown in black

and white areas represent surface discontinuities. The black sy, = L Z [[dtrue (¥, ) — deomputed (Y, )| > Serror]
rounding borders are excluded from evaluation because image |0 (y,2)€0

boundaries hinder matching. a7
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Fig. 7. Evolution of Tsukuba; Progression of best, average, and worst valuesiifth@nd E: .1 energy terms averaged over the entire collective.

where athresholél.,,., = 1.0 is used.Bz andBp are similarly inthe bottom untextured area and other mismatches near discon-

defined for the textureless and the discontinuity regions. tinuities. Venus and Map appear with smaller errors which are
also concentrated in the discontinuity areas. Such mismatches

B. Resulting Disparity Maps and Error Analysis are due to the square patches we use, which although of small

The behavior of our algorithtepends on the various pa—4>f 4 s_ize s_tiII cause pr_oblems_ as they have to obtain member-
rameters described in Sections 1ll-VII. Manual fine-tuning ofIP With either the object or its background surface. Overall

these parameters has produced the values shown in Tabldl¥¢ disparity maps appear fairly accurate within the majority of
We use these values for all experiments, unless otherwise statB§.Surfaces. This is verified from the quantitative results in the
Although better results could be obtained by varying these g&ht side of Fig. 6. Discontinuity regions have largép error
rameters with each image pair, we keep them fixed in order R§"centages, texturelest. values are adequately small, while
comply with the criteria of [22] and allow a more realistic evalthe overall error estimation8,, show the accuracy ranging be-
uation without assuming arpriori knowledge. tween 97% and 99.5%.

The final disparity maps of the algorithm are shown in Fig. 6 From the above results, the symbiotic cooperation is suc-
and can be compared qualitatively with the true maps of Fig. 2essful and despite its local enforcement, its propagation to
It can be seen that disparities are generally smooth within tgobal scale is effective. Below, we examine in detail the
object surfaces while the depth separations are preserved &@gvergence characteristics of such collective symbiotic inter-
quately. The erroneous pixels are shown in the error maps3@iions. Fig. 7 plots the progress of g, andE'a) errors of
black, where occluded regions are excluded and shown in gre}p) and (16) (for Tsukuba only as the other tests have similar
Tsukuba contains certain mismatches near discontinuity ar€4ve profiles). Since we cannot examine each population
due to the large amount of detailed objects, such as the caniBfigpendently, we average the statistics over all/the w,
and its stand and the lamp. Sawtooth contains a blotch of errSR§cCies. The three graphs refer to the Hejt,), average,

and worst members in each patch and for each generation.
The best shows the (typical in GAs) rapid decrease of both
1t can be downloaded from http:/www.nicve.salford.ac.uk/i~yannis/sofgrrors within the first few generations. Subsequently, while

ware/casgas.zip, and it supports both serial and parallel execution mo&&séE table level. . lowl il
as well as different GA and stereo parameter input and images for furt self 4SSUMES a Stable 1evel.ia1 INCreases slowly unt

evaluation. t, = 200. This is owed to the increasing symbiosis strength
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Fig. 8. Behavior of the35, B1, andB), errors during evolution (measured in steps of ten generations).

A(t) of (16). Following that, there is consistent decrease @r a selected number of generations. The gradual reductions of
FElotar Until termination att,,,.x = 300. For both the average erroneous matches are clearly visible.

and worst graphs, we observe a short initial error increase, due

to the initial population genes being readjusted to the symbiotilc Comparisons With Other Algorithms

term_s (att = 0, the calculation OES}'mb is solely base‘?' on the We compare the proposed algorithm with 23 others evaluated
ranking of Ecie). The steep error increasefat= 100 is due , 1591 and the Middlebury page.The evaluation makes use
to the increase of the mutafuon rate explained in Section V-B the imagery and the three error types used in Sections IX-A
After that, the average obtains a stable error decrease. and B to compare a large set of best-performing recent stereo
For the particular problem we solve, one cannot guarantgftchers. Table Il reproduces some of these comparisons with
convergence solely from the error reduction shown in Fig. 7. Upptimization methods such as graph cuts [12], dynamic pro-
like classic function extremization problems, reductio®f;.;1  gramming [6], [7], GAs [21], and hybrid methods [13], [14]. The
cannot guarantee minimization of tih&,, B7, and Bp, errors. table shows the errors for each algorithm and for each image in-
This is for two reasons: First, the structure of the self/symbitvidually (Bz is excluded from the evaluation of the Map, as it
otic cost functions of (6) and (8)—(11) is a matter of subjectivie textured almost everywhere). In addition to the error percent-
problem design. Second, symbiotic interactions are very coages, the table contains the relative comparison rank within each
plex and cannot guarantee avoidance of oscillatory behaviorésfor column. Each algorithm in the table is sorted according to
local minima. Although the results show adequate final erré6 overall rank.
levels, it is important to examine the reduction of the actual It can be seen that due to the different scene and image prop-
problem errors during evolution. Fig. 8 shows the convergenggies of each data set, each algorithm’s output quality may vary
of such errors for all experiments. It can be seen that the red@€fween data sets and error types. The differences between the
tions are very consistent (the initial irregularity B in Map best[14] and the worst [7] algorithms illustrate roughly the error
is due to the very small amount of 420 textureless pixels) affynges of the complete table..For all errors, our algorithm stands
within the first 100 generations the mismatches are dramatica'lrlk/the top half of the table with a current overall rank of 5. It
reduced. This verifies the correctness of the proposed perforathe Middlebury Stereo Vision Research Pageaccessible at http://www.
mance index designs. middlebury.edu/stereo. It contains comparative results additional to the ones

L . . ublished in [22] and supports uploading and evaluation of disparity maps on-
For a qualltatlve alternative of the above graphs, Flgs. 9 afikL The reader can browse the comparison data in detail for all 24 entries (in-

10 show the disparity and error maps for the Tsukuba and Veruligling the one proposed here), as well as download extra test imagery.
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=80 =150 =200 t=250

Fig. 9. Sequence of the Tsukuba evolution for selected cycles

should be noted that the only other evolutionary method frobe much slower due to the larger search spaces. Reference
the entire set of the 24 methods is the one of [21] at rank 16.[14], for instance, also reports similarly high execution times
The majority of matchers calculate disparity values from @20-480 min on a 0.45 GHz UltraSparc Il). In general,
discrete (integer or fractional) set and need post-processingfé# more accurate methods are slower, but implementation
subpixel accuracy. From all methods in the table, only [13] arfdPeedups can greatly affect execution. For instance, for
[14] use continuous disparities by fitting planes and splines, réMplicity in our algorithm we have not implemented any pre-
spectively, to the visible surfaces. Our method also uses conff@mPutation/cost storage schemes for (6) or any lazy evaluation
uous estimation via piecewise surface fitting. However, it do§§heMes for the symbiotic terms, which could reduce the load

not use repetitive alternations of segmentation (with graph cuf? )the repetitive GA cost assignments drastically.

L . : . . Since, to the best of our knowledge, the proposed method
and f'“'r.‘g (with gra_ld|ent) asin [1.3] and [14] but single steplss the only continuous method of asynchronous parallelization

BPoperties, we exemplify the speedup gain from such paral-
lelism by experimenting with the simple multithreaded model
o described in Section VIII. Fig. 11 shows averaged statistics from
D. Speed Issues and Parallelization multiple executions of the test data on a quad-processor ma-
Concerning the speed of the proposed algorithm, it belongine. Because we use slower processors (Intel 0.85 GHz), we
to the relatively computationally demanding ones. Executidhdn asimpler problem with larger patches of siigs= w,, = 7.
on an AMD 1.45-GHz processor takes for the four images 84/e examine cases for a number of threads up to the number of
127, 129, and 46 min in the above order, for the coevolutio@yailable CPUs so that no thread needs to stay idle. We let the
plus 1-1.5 min for the hybridization and initialization phasegpreemptive multitasking of the operating system (Windows) to
Some of the other methods, such as ones based on local sedfcthe scheduling of the threads and we have not forced thread
or dynamic programming are considerably faster. Howeveffinities, exclusive CPU usages, or thread locking.
those methods calculate discrete disparities, while methoddt can be calculated from the chart that the average time gain
which calculate continuous surfaces of unrestricted shape ¢antwo, three, and four threads over the case of a single thread is

chronous large-scale parallelization.
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Fig. 10. Sequence of the Venus evolution for selected cycles

TABLE Il
SOME OF THE CURRENT (05/2003) 24 TRIES OF THEMIDDLEBURY EVALUATION TABLE. SUBSCRIPTS ON THERIGHT SIDE OF EACH ERROR PERCENTAGE
DENOTE PERFORMANCE RANK FOR THE INDIVIDUAL ERRORCOLUMN. THE LAST COLUMN GIVES THE RANK OF OVERALL PERFORMANCE

Algorithm ‘Tsukuba ~Sawtooth Venus Map z
B; i B i B, B; . By . B, B; 1 B i B B, 1+ B, | ®

Layered [14] 158, 1 1.065 : 8825 | 034, 0.00, | 335, | 1525 1296, 262, | 0374 : 524, 1
Our method 2870 ' 1719 111905 1.044: 0135 1 732,50 | 051, ! 023, : 7.885 | 050, : 654, 5
GCroccl. [12] 127, : 043, | 690, | 036, 000, : 3.65, | 2794 :539,;: 254, | 1.79,; :10.08 x| 7
Multiw Cut [13] 8.08, ! 6.53 5 12533, ] 061, 046, : 460, | 053, | 031, ' 8064 | 026, ' 327, | 10
Genetic [21] 2.96 10 1 2.66 1, 1 14.97 1o 221 1o 2.76 59 ' 13.96 15| 2.49 4 @ 2.89 5 123.04,0] 1.04,5 11091 5| 16
Dyn. prog. [6,22] | 4.12 5 | 4.63 17 :12.34 1, | 4.84 3¢ 3.71 55 : 13.26 15| 10.10 54 :15.01 5,1 17.12 15| 3.33,, :14.04 5| 21
Max. surf. [7] 11.10 541 10.70 5, 1 41.99 54| 5.51 54 ¢ 5.56 54 1273953 | 43640 : 478 s 141.13 53| 4.17 5 :27.88, | 24

52.7%, 36.7%, and 28.8%, respectively. This shows that, desgt8 thread context switching or memory bus bandwidth as there
the simple parallel implementation, it scales well to the number no interthread synchronization. Other more sophisticated
of processors utilized. The small overhead (from the ideal lingaarallel implementation platforms could provide speedup much
gain of 50%, 33.3%, and 25%, respectively) can be assignecttoser to linear, perhaps for a larger number of CPUs.
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TABLE IV
ERROR AND TIME (MINS, EXCL. INITIALISATIONS) RESULTS OF EXPERIMENTS WITH ALTERING THE DEFAULT PARAMETERS
OF TABLE |l. ONLY THE DIFFERING PARAMETERS ARE DISPLAYED AND RELATED ONES ARE GROUPEDINTO PARTS

Tsukuba Sawtooth Venus Map

Parameters BB Bi B, time 35 B; B, timg Bﬁ B? B, time 35 BDl time

default (Table II) 287 171 11.90:84]1.04 0.13 732 127 051 0.23 7.88 1129 0.50 6.54 ;46

(a) | no hybridisation 276 134 12.77:84]1.07 0.16 7.58 1127 0.70 0.25 7.74 1129] 1.62 12.54:46

hy=w,=5 324 1.57 15.31:41[1.27 0.16 11.06:62] 0.47 0.05 7.76 :63]| 0.85 12.02:23

h=w,=6 351 179 17.27130[1.41 0.07 12.88:45| 0.62 0.25 10.08:46| 1.06 14.88:16

®) h=w,=7 401 173 2033:21{1.40 0.17 12.31:32]0.67 024 11.16:32] 1.38 19.40:12

h,=w,=4, N=2 4.00 331 15.121100/2.27 0.69 10.94:144| 1.64 1.40 12.61:145 5.32 19.66:49

h=w,=9, N=2 433 227 19.95:15[2.05 0.47 16.73:23| 142 1.06 19.07:23| 1.52 10.19: 8

h=w,=11, N=3 593 440 25.57:14/320 1.17 21.18121] 254 1.81 22.77:21] 6.00 35.06: 8

Aco=0 3.85 3.35 13.68:84[1.28 0.18 8.05 1127/ 0.82 0.71 8.57 :129) 0.94 8.48 146

Ac;=0 398 3.60 14.14:84[1.60 0.54 9.66 :127] 1.12 0.87 11.08:129] 1.20 9.21 146

©) [ Aco=Ac;=0 10.00 15.12 19.81:74[3.23 3.39 13.61:113| 544 9.72 15.55:113| 422 18.79:43

Ac=0 6.94 10.06 14.98:34]1.87 0.84 7.45:51] 297 4.60 14.95:54| 1.41 9.76 : 19

Aco=Aci=Ac=0 18.01 31.14 23.12125|7.25 12.19 16.36:38]14.83 28.59 22.90:38(13.17 32.51:14
E. Tests With Different Parameters 14048 g g O 1 thread
In this section, we examine the effect various important pz  ;.,g.54 | ] L2 B2 threads
rameters carry (again, all four image sets are run with fixe | 2 B3 threads
parameters). Part (a) in Table IV shows results without usin® =~ £ ; W4 threads

0:57:36

the hybridization procedure of Section VI. In this case all ini-£
tial populations are given genes selected from the alphiiet g 04312
random. Although some columns show similar or slightly bette® 0:28:48
errors, overall, the lack of hybridization gives more mismatche:  0:14:24
This ascertains the advantage of using informed initializatio  0:00:00

Lzieco
£1:9Z:0

i
using correlation. In the graphs of Fig. 8, it can be seen that tt Tsukuba  Sawtooth  Venus Map
image errors at generatian= 0 are around 40 foi3p and

20% for By and Bz. Examination of the same starting error$ig. 11. Average times of running the four test sets witk 7 patches on an
without hybridization show that they have considerably highé’fe' 0.85 GHz quad-CPU PC. The number of threads corresponds to the number

) - PU d tly.
averages of around 85%. This, on the other hand, verifies tﬁa? S tsed concurrenty

the proposed dynamic optimization behaves robustly and is ca-
pable of generating very large error reductions even when thely. The last row is of particular interest as it ignores from op-

starting surface coefficients are entirely random. timization all symbiotic interactions and makes evolution of all
Part (b) in Table IV contains errors and execution timgsatches totally independent.
for different patch size, x w, and polynomial degreed’. From observing all rows, exclusion of any of these terms re-

These parameters are interrelated, as in general, larger patshudts to higher errors. Exclusion of boifag and fo; causes
require higher degrees as more varying surfaces are requiredgcexpected more mismatches than either one alone. The lack
model the increased level of elevation detail larger areas mafycoherencyfc also causes mismatches, but fewer than the
enclose. However, larger patches give higher errors in regiamsclusion of both continuities. Finally, excluding all symbiotic
with abrupt depth variations, for example in cases whereterms produces as expected very high errors in all images and
discontinuity occurs not at the patch boundary, but halfway il regions of interes©, T and D. To demonstrate the nature
area and the patch has to assume membership with eitherahsuch errors visually, we use Fig. 12, which contains error
object or the background. Also, if details are finer than surfaead disparity maps for the last three rows of Table IV. When
curvatures allow, they can get oversmoothed. Furthermore,ciontinuity is not optimized it can be seen that mismatches are
textureless areas high degree surfaces can produce unnecesggailyy and isolated as they mainly occur at the patch boundaries.
irregularities. These are the reasons that small44planar The middle row of the figure shows that exclusion of coherency
patches give the best results overall. However, if high accuracguses blotchy errors since some patches obtain entirely wrong
is not required, using larger patches can significantly reduce thlevations. The combination of all errors appears in the maps of
execution time as the size of thg x w, collective decreases. the last figure row, where optimization is driven exclusively by
Finally, in part (c) in Table IV, we examine the benefit of usinghe E,.;; term. Comparison of these results with those of Fig. 6
the various symbiotic termé-o, fc1, andfc, by removing sub- verifies the importance of all symbiotic terms withifay,»,.
sets of these terms from the calculationfaf,..,;, in (15). The The corresponding execution times in Table IV illustrate the
first three rows examine exclusion of positional and first-ordexdditional computational load of symbiosis (exclusion of ei-
continuity and both, while the fourth row examines coherendfier /oo or fo; does not change the times as both terms are
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Tsukuba Sawtooth

Aco= Ac; =0 (no continuity fry & fc;)

Ac= 0 (no coherency f¢)

A¢=0 (no symbiosis E,,;)

=Aa

;LC 0

Fig. 12. Resulting disparity and error maps for cases with the symbiotic objectives of continuity and coherency excluded from optimization.

calculated by the same module). When both continuities are epecies are evolved autonomously based on the ifggxonly.
cluded, there is some time reduction, but it can be seen that &khough this setup has identical population architecture, it does
clusion of thef term speeds up optimization by a factor of 2.5n0t solve the same problem due to the exclusion of all terms
This is because, in the current implementation, the calculatigiithin Esy.,;,. To test our proposed algorithm with a nonsymbi-
of the 3 forces within the largé(-) neighborhood of (11) can otic one that solves an identical problem, i.e., the smooth piece-

be very expensive. wise surface fitting, we have implemented a modified architec-
o . L ture. Instead of usinf, - w, populations to code each patch co-
F. Symbiotic Versus Nonsymbiotic Optimization efficients independently, we use a single population with each

The above paragraphs discussed a nonsymbiotic configuthromosome being a concatenation of the w, - 7(IN) co-
tion (with A\co = Ac1 = A¢ = 0), where all populations/ efficients from all patches. In this way, the population matrices
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‘ coupled aN) «N) N)  «N)genes  static problem with a search spacediss'7(V), Consider,
I'population | oefficients B for instance, the 388 434 pixels Sawtooth set with 44
( L, | [ planar patches, which yields a collective of 227145 species.
Pk 11| e = g ‘ % In this case, the search space for the nonsymbiotic approach
ER e — % =P, is ®55245 whose dimensionality prohibits efficient search
2 ';:,ﬁ I 54 B . . . . .
;éﬂ L '«g e & ] - with any reasonable population sizes and evolution times. The
BRI S — = 3| fal | symbiotic model only solves 18,415 problemshn.
6 | [erbisat )
MEE=TE: RN Nz, X. CONCLUSION
PR - populations coﬁ%ﬁ?eﬁu '_I'h|3 paper _proposeq a novel algorlthm_for solving the SCP
using piecewise continuous surfaces with a parallel evolu-
@) () tionary optimization based on the concept of symbiosis. The

. . . . o original super-problem was decomposed to a large set of small
Fig. 13. Difference in the population memory organizations between (a) . .
nonsymbiotic and (b) symbiotic models. patches, each corresponding to a separate species/subproblem

optimisable by a simple GA. All species in the homogeneous

remain in essence the same. As exemplified in Fig. 13, the m&Rjlective were evolved concurrently with local mutualistic
difference is that the symbiotic setup has all the genes/coeffiteractions adaptively propagated to yield global optimality.
cients decoupled and allowed to evolve independently Withll:f"les,UIts showed that such a madel manages tq pounteract the
each patch territory, while the nonsymbiotic couples all coefffiétrimental effect from the arbitrary decomposition success-
cients to single genotypic strings. fully and that it outperforms other equivalent nonsymbiotic

Mutation and crossover operators in this single GA jnPtimizations and also compares competitively with the
plementation are applied in the same way as described Ciyrently available SCP solver_s. S_pecmc advantages include
Section V-A. All five objective terms of (6) and (8)—(11) nOWaS.yI.’]ChI’OI"IOL_IS massive parallelization, robust handling o_f local
become self-energies as they are calculated from intrapatch d8iaima, rapid and stable convergence, and computation of
alone and without any external genotypic dependency. Also, fhtinuous disparity/depth values. _ y
previous symbionts of a patch become the neighboring surface§Uture improvements include more versatile decomposition,

within its own host chromosome. All terms are aggregated e the current limitation of having equally sized rectangular
the single performance index patches gives errors at discontinuity regions. Patches with

adaptively varying shapes could directly alleviate this problem.

hg—1wy—1 Alternatively, adaptive segmentation, such as the graph-cut
Erotar(ck) = Y > {Farlcrji) + Ao - folerji) + Alt) based one used in [13] and [14], could be implemented as a
j=0 i=0 second level collective embedded in the existing configuration,

[Aco - foolerji) + Act - for(erji) + Ae - fe(ersi)]} (18)  so that heterogeneous collectives segment and surface fit
concurrently. The proposed method could also be applied to
problems other than the SCP, such as problems decomposable
to a very large number of smaller subproblems whose perfor-
mance indices can be designed with local interactions alone
((f_}.g., function approximation).

wherecy, is theky, member of the GA, and;; is the portion
of 7(NN) patch coefficients at coordinatég,:). To make the
comparison objective, we have used similarly calculateohd
A weights, as well as the hybridization phase.

Regarding the time complexity of such a scheme, it is cle
that only new population members need evaluation of their
Eota1. This requires a total o, - wg * (gsize + tmax * ehild)
evaluations for eaclf term of (18), which avoids the symbi- The authors are grateful to D. Scharstein and R. Szeliski and
otic overhead of recalculatingco, fc1, and fo for the old  the Middlebury Stereo Vision Research Page [22] for allowing
gsize — Jchila MEMbers at every generation (see Section Vlllys to use their test images and results, as well as the Editor-in-
For the current parameters, this can save a 30% of the tat#ief D. B. Fogel and the anonymous referees for their in-
evolution time. sightful comments and suggestions, which improved our work

Despite the fewer evaluations of this nonsymbiotic architegignificantly.
ture, experimentation showed that its optimization capabilities
are overly limited. Using the same parameters as in Table Il, REEERENCES
the eleven error measurements,at,. were between 22% and . )
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