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Abstract- We consider the problem of using evolution-
ary multiobjective optimization to evolve visual imagery.
In our method, images (phenomes) are generated from
expressions (genomes), and then color segmented so that
they can be evaluated under a number of different aes-
thetic criteria. Our principal task is to formulate fitness
functions that make the best use of these elementary
aesthetic components. We demonstrate the benefits ob-
tained from using more than one objective function. We
also discuss technical issues that arose as a consequence
of treating our computational aesthetics problem as a
“real world” application of evolutionary multiobjective
optimization.


1 Introduction


Although the work of Dawkins [dawk89] set precedent, the
real impetus for using the interactive genetic algorithm to
evolve aesthetic visual imagery gained momentum follow-
ing the well publicized efforts of Sims [sims91] and Latham
[todd92]. Because Sims “evolving expressions” method-
ology for evolving aesthetic images is more tractable, and
has attracted a wider following (see, for example, [gree98]
[rowb99] [unem02] [voss95] [witb99]), we will restrict our
attention to the problem of guiding the evolution of aesthetic
images belonging to populations of two-dimensional ab-
stract images generated using Sims’ method.1 The specific
aspect of the problem that we are interested in is how to au-
tomate the aesthetic decision making process and therefore
bypass the use of the interactive genetic algorithm requiring
a user to perform the tedious task of making aesthetic de-
cisions generation after generation in order to decide which
images will survive and be included in the breeding pool.2


In this context, automated aesthetic image evolution falls
under the realm of computational aesthetics, the discipline
that investigates methods for assigning quantitative mea-
sures of aesthetic value to artistic works.


The first published research that used a computational
aesthetics approach for evolving images generated using
Sims’ method relied on neural nets to make the aesthetic
decisions[balu94].3 Unfortunately, neural nets appeared to
be overwhelmed by the information content contained in


1For a rare example of using the interactive genetic algorithm to evolve
images that are not abstract see [graf95]. For an interesting example of
using the interactive genetic algorithm to evolve virtual organisms with
aesthetic visual behaviors see [ray98].


2For a radically different, albeit untested, approach to this problem see
[chao03].


3For another early nontrivial example of computational aesthetics and
computer generated art see [spro96].


this type of imagery. This observation prompted the au-
thor to apply co-evolutionary methods that relied on ana-
lyzing small carefully selected portions of images belong-
ing to populations that were evolved using Sims’s method
[gree00a] [gree02b].


Cognitive scientists have not yet reached a consen-
sus about how humans make aesthetic decisions [rama99]
[zeki99], but it is clear that humans do not make aesthetic
judgments without taking the entire image into considera-
tion. Therefore, more recently, the author began investigat-
ing methods for distilling the aesthetic content of images
in such a way that aesthetic decisions could be made on
the basis of the geometric information that these encodings
provided [gree02a]. However, the use of the simple genetic
algorithm often led to premature convergence, and the re-
sults were neither wholly successful nor robust. Only one
fitness function was used, and the criteria for formulating
such functions were haphazard. In this paper, we expand
upon our technique by (1) employing multiple fitness func-
tions, and (2) considering more systematic ways of design-
ing such fitness functions.


2 Images from Expressions


The genotype g of an image is a postfix expression con-
structed using functions of arity zero, one, and two. The
zero-ary functions are the floating point constant functions
Ci = i/1000 for 0 ≤ i < 1000, together with the variables
V0 and V1. The five unary functions, defined from the unit
interval to itself, areU0, . . . , U4; and the fifteen binary func-
tions, defined from the unit square to the unit interval, are
B0, . . . , B14. Their definitions may be found in [gree02a].
An example of a “small” genotype is


C289 V1 U2 V0 B2 B13 U4.


In order to generate a v× v pixel image from an expression
g using a color look-up table consisting of N colors, we
assign to pixel pi,j the k-th color in the table provided


k/N ≤ g(i/v, j/v) < (k + 1)/N.


That is, g is a representation of a function in two variables
g(V0, V1) from the unit square to the unit interval, and eval-
uation at the point determined by the pixel’s coordinates is
scaled to provide an index into the color look-up table of
size N . The table we use is the one described in [gree02a].
It is defined in HSV color space by specifying nine different
shades for each of fifty different hues.







3 Aesthetic Evaluation of Images


To evaluate images for aesthetic purposes, we introduce sev-
eral elementary aesthetic fitness metrics, or components,
that are derived from the color segmentations of images.
These components will be used to construct our fitness
functions.


3.1 Color Segmentation of Images


In this subsection we review a color segmentation algorithm
we introduced in [gree02a] and [gree03a]. Augment the
genotype for each image with a 6-tuple of real numbers


(kvv, kvs, kss, kv, ks, kh)


whose values lie in the interval [0, 3]. Color segment the
32× 32 “ thumbnail” phenotype generated from the expres-
sion part of the genotype by assigning a priority p(e) to ev-
ery pixel edge e, and then using the edge of minimum prior-
ity to determine two adjacent simply connected regions that
can be merged to form a new simply connected region. Ini-
tially, each pixel is designated to be a region. A sequence
of v2 − n region merges reduces the thumbnail from v2 to
n regions. All but the last 25 of these merges are induced
from edges of minimum priority that are calculated on the
basis of region color as described below. The last 25 merges
are reserved for “ cleaning-up” the image, whence edge pri-
ority is calculated on the basis of region size in order that
the smallest extant regions can be merged into the segmen-
tation (see [gree03b] for details). Working on the basis of
color, we define edge priority by letting


p(e) = kv∆v + ks∆s + kh∆h +G(∆v,∆s)∆h


where ∆v , ∆s and ∆h are the magnitudes of the differences
in value, saturation, and hue across edge e, and G(∆v,∆s)
is a second-order weighting function applied to the differ-
ence in hue. It is obtained by setting


G(∆v,∆s) = kvv∆2
v + kvs∆v∆s + kss∆


2
s.


Loosely speaking, the segmented image helps reveal the un-
derlying morphology (i.e., structure and color organization)
of the image.


3.2 Aesthetic Components for Images


For a region X of the segmented image, we let a(X),
b(X), and j(X) denote its area (number of pixels), bound-
ary length, and number of region adjacencies respectively.
We index the regions X1, . . . , Xn of the segmentation so
that they are sorted according to descending area. Given s
and t satisfying 1 ≤ s ≤ t ≤ n, we define


As,t =


t
∑


k=s


(k + 1)a(Xk),


Bs,t =


t
∑


k=s


b(Xk),


Js,t =


t
∑


k=s


j(Xk).


Evidently A, B, and J evaluate the image by considering
(weighted) areas, boundaries, and adjacencies summed over
a consecutive sequence of regions. Loosely speaking, their
purpose is to gauge how large, how finely detailed, and how
interlocking such a sequence is. Observe that all of our com-
ponents assume non-negative integer values.


If a component itself is used as an objective function it
would typically evolve degenerate images. To understand
why, we consider the extreme cases.


• For A1,n, the weighting factors used typically force
evolved segmentations to have either n horizontal or
n vertical stripes of approximately equal width.


• For B1,n, the fact that area is held constant usually
forces evolved segmentations to consist of approxi-
mately n concentric circles.


• For J1,n, the requirement that regions have maxi-
mal contact with other regions, usually forces evolved
segmentations to have one small “ clump” consisting
of all but the largest region.


Such phenomena are not surprising. As pointed out by Zeki
[zeki99, p. 59], “ aesthetics is modular,” a statement we in-
terpret to mean that given an appropriate set of elementary
aesthetic components, they must be properly integrated in
order to come to an overall aesthetic decision.


4 Multiobjective Framework


By and large, we adopt the elitist non-dominated sorting ge-
netic algorithm (NSGA-II) as described in Deb [deb01]. For
comparison purposes, in this section we give a formal de-
scription of our implementation of Deb’s algorithm. If g is
a genotype in the population P , and f is a fitness function,
then f(g) denotes the non-negative integer assigned to the
v × v color segmented image determined from g using f .
As an example, the fitness function in the simple genetic
algorithm that gave the most consistent results in [gree02a]
was


f = A1,3 +B1,25.


Henceforth, we assume there are m ≥ 2 fitness functions
f1, . . . , fm.


4.1 Dominance and Non-dominated Fronts


We say genotype gi dominates gj , written gi � gj , pro-
vided fr(gi) ≥ fr(gj) for all r, and there exists s such that
fs(gi) > fs(gj). If S is any non-empty subset of the popu-
lation P , we define the non-dominated front N(S) by


N(S) = {s ∈ S : for all t ∈ S, t 	� s}.


By convention, N(∅) = ∅. Next, we define the non-
dominated fronts F0, F1, . . . of P inductively, by setting


F0 = N(P ),


and for i ≥ 0,


Fi+1 = N(P \
i


⋃


j=0


Fi).







F0 is called the leading non-dominated front. Clearly, the
non-dominated fronts partition P . If g ∈ Fi we define the
rank of g, written R(g), to be i. The breeding population
B of P is formed by adjoining successive non-dominated
fronts to the leading front until the mandated size is ob-
tained. Since we repopulate during each generation by us-
ing tournament selection to provide genotypes from which
to form breeding pairs, we require a mechanism to break
ties when both participants have equal rank.


4.2 Crowding Distances and Tournament Selection


Let F = {g1, . . . gt} be a front. For each r, where 1 ≤ r ≤
m, let


Mr = max
g∈F


{fr(g)},


Lr = min
g∈F


{fr(g)},


Dr = max{Mr − Lr, 1}.


Let (%1,r, %2,r, . . . , %t,r) be the vector of indices that results
when F is sorted in ascending order under fr. This means,
for 1 ≤ i < t, fr(g�i,r


) ≤ fr(g�i+1,r
). Then, if g = g�i,r


,
we define


dr(g) =


{


fr(g�i+1,r
)−fr(g�i−1,r


)


Dr
if 1 < i < t


∞ otherwise


We use dr(g) to define the crowding distance C(g) by set-
ting


C(g) =


m
∑


r=1


dr(g).


The crowding distance is the sum of the dimensions of the
“ cuboid” surrounding g. It is used to resolve ties in rank
during tournament selection in such a way that diversity is
fostered. Ties in rank are broken by choosing the geno-
type in the sparsest region i.e., largest cuboid. Formally, in
a crowding tournament selection contest, genotype gi wins
over gj if either


R(gi) > R(gj),


or
R(gi) = R(gj) and C(gi) > C(gj).


4.3 Repopulation


With the requisite machinery in place, the repopulation al-
gorithm is anticlimactic. Population size remains constant.
The breeding pool is formed from the non-dominated fronts
as described in the preceding subsection. For convenience,
both the population and breeding pool are assumed to be of
even cardinality. The required number of breeding pairs is
formed by making clones of winners of crowding selection
tournament contests. By cloning contest winners, members
of the breeding pool are eligible to participate in more than
one mating. Each cloned pair provides two offspring by
subjecting the pair to crossover followed by mutation. Since
a genotype consists of a postfix expression and a segmenta-
tion coefficient vector, crossover consists of subtree swap-
ping for postfix expressions [keit94] coupled with one-point
crossover for vectors.


4.4 Simulation Parameters


The results presented in this paper use a fixed population
size of 32 and a fixed breeding pool size of 16. Color seg-
mentation halts after the 32 × 32 thumbnail is reduced to
25 simply connected regions. Mutation rates are constant,
but because exploration is the goal, they are high — both
nodes in an expression and components in a coefficient vec-
tor have a one in five chance of mutating. Populations are
initialized using randomly generating genotypes. Expres-
sions are constrained to have between 35 and 65 nodes.
Evolutionary runs last for 100, 400, or 800 generations. At
fixed intervals (e.g., 25, 50, or 100 generations), images new
to the leading front are culled.


5 Discussion and Results


In theory, each fitness function should serve as an attrac-
tor of a subpopulation, and the leading front should collect,
in addition to the best genotypes from each subpopulation,
additional genotypes that are the result of effective “ interac-
tions” between the subpopulations. From this point of view,
our challenge is to design fitness functions making use of
our aesthetic components in such way that both good sub-
populations can arise and good interactions can occur. Our
most successful images were evolved by using a strategy
that first “ balanced” the components and then promoted in-
teraction by constructing round-robin fitness functions.


For our first example, consider the two images in Fig-
ure 1 that were evolved using components A1,4, B1,4, and
J1,25 as follows. As a preliminary step, we let the three f-
itness functions f1, f2, and f3 be these components and let
evolution proceed for fifty generations in order to estimate
the maximum values of each of these components. From
this, we inferred that A1,4/5, B1,4, and 10J1,25 had ap-
proximately the same maximums. These became our trio of
balanced components. We then constructed a round-robin
fitness function trio by letting


f1 = 10J1,25 +B1,4,


f2 = B1,4 +A1,4/5,


f3 = A1,4/5 + 10J1,25.


Evolution proceeded for 800 generations, and any new im-
ages that appeared in the leading front after each 100 gener-
ation interval, or epoch, were culled. The two images shown
in Figure 1 are aesthetically superior to all of those obtained
in [gree02a] that were evolved using only the simple ge-
netic algorithm. What is remarkable is how multiobjective
optimization continued to find aesthetic improvements for
hundreds of generations. The top image in Figure 1 was
the 4,068-th image that was evaluated and clearly owes its
strongest allegiance to fitness function f1, while the bottom
image in Figure 1 was the 7,949-th image that was evaluated
and clearly owes its strongest allegiance to f2.


Our second example shows why one must always main-
tain extreme vigilance. It comes from an evolutionary run
that lasted 800 generations and used a partial round-robin







Figure 1: Images that were culled from the leading non-
dominated front at generations #300 (top) and #500 (bot-
tom) using three “ balanced” objective functions in our mul-
tiobjective framework.


design where the two fitness functions were given by


f1 = B1,25 +A1,3,


f2 = 10J1,25 +B1,25.


During this run, the average number of genotypes in the
leading front was a healthy 11.7, but this diversity was not
helpful because the image phenotypes were all degenerate.
Since fitness depends on the color segmentation, and the ex-
act nature of the segmentation depends on the (co)evolution
of the coefficient vectors, what happened during this run
was that the boundary component appearing in the fitness
functions exerted undue selective pressure. Figure 2 shows
how the boundary trait that this component is responsible
for was selected for in the segmentations at generations
#400 and #700. This example was chosen because, thanks
to serendipity, it is a rare instance where the color segmen-
tations were of aesthetic interest in their own right. Some-
what to our surprise, sudden increases in the sizes of lead-
ing fronts turned out to be reliable indicators of underlying
explosive growths of degenerate images within our popula-
tions.


Figure 2: Segmented images from generation #400 (top)
and #700 (bottom) showing how a boundary component
used in the fitness functions exerted undue evolutionary
pressure.


Our third example shows an instance where multiobjec-
tive optimization was successful in documenting the occur-
rence of lineages — sustained evolutionary lines of pheno-
types. In the past this has often been difficult to achieve
when evolving aesthetic imagery. It is a desirable feature
because, in general, during the course of an evolutionary
run, one hopes to observe the exploration and development
of a visual theme. For this example, we attempted to cor-
rect for the component imbalance of the previous example
by letting







f1 = B1,25 +A1,3,


f2 = J12,25 +B1,4.


During an evolutionary run lasting 400 generations a se-
quence of five images appeared in the leading front whose
phenotypes clearly revealed their genotypic ancestry. Their
birth generations were #72, #181, #238, #348, and #398.
Figure 3 shows four of these five images. (The image from
generation #181 is omitted since its phenotype shows barely
perceptible differences from its ancestor.) A simple genetic
algorithm that culls only the most aesthetically fit individ-
ual at the conclusion of each epoch, would miss this kind of
evolutionary development because at the time these images
were culled, under fitness function f1 these five images had
fitness indices 2, 3, 2, 3, and 4 respectively within the lead-
ing front, while under fitness function f2 these five images
had fitness indices 1, 1, 2, 4, and 3 respectively within the
leading front. In other words, even if they were present in
the population, a simple genetic algorithm would not have
culled any of the images appearing after generation #200.


Figure 3: Clockwise from upper left, a phenotypic lineage
with images from generations #72, #238, #348, and #398.
The use of mulitiobjective optimization caused these images
to be culled by ensuring that they were included in the lead-
ing non-dominated front.


There is still much to learn about designing fitness func-
tions. Most of our efforts fell short of the mark. It appears
that judicious use of linear combinations of our aesthetic
components yield the best results, but some of our experi-
ments provided evidence that other promising avenues still
await discovery. For our fourth and final example, drawn
from a series of experiments where sums of products of
components were used in a partial round robin design, we
set


f1 = (B1,4 +A1,4)J12,25,


f2 = (J12,25 +B1,4)A1,4.


These functions produced the promising images shown in
Figure 4 that exhibited a cascading “ style” we had never
before encountered. Unfortunately, convergence was al-
most immediate since these images appeared within the first
twenty generations of a run lasting only 100 generations.


Figure 4: Two promising images that were evolved using
fitness functions that were sums of products of our elemen-
tary aesthetic components.


6 Technical Issues


Because fitness evaluation of our images is such a costly
operation, population sizes are smaller than one would nor-
mally expect to find in a genetic algorithm. This has con-
sequences. By definition, once a genotype is included in a
front, all genotypes in the population with matching fitness
values over all fitness functions – the equivalence class —
will also appear in this front. Fitness functions are integer
valued and we maximize fitness, therefore there is a non-
negligible probability that this will occur. This increases
the probability that the leading front could be larger than the
size of the breeding pool. Since truncation is used to main-
tain the breeding pool at a fixed size, this, in turn, implies
that the order in which image genotypes are added to the
breeding pool could introduce unexpected breeding biases.
Our implementation compensates for this possibility by ran-
domizing the breeding pool prior to its truncation whenever
a population yields a leading non-dominated front that ex-







ceeds the size of the breeding pool. Fortunately, in our ex-
perience, this situation will occur only when components
do not interact properly and the result is an explosion of de-
generate images similar to the ones in Figure 2. There is
however another more subtle problem. If a front contains
a nontrivial equivalence class, then the order that the geno-
types from the class appear within the front affects the as-
signment of the crowding distances. This, in turn, affects the
outcomes of crowding tournament selection contests. We do
not know how to best compensate for this bias, nor how to
measure whether or not it has any significant impact.


By modifying the definition of the dominance relation
so that only one member of an equivalence class is included
in any front (i.e., by assuming that g 	� g for all g, and
then defining, for gi 	= gj , gi � gj to mean only that
fr(gi) ≥ fr(gj) for all r), we introduce a different bias.
Due to small population size, our implementation invokes
an unsophisticated algorithm that naively recomputes the
sequence of non-dominated fronts from scratch during each
generation. Therefore, the first member of any equivalence
class that is encountered is the only one that is eligible for
inclusion in the front being calculated. In the few runs
where we experimented with this modified version of the
dominance relation, as a precaution, at fixed intervals, we
randomized the order in which the population was exam-
ined for dominance. Once again, it was not clear that this
was necessary. In the end, we concluded that the lesson to
be learned was that it is more important to design fitness
functions in such a way that their components can interact
properly.


7 Conclusions


We have evolved aesthetic imagery by defining aesthetic
components and using them to construct fitness functions
in a multiobjective evolutionary framework. We have given
examples to show the benefits of culling images from non-
dominated fronts of an image population.
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