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ABSTRACT
This paper presents a method to simultaneously produce


multiple solutions to unconstrained multi-objective
optimization problems.  The proposed methodology uses
populations of sets instead of populations of individuals and
iterative calls to a Genetic Algorithm (IGA) to obtain a set of
solutions spread across the Pareto set in the objective space.
The superiority of such an approach to single run,
conventional population Pareto GAs is shown.  The various
difficulties of the algorithm and the methods used to
overcome them are detailed.  Finally, the paper expands upon
how this method can be used with or without user inputs, and
shows an analysis of its performance by applying it to a
succession of increasingly difficult problems, identifying its
range of application.


INTRODUCTION
This research is one step in our search for a methodology


to deal with multi-objectives problems (MOPs) encountered
in complex configuration type designs.  Research in the field
of design methodology addresses relatively poorly the task of
assembly of components subject to the optimization of
several criteria. In the course of our research in Optimal
Configuration Design, we were confronted many times by
non-linear non-polynomial functions with too many
parameters to rely on other techniques than numerical
calculus.  In addition to this first difficulty, the objectives
commonly used did not have any algebraic expression but
were derived from the integration of differential equations
over freeform domains.  These characteristics directed us
toward non-deterministic strategies.  The presence of both
discrete and continuous variables, as well as disconnected


regions in both parameter and objective spaces favored the
genetic algorithm (GA) as the tool to search for a better
solution.  In addition to the versatility of the GAs to deal with
various types of variables and functions, the topology of the
final set was expected to be more complex than the initial sets
in both parameter and objective spaces, and this confirmed the
choice of the GA.


After using with success a method based on a Genetic
Algorithm to produce Pareto solutions to a packing problem
involving center of gravity and volume (Grignon et al.,
1996),the method was improved in order to produce multiple
solutions to MOPs.


BACKGROUND


Overview of Genetic Algorithms
Genetic Algorithms (GAs) (Goldberg 1989; Holland 1975)


are non-deterministic search algorithms based upon the
evolution of successive populations of points called
generations. Under some external pressure, and using a
heuristic, a new population is deduced from the previous one.
From generation to generation, the populations, pushed by an
external pressure, migrate through the variable space under
investigation. This migration stops when either convergence is
reached, i.e. when the fitness of the best element does not
improve sufficiently during a specified number of generations,
or when the specified maximum number of generations is
reached.


In the field of function optimization, the external pressure
is the function to be optimized and the individuals of the
population are some of the points of the variable space to be
investigated.  The GA then pushes the points toward the
optimum of the function using a procedure first described in
1975 by John Holland of the University of Michigan (Holland,
1975) and based on the mechanisms of selection,
recombination, reproduction and mutation.
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Each of these operators is the subject of research in the
field of Genetic Algorithms but it is not the purpose of this
paper to detail them.  The GA can be considered as a function
that deduces a new generation {g}i+1 of individuals from a
previous generation {g}i:  {g}i+1 = GA[ {g}i ]


Multicriterion Optimization


Problem Statement
Given a function F(x) where x = (x1, x2, .. , xn) is a vector


of a domain D of Rn  and F(x) is also a vector F(x)=(f1(x),
f2(x), .. , fm(x)), the MOP can be stated as follows:


F : x -> F[x]
Rn -> Rm


Find one x such that x is non-inferior. (1)


Non-inferiority definition: A solution x1 is said to be a
non-inferior solution of the MOP if there exists no other
vector x2 such that fi[x1] <= fi[x2] for all i with a strict
inequality for at least one value of i.


Different Techniques
Multi-objective optimization really took-off after the


publication, in 1951, of the necessary and sufficient condition
for non-inferiority by Kuhn and Tucker (1951). Since then,
the mathematical methods to find a solution to an
unconstrained multi-objective problem can be put into one of
the following categories (Statkinov and Matusov, 1995):
- Substitution of all the criteria by a single one (scalarization)


either by choosing the most important, or by building a
combination of all the criteria into a single one. In this
last category one can find the weighting method (Zadeh,
1963) in which all the criteria are replaced by their
weighted sum and the kth-objective Lagrangian problem.


- Consecutive optimization of all the criteria.
In the first category, the weighted sum method finds a


single solution in the Pareto set for each set of weights. The
restrictions on the differentiability and continuity of the
objective and constraint functions depend on the optimization
technique chosen to solve the new problem. Independently of
this first restriction, the weighted sum method is unable to
find Pareto points inside a duality gap (non-convex portion of
the Pareto set in objective space, Figure 1). Many classical
methods present the same drawbacks. A description of these
methods can be found in (Chankong, 1983).  Athan and
Papalambros (1996) also looked at using non-linear weights
to better capture the non-convex Pareto set.


Several other approaches to solve the multi-objective
optimization problem can be found in the literature, among
them is Goal Programming, first studied in depth in the work
of Levary (1984), and Compromise Programming.


Recent efforts were made to find methods applicable to
non-convex Pareto sets.  Kostreva and Wiecek (1993)


proposed a method for non-convex Pareto sets generated by
linear complementary problems. TenHuisen and Wiecek (1996)
use a nonlinear scalarization based on a quadratic Lagrangian
function for producing locally efficient solutions.


The major impediment for using many of these techniques
comes from the strong assumptions made on the continuity and
differentiability of the objective and constraints functions.
These assumptions are difficult to guarantee in Engineering
Configuration Design.  A second drawback comes from the fact
that they offer a single solution to the Multi-objective
optimization problem.  These two drawbacks fostered our
proposition to use the Genetic Algorithm for solving MOPs.


Figure 1. Duality gaps refer to the non-convex part of the
boundary of the curves.


GA and Multi-objective Optimization
The major problem encountered by researchers trying to


use GAs to obtain multiple solutions at the same time is to
balance the trend of the GA to bring points together.  For
example, Schaffer in (Schaffer, 1984) proposed to select sub-
populations of points proportionally to each objective in turn.
For n objectives, n sub-populations are generated with an equal
number of individuals.  The final population is obtained by
shuffling all the sub-populations. Unfortunately this algorithm
tends to converge to few extreme members of the population
after a large number of iterations.  Schaffer then tried to prevent
this convergence from happening by mating far-away
individuals.  This mechanism was not selective enough to
remove poorly fitted individuals, which mated with good
individuals. Finally, he concluded that random mating was more


Obj1


Obj2


Obj1


Obj2
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efficient.
Baker (1985) used a single criterion based on a ranking


of the individuals.  The points are first sampled and all non-
dominated points are removed from the population.
Goldberg (1989) points out that ‘this should be used in
conjunction with niche and speciation for stabilizing the
multiple sub-populations arising along the Pareto-optimal
front and thereby preventing excessive competition among
distant population members’.  Richardson et al. (1989)
argued that this is equivalent to linearly combining the
objectives like in the weighting method with different weights
at each generation.  Similarly to Schaffer’s method, this leads
to speciation.


However, Horn and Nafpliotis (1994) used a niched
Pareto GA through a combination of two methods: Multi-
attribute Utility Analysis (MAUA) and GA to deal with
multicriteria optimization problems.  Two approaches were
chosen: either using MAUA in order to combine the criteria
and then optimize with the GA, or use the GA to find the
Pareto set and eventually use MAUA to select among the
Pareto points.  In order to find the Pareto set they relied on
the Niched Pareto Genetic Algorithm which uses a new kind
of tournament selection: Pareto domination tournaments with
sharing since, Oei et al. (1991 #86) showed that niched GA
with conventional tournament selection does not give steady
results.


In order to avoid the previous drawbacks, Fonseca et al.
(1993) proposed a selection scheme based on the definition
of the Pareto set which ends up with a ranking of the points
based on how many points dominate the current point.
However, this latter method does not differentiate individuals
that are closer to the Pareto set.  They also used a sharing in
the objective space instead of in the variable space in order to
get a uniformly distributed population in the objective space.
They calculated the sharing parameter σshare using an over


estimate of the size of the Pareto set in the objective space.
Then, they noted that mating restrictions (a parameter similar
to σshare called σmating) which helps to avoid excessive


competition between the distant members of the population
may not be efficient due to the respective low number of
points in the population with respect to the area of the Pareto
set.  In order to prevent this drawback, they used higher-level
decisions (a decision-maker) in order to focus on some areas
of the Pareto set.  Finally, Osyczka and Kundu (1996)
presented a method based on a fitness calculated using the
Euclidean distance of the current point in the objective space
from a Pareto set updated during the run of the GA. A in
depth analysis of these methods (Bentley and Wakefield
1997) shows that the Non-Dominated Sorting described in
Goldberg (1989) and used in the IGA, gives good points
distribution along the Pareto set.


Two issues relevant to the use of the GA for MOPs have
been attracting the efforts of the researchers:


- First, find a fitness function that translates the multiple
criteria into a single one, since the GA is only able to
handle one objective function.


- Second, prevent the GA population from collapsing to
one or few points.


These two issues directed the current research, especially
the replacement of population of individuals by populations of
sets of individuals which, in the view of the authors, brings back
the use of the GA to its initial design-i.e. clustering solutions
together using the evolutionary principles.


TERMINOLOGY AND PROBLEM REFORMULATION
Thus, the initial multi-objective optimization problem


(MOP) statement (1) was modified as follows:
Given a function F[x] where x = (x1, x2, .. , xn) is a vector


of a domain D in Rn  and F[x] is a vector such that F[x]=(f1(x),
f2(x), .. , fm(x)) in which the fi are functions of Rn -> R


F : x -> F[x]
Rn -> Rm


Find a set of vectors x, denoted { PS_X } = {x1, x2,  , xps}
such that


F[xk] is non-inferior for all xk in { PS_X }
And
Min[ Dist[ F[xk], F[xl] ] ] is maximized for any two xk & xl


in {PS_X} with k different from l.
With all the components of the vectors x bounded such that
xli <= xi <=  xui for i= 1..n (2)


DEVELOPMENT OF THE ALGORITHM
In our previous attempts to identify multiple solutions to


multicriteria problems, we developed a method based on the
search for a cloud of points rather than a single point used in
conventional linear and non-linear optimization processes
(Grignon and Fadel, 1997).  In this previous algorithm, the GA
was used to identify a cloud of points that covered as much as
possible, and as evenly as possible, the Pareto set in the
objective space in a single run.  This approach gave very good
results on small scale problems with and without dual gaps, but
converged to sub-optimal solutions when the Pareto set became
more diluted in the total objective space (for more details on
dual gaps see Chankong and Haimes, 1983, p. 136). This
phenomenon was accentuated by the numerous local minima
introduced by the even distribution requirement.


Neither our attempts to increase the population size and
number of generations, nor to delay the convergence by
imposing a mutation rate dictated by a heuristic (like the
cooling schedule of the Simulated Annealing (Kirkpatrick
1983) method which makes the search first very random but
gradually prevents wide variations) gave satisfying results.  The
first method was still converging to non-optimal solutions and
the second needed to be adjusted as soon as the problem was
changing.


In order to overcome these convergence problems, and to
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exploit the fact that the GA had a very good performance
only during the first few hundred generations and then leveled
off, we decided to base our algorithm on iterative runs.  This
multiple run method gave the additional advantage to allow
the user to intervene during the optimization process in order
to focus the search on some areas of the parameter space,
which was not easy with the single run method. This was
made possible by changing the bounds of each variable after
each run of the GA in order to determine the new domain of
interest for the next run.  A single run of the GA consists of:


The fitness function calculation is based on the best
approximation of the Pareto set in the objective space {PS}ref


discovered by the GA at the moment of evaluation of an
individual.  This fitness function is designed to privilege the
cloud with a shape close to a Pareto set morphology and
presenting the largest spread.  The cloud morphology is
measured using a rank based definition of the notion of non-
inferiority (similar to the fitness used by Baker) coupled with
a measure of the distribution.


In order to calculate the objective value of a cloud, each
solution point inside this cloud is considered in the objective
space and has a rank calculated by comparing its position
with the position of its cloud mates and with the points of a
reference Pareto set {PS}ref. The reference Pareto set is made
of all the best points (non-inferior) found so far (Figure 2).
Since the number of points in this reference set is bounded
(because of the limited memory size) but not fixed, the grade


of the cloud is normalized with respect to the total number of
points (4). Thus, for a cloud of ‘c’ points F[xi] and a reference
set {PS}ref of ‘rs’ points, the grade of the cloud is


Gradecloud = Σi=1..c [ Rank[ F[xi] ] ] / ( c + rs )2 (4)


with
Rank[ F[xi] ] = c*rs minus the number of non-inferior points
with respect to F[xi] in {PS}ref. (5)


Figure 2. The reference Pareto set in the case of a maximization
MOP.


The grade of a cloud is maximum when its points are all
non-inferior with respect to its cloud mates and with respect to
the points of the reference Pareto set. This grade is then updated
in order to take into account the spread and the distribution of
the points inside the cloud.  They are both introduced by a
penalty that always gives priority to the morphology of the
cloud since its value is chosen such that it remains between 0
and 1.


penaltysp = Atan [ Max[1/Distance[F[xi], F[xj]] ] / (Π/ 2)
i= 1..c, j=1..c. (6)


The cloud grade then becomes equal to


Gradecloud = ( Σi=1..c [ Rank[ F[xi] ] ] ) / ( c + rs )2 + penaltysp.


(7)
Special care must be given to the recording of the extreme


points of the reference set (EP1 and EP2, Figure 2). In order to
get solutions as close as possible to the bounds of the real
Pareto set, the EPs are only replaced by better extreme points
such that the spreading of the reference Pareto set is always the
best spreading found so far.  This strategy guarantees a
convergence of the reference set extreme points toward the real
extreme points (TEPts) which are unknown and which
correspond to the solutions of the single objective CDPs
involving each objective in turn.


The stopping criterion is based on a maximum number of
objective function calculations (which is dictated by the
objective function computation time). From this maximum
number, one can make a tradeoff between the population size,
the cloud size, the number of generations per iteration and the


Generate randomly the first
population {G}0 of ’c’ clouds of ’s’
genomes


{g}1 = { {g1, g2, .., gs}1, {g1, g2,
.., gs}2, .., {g1, g2, .., gs}c }0


attributed to c clouds of vectors x:
{x}0 = { {x1, x2, .., xs}1, {x1, x2, ..,
xs}2, .., {x1, x2, .., xs}1 }0


each variable being bracketed by two
bounds xil and xiu


Begin
i = 1
While stopping criterion not met


Update the reference Pareto set
{PS}ref


Evaluate the fitness of each
cloud {g1, g2, .., gs}j of {g}i.
Do


Selection
Crossover
Mutation


EndDo   (this gives {g}i+1)
i = i + 1


EndWhile
End (3)


f2


f1


F2


F1


F2


F1
Previous reference Pareto set    
Cloud to evaluate    


EP2


EP1


Current reference Pareto set {PS}ref     


F[xi]
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total number of iterations.
After each iteration, the bounds xl and xu are adjusted in


function of the reference Pareto set. The components of xl


and xu respectively are the minima and the maxima of all the
corresponding components of the reference Pareto.


QUALITY CRITERIA OF THE SOLUTION
Several criteria were used to measure the quality of the


solutions. First, the spreading of the final cloud, by measuring
the length of the best front and by the enclosing two ellipses.
Second, the accuracy of its bounds (EPs) with respect to the
bounds of the real Pareto set (TEPts).  Finally, the
distribution of the points in the final front (Figure 3).


Figure 3. Quality criteria.


EXAMPLES
The evolution of the performance of this algorithm was


studied as the problem grew in complexity. The complexity
can increase in many ways; we selected two: keeping the
same shape and topologies in the objective space, the size of
the Pareto set in the parameter space decreases with respect
to the total variable space size.  This means that the Pareto set
becomes more difficult to find. This is not always achieved
by increasing the number of variables, as is shown in the
examples.  The complexity of the problem also increases
when the number of objectives increases and when they
become more non-linear. In multi-objective optimization this
can be translated by the presence of large dual gaps which
split the Pareto set into several regions.


In order to study these two phenomena, we built three 2-
objective examples and three 3-objective examples ranging
from the minimum number of variables, i.e. 1 variable for 2-
objectives and 2 for 3-objectives, to 8 variables in each case.
The goal of the process is to maximize the objectives and to
obtain a set of points spread along the Pareto set.  The
evolution of the quality criteria is studied when the algorithm
is applied to these examples (Table 1).


Table 1. Summary of the examples used.
Variables 2-Objective


Examples
3-Objective
Examples


1 1 2 3
2 1 2 3 4 5 6
3 1 4 5 6
4 1 4
5 1 4 5 6
6 1 2 3 4
7 1 4
8 1 4


The genetic algorithm used for performing the test
cases is a steady-state GA with a population of 20 individuals
(each corresponding to a cloud of 15 points).  The mutation rate
is 0.005.  The crossover probability is 0.6 and the population
replacement is 0.25.  No elitism is used.  The selection is a
roulette wheel algorithm that favors the selection of the
population members with the highest fitness.


Example 1: 2-Objective MOP with no dual gap
This MOP is based on 2-objective functions of one real


variable x1 (Equations 8) whose range is ]-Π, Π]. The
representation of the image of the interval ]-Π, Π] in objective
space is an ellipse depicted on Figure 4.


f1[x1] = 3 Cos[x1] (8)
f2[x1] = 2 Sin[x1]
The n variable version of this problem consists in


introducing a common multiplier in front of each of these
functions. The range of x1 remains ]-Π, Π] and the range of all
the other variables is [0, 1].


Figure 4. The 2 Objective MOP of 1 variable.


The Pareto set in the objective space covers 1/4th of the
total objective and variable space size.


f1[x1, .. , xn] = 3 Cos[x1] Πi=2..n( xi ) (9)


f2[x1, .. , xn] = 2 Sin[x1] Πi=2..n( xi )


For each additional variable, the Pareto set size in objective
and variable spaces must be divided by 65536 (due to the
variable encoding, see Results section for more explanation)
since only xi = 1 (i=2..n) corresponds to the real Pareto set.


-3 -2 -1 1 2 3
obj1


-2


-1


1


2
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Example 2: 2-Objective MOP with shallow Dual Gap
The only difference between examples 2 and 1 is in the


definitions of functions f1 and f2 (Equations 10). The
representation of the image of ]-Π, Π] in the objective space
is an ellipse with a shallow dual gap depicted on Figure 5.


Figure 5. Deformed ellipse exhibiting a shallow dual gap


f1[x1] = cos(a)(cos(x1)+2sin(x1))-
sin(a)(3cos(x1)+1/(b+(2sin(x1)-1) (2sin(x1)+1)


f2[x1] = sin(a)(cos(x1)+2sin(x1))-
cos(a)(3cos(x1)+1/(b+(2sin(x1)-1) (2sin(x1)+1)


with a=130 degrees and b=1.65. (10)


The Pareto set in the objective space extends from points
A to B (Figure 5) and from 0 to Π/2 in variable space. Its
relative size is 1/4th of the total variable space size. This set
has exactly the same dimension as the one of example 1.


The n variable version of this problem is produced in the
same way as in the previous case. The range of x1 remains:
]-Π, Π] and the range of all the other variables is [0, 1].


f1[x1, .. , xn] = f1[x1] Πi=2..n( xi )


f2 [x1, .. , xn] = f2[x1] Πi=2..n( xi ) (11)


Example 3: 2-Objective MOP with Deep Dual Gap
The formulation of this example is obtained with


equations (10) and (11) except that the value of parameters a
and b are adjusted in order to produce a deeper dual gap in
objective space (Figure 6).


The Pareto set is split into two regions in both
objective and variable spaces. In the objective space, it
extends from A to B and from C to D. In the variable space
the Pareto set extends from 2.2 to 2.78 and from 3.56 to 3.82.
Its length is 0.84. Since the range of the variable is 2Π, the
relative size of the Pareto set in the variable space is
0.84/(2Π) > 0.13.


The n variables version of this problem is produced in
the same way as in the previous case (Equation 12). The
range of x1 remains ]-Π, Π] and that of all the others is [0, 1].


f1[x1, .. , xn] = f1[x1] Πi=2..n( xi )


f2 [x1, .. , xn] = f2[x1] Πi=2..n( xi ) (12)


Figure 6. Deformed ellipse exhibiting a deep dual gap
obtained with a= 135 degrees and b=1.4.


Example 4: 3-Objective MOP with no dual gap
This MOP is based on 3-objective functions of two real


variables x1 and x2 (Equation 13). The representation of this
MOP in objective space is an ellipsoid depicted on Figure 7.


Figure 7. The 3-Objective MOP of 2 variables.


f1[x1, x2] = 3 Cos[x1] Cos[x2] (13)
f2[x1, x2] = 2 Cos[x1] Sin[x2]
f3[x1, x2] = 2 Sin[x1]
with x1 in [-Π/2, Π /2] and x2 in ]- Π, Π]


In this case, the Pareto set in the objective space covers
1/8th of the total space size.


The n variables version of this problem (n > 2) is given by:


f1[x1, .. , xn] = f1[x1, x2] Πi=3..n( xi ) (14)


f2[x1, .. , xn] = f2[x1, x2] Πi=3..n( xi )


f3[x1, .. , xn] = f3[x1, x2] Πi=3..n( xi )


The Pareto set size generated by these examples is equal to
the size of the previous set divided by 65536 for each additional
variable beyond 2.
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Example 5: 3-Objective MOP with shallow dual gap
In this example the equations allow a dual gap to appear


along the surface described in objective space. The depth of
this dual gap can be adjusted in function of the value of
parameter b. The orientation of the gap is driven by a rotation
matrix [R] involving three rotation angles a1, a2, a3 applied to
the vector {f1, f2, f3}.


f1[x1, .. , xn] = 3 Cos[x1] Cos[x2] + 1 /(((b + (-1 + 2


Sin[x1])(1 + 2 Sin[x1]))(b + (-1 + 2 Sin[x2]) (1 + 2
Sin[x2])))


f2[x1, .. , xn] = 2 Cos[x1] Sin[x2]
f3[x1, .. , xn] = 2 Sin[x1] (15)
{f1, f2, f3} [ R ]


The parameters values were chosen such that the dual
gap is not deep enough to change the topology of the real
Pareto set in objective space. Hence, the size of this set
remains the same as in the previous example.


Figure 8. Deformed ellipsoid exhibiting a shallow dual gap.
This shape was generated using equation 15 and parameters


a1 = 40, a2= -55, a3= 115, b = 1.75.


The n variable version of the 3 objective MOP consists
in introducing the remaining variables {x2,.., xn} as
multipliers in front of each of these functions (Equation 16).
The range of x1 remains ]-Π, Π] and that of all the other
variables is [0, 1].


f1[x1, .. , xn] = f1[x1, x2] Πi=3..n( xi ) (16)


f2[x1, .. , xn] = f2[x1, x2] Πi=3..n( xi )


f3[x1, .. , xn] = f3[x1, x2] Πi=3..n( xi )
with
x1 in [-Π/2, Π/2]
x2 in ]-Π, Π]
xi [0, 1] for i= 3 .. n.


Example 6: 3-Objective MOP with deep dual gap
A deeper dual gap is produced by using the same equations


and by changing the parameter values.


Figure 9. a1 = 40 deg., a2= -65 deg., a3= 115 deg., b = 1.4.


Results
In our GA, each continuous variable was encoded with a


16-bit binary string. Hence, each continuous variable was seen
by the GA as a discrete variable able to take 65536 different
values.  With this condition, an n-variable problem meant a
total variable space size of (65536)n points.


Knowing this, and for our examples, the increase of the
number of variables implied a decrease of the Pareto set size
with respect to the total variable space.  Adding variables to the
problem produced then the worst possible effect-i.e. decreasing
the chances to find the Pareto set (Table 2).


Table 2. Evolution of the real Pareto set size.
2-Objs. Examples 3-Objs. Examples


Vars 1 2 3 4 5 6
1 0.25 0.25 1.30-01 - - -
2 3.81-06 3.81-06 1.98-06 0.25 0.25 1.30-01


3 5.82-11 5.82-11 3.03-11 3.81-06 3.81-06 1.98-06


4 8.88-16 8.88-16 4.62-16 5.82-11 5.82-11 3.03-11


5 1.35-20 1.35-20 7.05-21 8.88-16 8.88-16 4.62-16


6 2.06-25 2.06-25 1.08-25 1.35-20 1.35-20 7.05-21


7 3.15-30 3.15-30 1.64-30 2.06-25 2.06-25 1.08-25


8 4.81-35 4.81-35 2.50-35 3.15-30 3.15-30 1.64-30


All the results presented are based on statistics made on 20 tests
for each case.  Using a single GA run does not provide
satisfactory answers as soon as the number of variables reaches
2. The distance between the internal and external boundary
curves is large, showing that the shape of the best solution
remains far from looking like a curve or a surface (Figure 11
right, 1 run raw).  The minimum distance between the solution
and the target Pareto set becomes large as soon as the second
variable is introduced (Figure 11 top, 1st run row) indicating
that the solution does not converge toward the target Pareto
curve.  The distances between points present large variations
(Stdev = 0.8, Figure 12) indicating that the distribution is not
even and the extreme points (EP1 and EP2) fail to converge
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toward their targets (Figure 10). Beyond 3 variables, using a
single run does not provide any useful results.


Figure 10. Distance between the best Extreme Points (Eps)
and the Target Extreme Points TEPs


Introducing a second run brings an immediate gain with
respect to the single GA run approach. The extreme points
are closer to their target values. The degradation of the
performance is slower and appears in the distances from the
bounds (comparison based on row one and two of Figure 10)
and in the convergence toward the boundary of the domain
(Figure 11). The Pareto set keeps its curve like shape until 6
variables since the distance between the internal and external
boundary curves remains below 20% (Figure 11). The
distance between the internal boundary curve and the target
curve increases slowly until 6 variables due to offline points.
Beyond 6 variables the results cannot be exploited due to the
lack of insight they provide concerning the location of the
real Pareto set (Figure 11). The points distribution remains
better than the distribution obtained with a single run but


there is no clear trend of this evolution in subsequent trials
(Figure 12).


The gain in the result quality obtained through additional
iterations is not as large as the gap between single run and two
run tests. The results still exhibit improvements especially in the
shape of the final solution (Figure 11). The distribution of the
points is the factor which is the less improved by the iterations
(Figure 12).


Eventually, the size and shape of the duality gaps did not
affect the ability of the method to correctly spread the points
continuously even if the Pareto set is non convex and to split the
spreading into several sets when the Pareto set presents several
regions (Figure 13).


Figure 11. At left the maximum distance between the real
Pareto set curve and the best solution found. At right the


distance between the internal and external boundary curves of
the best solution.
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Figure 12. The distribution of the points along the solution
curve is measured by the standard deviation of the distance


separating neighbors.


Figure 13. Examples of best solution clouds.


Observations and Discussion


The premature convergence exhibited by the GA when the
number of variables increases might be due to the small size of
the population. This effect is the first explanation that we could
give for the small number of variables handled by this method.
A second explanation could come from the absence of a
relaxation strategy in the bounds of the variables after each
iteration.  Indeed, these bounds were set at the exact value
provided by the Extreme Points (EPs) coordinates in variables
space, even if these points were clearly too restrictive with
respect to the real targets (TEPs). The second side effect of the
bound restriction strategy might explain the fact that
performance cannot increase indefinitely and can even drop if
too many iterations are used (comparison of S4 and S5 rows on
Figure 11 top).  When the Extreme Points are close to their
target, the benefit of the iteration is lost since the GA explores a
domain of the same size after each iteration. The only
amelioration could only come from a better distribution of the
points.  Since no information concerning the shape of the best
solution is passed from one run to the next one, which is
discussed thereafter, there is no hope for improvement from this
factor either.


We were conscious that by using this approach the number
of variables would be reduced due to the large size of each
genome. For example, if we consider a population of clouds
each owning 15 points, each of these points being a 10 variable
mathematical vector, each component of these vectors being
themselves coded with 20 bits, in these conditions, each
genome size is 15*10*20 = 3000 bits for each population
member. However, it was not clear if the addressable size was
less than 10 parameters, between 10 and 100 or more than 100.
Once again it seemed that it would be better to reduce the gene
size allocated to each variable and increase the population size
in order to obtain better convergence.


Concerning the objective functions, beyond the
convenience of visualizing the results of the tests, we
purposefully restricted the number of objectives to 3, because it
seemed reasonable to assume that understanding the behavior of
more factors would be difficult for a human being.  Our final
goal being the building of a tool for applied problems.  The
method did not seem to be sensitive to the shape of the duality
gap.  However, the example Pareto sets were not badly non-
convex. The number of split regions was small, leaving open
the question concerning the behavior of such a method if the
number of these regions increases.


Using recursively a Genetic Algorithm had another
purpose. It allows user-guided search after each iteration by
specification of new bounds. This is useful in two cases.  Either
when the GA has a problem to identify good regions for the
parameters, or when the user wants to focus the search in a
given region after viewing the results of previous iterations.  In
both cases, iterations present the advantage of combining the
knowledge of the user with the search power of the GA.  The
fact that engineers are reluctant to use black box programs to
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find solutions to a problem also supports such an approach.
From the technical standpoint, each iteration consisted of


40 generations.  This number allowed retaining the part of the
run in which the GA is the most effective for the examples.
However, choosing a criterion based on convergence would
have ensured that the GA was rerun at the correct moment.
Hence, the number of objective function evaluation was fixed
for each iteration (15*15 + 0.25*40*15*15 = 2475).


Concerning the cumulating of knowledge from one
iteration to the next one, no information is passed, the new
bounds excepted.  The gains due to passing more than these
bounds are not granted.  Seeding the initial population of the
next run, thus ensuring that some of the best schemas of the
previous run are immediately available, is a way to pass cloud
shape information in addition to variables bounds.  However,
population seeding has the disadvantage of impairing the
search for new solutions and is not advisable with highly non-
linear functions.  Knowing that, in the examples presented,
the penalty functions (for evenly distributing the points)
introduced n*(n-1)/2 local minima (n being the number of
points in a cloud) in the initial ranking objective function, it is
not clear whether population seeding is advisable.


Among the quality criteria, measuring the even
distribution was a concern. In 2D, measuring if some points
are well distributed along a curve only requires the
knowledge of their order and the choice of a distance. In 3D
the task is much more difficult and requires the building of a
mesh of triangles based on these points and then the
comparison of the size of each triangle.  In both cases the
points are expected to be evenly distributed if the Pareto set
in the objective space is continuous. As soon as the Pareto set
is split into several regions (Figures 6 and 9), the distances
separating the different domains bias the even distribution
measures. Thus, these measures can only be applied to
compare two solutions of the same problem.


CONCLUSION
A method for finding multiple solutions to multi-


objective optimization problems was presented. This method
relies on the iterative use of a Genetic Algorithm working on
populations of clouds of points rather than on populations of
single points.  After each iteration, the range of investigation
is reduced to the most promising region. This choice
eliminates the need for sharing but reduces the size of the
problems that can be addressed. Finding alternate solutions to
the MOP brings several advantages especially in the domain
of mechanical engineering design. Combining the GA search
power with engineering knowledge seems a good balance
between black box optimization method and rule of thumb
approaches. Several quality criteria are proposed for rating
how close the best solutions are from the target Pareto set.
The evolution of these same criteria is studied to compare the
proposed method with a single GA run.


APPENDIX


Technical Descriptions
Galib-2.4 is a C++ library developed at the


Massachusetts Institute of Technology by Matthew B. Wall
(1996).  The GA used in the CDOM is a Steady State GA i.e. a
GA with overlapping populations.  The overlap of each
population is 25%.  The selection scheme is a Roulette Wheel
selector that selects individuals proportionally to the value of
their fitness (Goldberg 1989).  The scaling method consistently
used along all this work is Sigma Truncation and the crossover
is a single point crossover.  The population size is of 15
members and the number of designs per child is 15.  The genes
length is 10 bits providing a precision of L/210 (roughly L/1000)
on each variable, where L is the size of the variable interval of
variation during the current run.


Due to the fact that each genome represents in fact a set
of 15 different configurations (and each configuration being
itself defined by N variables), the total length of each individual
genome is equal to 10*(N)*15 bits.  The stopping criterion is
based on convergence.  A failure to improve the best fitness of
0.001% stops the current GA run and possibly starts a new one.


Genetic Algorithms Technical Descriptions
Population size : 15.
Genome length : 10.
Termination Criterion upon convergence over 20 generations:
0.99999.
Probability of Mutation : 0.005.
Probability of Crossover : 0.6.
Scaling : Sigma Truncation.
Selection : Roulette Wheel.
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