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ABSTRACT
 This work presents a method (CDOM) for optimizing

multiple system level assembly characteristics of complex
mechanical assemblies by placement of their components.  It
addresses any component shape (including non-convex,
hollow, sharp edges) connected together by functional
constraints.  This method finds multiple solutions to the
Engineering Configuration Design Problem (ECDP) and
proposes a simple cooperation scheme with the engineer using
a Genetic Algorithm working on population of sets instead of
population of individual points.  In this paper four areas are
addressed:

• defining the assembly components and their
relations (ECDP),

• defining the Configuration Design
Optimization Method (CDOM)

• propose two strategies to improve the
CDOM performance

• show application of the CDOM to one
academic and two engineering test  cases

INTRODUCTION
 Packing problems have been among the most exciting

human pastimes for centuries. Puzzles, Tangram, Pentominos
and other Polyminos reflect this excitement through Human
history. Nowadays, these problems find applications in
industry.  Loading ships, trucks and trains, designing plants,
electronic boards, placing mechanical components, cutting
stocks, scheduling, are some of the numerous problems that
can be classified as packing optimization problems.

 Among the geometrical packing problems, those
involving spheres, squares and rectangles are the best known
because they are the easiest to formulate and thus are the most

studied.  Unfortunately, even these simple cases are known to
be difficult problems in the mathematical sense.  So far,
nobody has yet produced a global formal solution for them and
even some mathematicians believe that this event will never
happen (Lewis and Papadimitriou, 1978).  Today's alternative
is to accept a nearly optimal solution using computers and
heuristics.  These heuristics are case dependent and those
guarantying good solutions are subject to combinatorial
explosion.  Moreover, engineering packing problems are more
difficult to solve than basic packing problems since mechanical
components are usually freeform and 3 dimensional.  Common
approaches involve different techniques such as dynamic
programming, tree search or very specialized heuristics like
finding optimal sub-configuration by assembling the objects in
groups of two or three.  In order to tackle the inherent
complexity of simple packing problems, some non-
deterministic methods are beginning to emerge.  They involve
the use of Simulated Annealing and Genetic Algorithms.
Corcoran and Wainwright (1992) programmed a Genetic
Algorithm to solve a bin packing problem using up to 500
packages and thus broke all the limits ever considered for such
a problem.  Wodziak (1994) and Grignon, Wodziak and Fadel
(1996) used a mixed combinatorial and continuous formulation
to address the truck-packing problem but their methods are
dedicated to square like object shapes and thus are difficult to
extend to engineering problems in which the objects are free
form. Szykman and Cagan (1995, 1996) used a simulated
annealing method to solve component layout problems.  These
non-deterministic approaches were enhanced by either local
search (Hart, 1994), by specialized search heuristics (Yin and
Cagan, 1998) or even combined with each other like in
(Moscato, 1992). Eventually, Sachdev et al. (1998) proposed a
framework of intelligent agents to integrate optimization
techniques such as GA and SA to address layout problems.

 Free form packing refers to the packing of objects and
containers having a non-regular shape.  This case was not
studied until recently because of several reasons.  First, the
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complexity of the problem is such that even the best algorithms
combined with the best computers could not give a satisfactory
answer in a reasonable amount of time.  Second, the methods
of description of free form objects were not flexible enough to
be handled conveniently by programmers.  Third, there was no
theoretical interest in these cases.  Kim and Gossard (1991),
Szykman and Cagan (1995, 1996), Yin and Cagan (1998) and
Lomangino (1994) used a CAD software to represent the
complex shapes and coupled such a program to an
optimization software to find better configurations.  In
addition, they developed their own methods to constrain
objects to assume given positions due to their functionality.
This case is the most general of the Configuration Design
Problems (CDPs).  These problems are usually constrained,
involve multiple criteria and mixed discrete/continuous
variables.  The shapes of the objects involved in these CDPs
are free and the characteristics of their objectives and
constraints can be linear, quadratic, non-linear, multi modal,
continuous or discrete.

 Genetic Algorithms present both characteristics of
being able to accept mixed discrete/continuous variables and
being able to look for global optima of non-linear
discrete/continuous non-linear objective functions.  They have
the additional advantage of working on populations of points,
which eases the search for several solutions in the case of
multi-objective optimization. A more complete literature
review of the use of GA and Multi objective optimization can
be found in Schaffer and Grefenstette (1985); Venugopal and
Narendra (1992); Grignon and Fadel (1996, 1997).

 Another aspect of engineering design optimization is
the possibility of interaction between the search and the
engineer.  Sobol (1990) gives a method, especially suited for
Computer Aided Design.  The method consists of 3 steps and
only uses optimization for refining the final decision of the
engineer.  The first step consists of computing the values of the
objectives at some selected points belonging to an Lpτ
sequence because these points constitute a much better
sampling of a hypercube than the corners of the rectangular
lattice (for a definition of these sequences of points see (Sobol,
1967, 1990).  The computed values corresponding to feasible
points are put into tables from the best to the worst.  During
step 2, a decision-maker (the engineer) sets some acceptable
bounds for the objectives.  Step 3 consists in checking if some
points of the tables satisfy the bounds on the objectives.  If the
answer is positive then the search is stopped.  Otherwise the
engineer is asked to relax the bounds.  The main difference
between this method and the traditional approaches is the
translation of the optimization problem into a constraint
satisfaction one.  The objectives are not optimized but reach at
least a value driven interactively by the user. This seems to be
a method well adapted to the engineering fields in which the
magic black box, which gives the solution to the problem just
by pushing the button, is not well accepted.  However, when

the number of variables increases, this method may be
computationally expensive.

 In many other methods, the means for incorporating
knowledge in the solution process is either non-existent, relies
on the choice of variables (case of the GA), or is incorporated
in the heuristic (like in the heuristic used to solve scheduling
or rectangular packing problems).  There is no possibility to
add knowledge during the run.  Engineers usually prefer to be
in control of the search process and be informed of the
progress.

ENGINEERING CONFIGURATION DESIGN PROBLEM

Mathematical Formulation
 In mechanics, as well as in CAD, there is a major

difference between the object and the system.  The object is an
atomic solid that cannot be taken apart without being broken;
whereas the system is an aggregation of objects that can move
with respect to each other.

 It is proposed to maintain this difference in the
mathematical models involved in the CDPs description (as
opposed to other approaches that tend to describe all the
relations defining the geometry of the objects and the
characteristics of the assembly at the same time).  Thus, on one
hand, a description of the objects as indivisible whole is
provided, and on the other hand, a description for the system
as a relative or global positioning of the objects is used.  The
characteristics of interest in this study are system level
characteristics like volume, inertia, and maintainability.

 Given :
• A global Cartesian coordinate system.
• A set  of  N objects  defined by their  shape

(S) material  and posit ioned in space by 6
variables i .e.  the 3 Cartesian coordinates
of  a part icular point  (x,  y ,  z)  and the 3
angles defining their orientation ( α ,β,χ)
with respect  to a local  Cartesian
coordinate system.

• A set  of  equali t ies,  usually called
functional constraints  H k[x] = 0,
posit ioning the objects  with respect  to a
reference coordinate system,

• A set of inequalit ies ( G j[x] < 0)  translating
the notion of  interior and exterior of  the
objects.

• M objective functions of  the 6N variables.
 Find :
 A set of values for x (a vector composed of all the

positions of all the objects of the system) optimizing the vector
objective function F and satisfying the equality and inequality
constraints.

MOP definition:
Given a function F(x) where x = (x1, x2, .. , xn) is a vector
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of a domain D of Rn  and F(x) is also a vector F(x)=(f1(x),
f2(x), .. , fm(x)), find one x such that x is non-inferior.

A solution x1 is said to be a non-inferior solution of the
MOP if there exists no other vector x2 such that fi[x1] <= fi[x2]
for all i with a strict inequality for at least one value of i.

This problem can be formulated as an unconstrained
global optimization problem in which the objectives and the
constraints are combined using a penalty function in order to
build a single objective function.

Objects, Variables, Constraints and Objectives

Variables
 All the variables involved in the CDPs presented so

far were the positions of the components with respect to an
absolute Cartesian coordinate system.  In order to respect the
functional constraints involved in many mechanical CDPs it
was decided to replace the absolute positions variables (x, y, z,
α,β,χ) by a translation vector T(tx, ty, tz) and a rotation vector
R(rx, ry, rz) with respect to a coordinate system attached to
another component.  Both combined give a relative
displacement matrix, {T,R}ref with respect to a reference
coordinate system (ref), easy to represent (Figure 1) and which
allows to position exactly a component in space.
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 Figure 1.  Correspondence between  Mechanical Functional
Links and Displacement Vectors (ISO 3956)(Chevalier, 1986).

 
 This way of placing components offers the same

flexibility as the absolute coordinates, it also gives the
possibility to implicitly satisfy many mechanical functional
links that, otherwise, would have been satisfied by equation
solving.  The choice of the movements attributed to a
component with respect to another one is left to the engineer.
Thus, he or she is in charge of defining displacements
respecting the mechanical functional links between the
components of the assembly.

 

Objects Shapes
 In spite of the nearly 20 years of existence of CAD

software, it is since very recently that the objects used in
configuration optimization upgraded from simple shapes like
cubes, blocks, spheres, circles, and squares to ‘free-form
objects’.

 Lomangino (1994) and Szykman and Cagan (1994b)
introduced the use of CAD to represent the more realistic
objects necessary in engineering.  Even if more cumbersome,
this approach allows the engineers to take advantage of the
piecewise polynomial or rational models implemented in CAD
to build free-form geometric objects. CAD software is able to
generate several representations of the objects in order to save,
retrieve and exchange data with other software.  Among the
standard formats used to exchange information about the shape
of an object, one of the more common and easy to use is the
tessellated description of its surface.  This type of description is
used for rapid prototyping models, surface finite element
models and for visualization models.  Hence, in this work,
each object is described by its skin paved with the triangles
obtained by exporting an STL file from a CAD software
(Figure 2).

Figure 2.  The STL file format and the tessellated object.
 
 This format provides a good balance between the

accuracy of a solid description and the computational speed of
various functions involving objects, such as volume,
interference, and clearance (O’Rourke 1993) calculation.

Configuration Optimization Problem Objectives
Functions

 A mechanical system’s compactness, balance and
maintainability were chosen as objective functions for testing
the CDOM.  Their mathematical representation relies either on
analytical expressions or on a numerical integration over the
meshed solids.

 facet normal 1.00 -0.00 -0.00
 outer loop

 vertex 23.62 39.37 -39.37
 vertex 23.62 55.11 -39.37
 vertex 23.62 55.11 -23.62

 endloop
 endfacet
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Compactness
 In many cases, system volume was associated with the

volume of a component’s bounding box.  This choice has
several drawbacks, among which: first, the volume changes
when the coordinate system changes, and second, it leads to
results that are inaccurate.  A second way to evaluate the
volume of a set of objects is to measure the volume of its
convex hull i.e. the volume of rubber bag one can wrap around
the objects.  The volume measured is invariant when the
coordinate system changes however it is computationally
expensive to evaluate.   Moreover using the volume of the
convex hull can lead to unexpected, however valid results,
which have nothing to do with an admissible mechanical
solution (Stewart, 1993).  This points out that the notion of
compactness in mechanics is different from that of minimal
volume, and thus, an inertia matrix ([I]) norm shown below is
a better measure.

 
 
 [I] =

 

 
 

 
 where the integration is done over a solid object.

 The matrix is computed for each object and the whole
system inertia matrix can be calculated by adding the
individual matrices as long as they are expressed with respect
to the same coordinate system.  Once calculated, the system
inertia matrix norm is used as an objective function.

 Norm[ [I] ] = Σi=1..3 [ Σj=1..3 [ Iij ]2 ].

Statical and Dynamical Balanced Loading
 The static balance of a system is obtained by putting

its center of gravity at a target location.  The center of gravity
of a system is usually easy to calculate once given the center of
gravity of each of its components.

 Statically balancing a system is sometimes not
sufficient.  A dynamic balance must be reached especially for
objects that can move (cars, boats, planes...).  The inertia
matrix presents the interesting property of being a measure of
the dynamic stability of a system.  In order to be stable in
dynamic situations as well as in static situations the principal
axes of a system should respect some position.  For example,
the principal axes of the heaviest components of a car (under
the hood components) must stay aligned with the longitudinal
axis of the vehicle. Obtaining a diagonal matrix with respect to
target axes is the goal for dynamically balanced loading.

Maintainability
 The maintainability of a system is decomposed into two

different tasks that must be performed and are represented by
two objective functions.

 Accessibility is the property of an object or part of this
object to be seen and reached with the hand.  This objective is
implemented by a ray-tracing algorithm in which the ray is an
object simulating the volume necessary to access the
component (Figure 3).

 The ease of removal of a component is defined by the
amount of mechanical work needed to remove it from the
system (Figure 4).  This mechanical work is proportional to the
weight of the component.  If some other components must be
removed to remove a given component, the additional work is
taken into account.  The system maintainability is the sum of
the accessibility of all the relevant components and of their
removability.
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Figure 3.  Accessibility.
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Figure 4.  Removal path.

Constraints

Mechanical Functional Constraints
 The mechanical functional constraints, usually

translated by geometric constraints (angle, distance,
coincidence, … ) are taken into account by the displacement
matrices, the only constraint remaining is the interference
between assembly components.

Interference Constraints
 Checking that there is no interference between the N

objects of the mechanical system is the last constraint
considered in the ECDP formulation. The satisfaction of this
constraint has priority on the mechanical constraints since it
guarantees the possibility of building the system.
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THE CONFIGURATION DESIGN OPTIMIZATION
METHOD

Populations of Sets and Genetic Algorithms
 The Configuration Design Optimization Method

(CDOM) was first designed to cope with the non-linearity of
packing problems with two objective functions (center of
gravity and volume, Grignon, Wodziak and Fadel, 1996).

 When considering additional objectives, it was clear
that the GA, which allows the gathering of several solutions in
a single run, had another advantage with respect to other
global optimization techniques.  However, the different
techniques proposed in the GA literature were not sufficient to
cope with a continuous or discontinuous set of solutions like a
Pareto Set.

 Hence, instead of using a population of points, it was
decided to remove the difficulty of forcing points to stay away
from each others by using populations of sets of points
(Grignon and Fadel, 1997).  Such formulation brings different
problems.  By making the size of the genome bigger, the
limitations of the GA were reached quicker and the rate of
convergence was degraded.  In order to overcome these new
problems of convergence and to exploit the fact that the GA
had a very good performance only during the first few

hundreds generations and then levels off, the algorithm was
made iterative (Grignon and Fadel, 1999)(Figure 5).

 At first glance it seemed that this choice was only
making the method slower for getting back a decent rate of
convergence and acceptable results.  At a second glance the
iterations were opening the search process to an eventual
interaction with the user.  Thus, the experience of engineers,
which is a level of knowledge that an automated method has
few chances to reach, is now available for the CDOM.  This
was made possible by changing the bounds of each variable
after each run of the GA in order to determine the new domain
of interest for the next run.  These new bounds are determined
by the extreme points of the best approximation of the Pareto
set discovered so far by the method and define the variable
ranges for the next iteration.  These ranges are increased by
20% (of the size of the Pareto set along each variable axis) in
order to allow the CDOM to expand the Pareto set.

 The cycles are repeated until the global objective
function cannot be improved by more than 0.5% during two
consecutive runs.

 In order to fit the need of the GA for a single function
value attributed to each point, a scalarization based on two
components is proposed.  First, a value is calculated in order to
differentiate Pareto sets from other sets of points.  This

Start

End

Encode each variable X i according to its bounds      
[Li , U i ] 

Generate First Population of Clouds Randomly.

Calculate Clouds Fitness

Evolve 1 Generation 

Update the variables bounds [L i, Ui]

Maximum number of generation or convergence 
reached ?

Final Run ?

yes

no

yes

Conventional 
GA Part

Figure 5.  CDOM FlowChart
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scalarization attributes better values to relative non-inferior
points.  Second, this scalar value is modified in order to take
into account the spreading of the points.

 The morphology is measured by giving a rank based
on the notion of non-inferiority described in Grignon and
Fadel (1999).

 Gradecloud = ( Σi=1..N [ rank[Pi] ] ) / ( N + M )2 + penaltysp.
 Where Rank[ Pi ] is N*M  minus the number of

points dominating Pi. N is the number of points in the cloud
being evaluated and M is the number of points in a reference
Pareto set made of the best points discovered.

 The spreading is introduced by a penalty that always
gives priority to the morphology of the cloud since its value is
chosen such that it remains between 0 and 1.

 
 penaltysp = Atan [ Max[1/Distance[Pi, Pj] ] / (Π/ 2) i=1..N,

j=1..N.
 

 This strategy guarantees a convergence toward the
real extreme points (TEPts) which are unknown and which
correspond to the solutions of the single objective CDPs
involving each objective in turn.

 Since overlapping components is a strong impediment
to the building of any assembly the corresponding constraint
value is removed from all the single objective functions.

 
 Pi’[ F1 + penaltyint, .., Fn + penaltyint]

 
 Thus an unfeasible assembly cannot be a Pareto

solution.  The final objective function (Gradecloud) is calculated
using the new points Pi’ as cloud members.

CDOM variations
 Initial experiments  using the CDOM showed that low

performance is driven by the size of the feasible area (which is
a direct consequence of the number of the objects and of their
relative size with respect to the system).

 Hence, the initial algorithm (R) (Figure 5) which
consisted in restricting the bounds of each variable run after
run, is transformed into 2 algorithms, whose performances are
compared.  First, simulating the behavior of a human being,
the CDOM is allowed to expand the size of the search region
by 33% in all directions in case of a first failure to improve the
objective function.  A second failure stops the CDOM.
Second, a zero order local search method is used to quickly
retrieve the feasible domain, if possible, when an unfeasible
configuration is generated.  However this approach can be used
only if the calculation cost of the objective function is moderate
since local numerical optimization methods require a high
number of functions evaluations (especially if gradients or
Hessian matrices are involved).  A second impediment for the
use of this method comes from the fact that the Engineering
CDPs are multicriteria problems.  Applying the local search to

each objective in turn leads to three different points in the
variable space, and applying the Local Search to the Ranking
objective function (Gradecloud) is impossible since it is discrete.
Temporarily replacing the objective function by the penalty
alone in the unfeasible region seems to solve all these
drawbacks.

 Hence in the following three strategies are compared:
• Ranges Restrict ion (R),  which is  the

algorithm used as reference and already
tested on Mult icri teria non-convex
optimization problems by Grignon and
Fadel (1997).

• Local Search (LS),  relies on a zero order
Local Search to retrieve feasible solutions
from unfeasible configurations.

• Range Relaxation (RLX),  which implements
the idea of  enlarging the search area
whenever no solution is  found within a
region of the variable space.

TEST CASES AND ANALYSIS OF THE RESULTS

Cubes Configuration Design Problems

Problem statement
 N cubes must be placed into a container such that the

3 objectives functions i.e. compactness, position of center of
gravity and maintainability are optimized (Figure 6).  The
variables are the cubes translations (tx, ty, tz).

 

 

Removal Direction

Target Center of Gravity

Compactness

 Figure 6.  Objectives of the cube CDPs
 

 In order to remove many configurations obtained by
translation of the entire configuration as a block, one cube is
fixed at the origin in order to get a non singular Pareto Set
(otherwise the maximum compactness can be reached at the
same time as the coincidence of the Center of gravity which
makes the Pareto Set degenerate into a single point).  All the
cubes have the same weight (10) and volume (20x20x20).

 The experiment is repeated with an increasing
number of cubes and with 2D and 3D containers.  The size of

 the containers is calculated such that the free-space
remaining after all the objects are placed is the same (Table I).
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 Figure 7.  Example of final set distribution and configurations for a 4 cube 2D CDP. Each extreme point of the final set (e and f) in
the objective space corresponds to an extreme configuration (a, b, c and d respectively, 1, 2, 5 and 6 on Figure e) in 3D space.
Maintainability (Maint) is indicated on the vertical axis.  Distance from the target center of gravity (Cog) and Compacity are

indicated on the horizontal plane
 

Table I.  Initial data for the 2D and 3D cube CDP.  L2D and
L3D are the respective sides of the square and cubic
containers in which the cubes move.

 # cubes  2  3  4  5  6  7  8  9
 2D containers  49  60  69  77  85  92  98  104
 3D containers  --  --  42  --  50  --  56  --

RESULTS PRESENTATION AND ANALYSIS

 The final result that is of interest for the engineer is
the Pareto set in the objective space and its corresponding
values in the variable space each of which reflects a
configuration in 3D space (Figure 7).  Extreme points of this
final set represent “extreme” configurations corresponding to
the solutions of the Single Objective Optimization problems
involving each objective alone.

Summary of the Cubes Test Cases Results
 The criteria used to investigate the process of

Configuration Optimization were classified into two main

categories.  First the criteria regarding the solution set and
second the criteria related to the methods.
The Pareto set quality criteria are first, the distances from the
3 target extreme points (TEPs) corresponding to the solutions
of the single objective optimization problems; second, the
spreading of the points and third, their distribution (Grignon
and Fadel 1999). The method criteria are speed measured in
terms of function evaluations (objective and penalty
combined) and repeatability measured as standard deviation
of the previous criteria when the same test is repeated 20
times (Grignon 1999).

 The study of the results, taking into account the
TEPs criteria and the speed measures, allows to build a
classification of the methods showing that the Iterative
Genetic Algorithm combined with a local search (LS) is the
best candidate for the CDOM (Table II).  This algorithm is
recommended whenever the additional computational cost of
the LS routine is tolerable.  For those who cannot afford this
additional burden, the Iterative GA with Relaxation is a better
choice.
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Table II.  Final Classification of the methods.
  R  RLX  LS
 TEPs  19  9  9
 SPEED  7  12  9*
 Total  26  21  18*

 Note: ‘*’ indicates that the rank was calculated by taking into
account the additional cost of the local search.

Engineering Applications
 Two engineering configuration problems were

submitted to the Iterative Genetic Algorithm with Range
Relaxation (RLX).  Both systems consist of one or several
static components and multiple moving components that are
placed in 3D space with respect to either the static objects or
with respect to moving components.  The Pareto sets of the 3
objective CDPs found by the method are presented as well as
some corresponding configurations.

Aerospace Components
 

Problem Statement
 A satellite made of a base frame, an external hull,

and internal electronic and mechanical components (Figure
8), must be designed.  All the components must fit inside the
hull and the inertia of the whole system must be minimal for
energy savings and stability considerations.  In addition to
this first objective, the center of gravity of the satellite must
be put as close as possible to a target point located along the
axis of the base frame, and the accessibility of the components
must be maximized in order to ease construction and
maintenance during an eventual repair intervention while on
orbit. The components can be accessed by two opposite paths
along the diameter of the satellite.  The accessibility value is
the number of components intersecting the access volume.

 
Figure 8.  The satellite configuration design problem.

 
Objects  and Variables

The relative degrees of freedom of the components
with respect to each others are summarized in table III.

Table III.  Satellite CDP components degrees of freedom.
 Component  Degrees of Freedom  Reference Component

 1 (hull)  {0, 0, 0}  Reference
 2 (frame)  {0, 0, 0}  1
 3 (tank)  {tx, ty, tz}  1
 4 (electronic)  {tx, ty, 0}  1
 5 (measuring eq.)  {tx, ty, tz}  1
 6 (measuring eq.)  {0, ty, tz}  5
 7 (electronic)  {0, ty, 0}  4

 
 The best values of the Single Objective Optimization

problems are reported in table IV.
 

Table IV.  Results of the Single Objective Optimization
Problems for the satellite CDP.

 Objective  Solution  Speed  Penalty
 Compactness  27  5950  4230
 Distance to target Cog  0  2899  1432
 Accessibility  0  2387  935

 
 The multicriteria version of the satellite ECDP

(Engineering Configuration Design Problem) is submitted to
the RLX method.  Its results are summarized in Table V.  The
number of points discovered by the CDOM is low (Figure 9)
but corresponds to very different solutions (Figure 10).  It was
conjectured that the small feasible area is the cause of this
problem.  An additional clue corroborating this hypothesis is
the high number of penalty function evaluations compared to
the number of function evaluations.

 
Table V.  Results of the multi objective optimization problem

for the satellite CDP.
 Objective  Extreme Solutions  Functions  Penalties

 Compactness  28.1  23920  148945
 Distance to target Cog  2.3 mm  Same  Same
 Accessibility  0  Same  Same

 

 Figure 9.  Three - objective Pareto set provided by the CDOM
 

 However, the cloud of points seems relatively evenly
distributed.  This was already observed on small solution sets
in the test cases.  It seems that the cloud is also well spread
along the compactness and accessibility axes, providing a
range of compactness between 28.1 and 29.5 and an
accessibility between 0 and 4.  However, a wider range for the
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center of gravity was expected: it varies between 2.3 mm and
23 mm (knowing that the satellite is 1 meter in radius).

Figure 10.  Two extreme configurations.  At left, the
maximum compactness configuration discovered by the

CDOM.  At right, the maximum maintainability
configuration.

Car Engine
 For mechanical systems such as a car engine, the center

of gravity must be as low as possible while the components
must be accessible as easily as possible.  This later goal is
contradictory with a minimum volume engine.  Contrary to
the satellite ECDP, the car engine problem benefits from a
long history and many data that can be used for comparison.
Although creating new design by patching old ones is not
necessarily optimal, it was shown that this is a common way
of designing, especially in the car industry (National
Research Council 1991, Womack 1991).  This is why, using
the CDOM to generate new alternate designs is interesting.

 
Problem Statement

 In the car engine example (Figures 11, 12), the
problem consists of placing the main components of the car
under the hood (motor, radiator, fan, fan engine, battery,
power steering pump and tank, alternator, air-filter, and
master cylinder) while trying to optimize the compactness,
the position of the center of gravity and the maintainability of
the system.

 Is this case, accessibility is defined as it was for
satellites, i.e. a static component simulates the volume
necessary to access a given element.  Then the value of the
accessibility is calculated as the number of components
intersecting this volume.

 

1

2

3 4

5

6

7

8 9

Distance 

Perpendicular

Parallel

Coincident

Figure 11.  The components are placed using a global coordinate
system and geometric constraints.

 

Figure 12.  A simplified car engine submitted to the CDOM.

Objects  and Variables
 Seven components are selected for placement under

the hood of a car. The motor block is used as reference for all
the static components and for the axis of the car.  It is
purposefully put on the longitudinal axis (x-axis).  The y-axis
is horizontal and perpendicular to the longitudinal axis and
the z-axis is vertical.  The fan can move along the x and z
axes with respect to the motor block.  The ranges chosen for
its translations constrain its position to be in front of the
motor block.  This constitutes the first example of mechanical
constraint satisfaction using relative placement.  If absolute
placement had been chosen, an additional inequality
constraint (yfan > ymotor) would have been necessary.  The
radiator is placed with respect to the fan.  Its only degree of
freedom allows a transversal displacement.  The alternator
and the power steering pump are placed relatively to the
motor block such that the pulley axes are always parallel to
those of the engine.  They also must remain in the same
plane.  These constraints are additional mechanical
constraints that would have made the variable space more
complex if absolute variables had been used.  Finally, the
battery and water tank can be put anywhere.  The degrees of
freedom of each component are summarized in Table VI.
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Table VI.  Car engine CDP components’ degrees of freedom.
 

 Component  Degrees of Freedom  Reference Component
 1 (motor block)  {0, 0, 0}  Reference
 2 (radiator)  {tx, 0, 0}  3
 3 (fan)  {tx, 0, tz}  1
 4 (radiator)  {tx, 0, tz}  1
 5 (power steering)  {tx, 0, tz}  1
 6 (battery)  {tx, ty, tz}  1
 7 (water tank)  {tx, ty, tz}  1

 
Resul t s  and Discuss ion

 The same procedure as the one used for solving the
SOPs on the satellite CDP is used for this real case.  The best
values of each objective function are reported in Table VII.

 
Table VII.  Results of the single objective optimization

problems for the car engine CDP.
 

 Objective  Best Solutions  Speed  Penalty
 Compactness  41.15  6561  4716
 Cog  17mm  5398  1022
 Accessibility  3  3911  967
 

 The configurations corresponding to the best
compactness and best accessibility are displayed on Figures
13 and 14.  In the best compactness configuration, the power
steering pump and the alternator come slightly under the
engine block in order to niche on both sides of the V shape.
The battery and the water tank tend to have the same
behavior but have too much height and thus cannot slide
under the motor.  The fan and the radiator are also slightly
shifted on the right in order to counter-balance the effect of
the alternator and battery on the left.  In the maximum
accessibility solution all the components are placed as far as
possible from each others and as high as possible, which is
the exact opposite of what is happening for the compactness
objective.

Figure 13.  Example of maximum compactness.

Figure 14.  Example of maximum accessibility.
 
 Many more Pareto design configurations are

discovered in this case.  The true reason for the discovery of
many points is the size of the Pareto set.  It was shown with
the single optimization performed that the car engine presents
extreme solutions that are, in variable space, very different
and thus increase the chance of having a large Pareto set.
Moreover, its feasible area is also larger than for that of the
satellite CDP.

 As was expected, the number of penalty function
evaluation was low due to the large feasible area (Table VIII).

 
Table VIII.  Results of the multi objective optimization

problem for the car engine CDP.
 

 Objective  Extreme Solutions  Functions  Penalties
 Compactness  42.5  48850  9563

 Cog  10 mm  same  Same
 Accessibility  3  same  Same

 
 The extreme compactness values oscillates between

42.5 and 43.5 (i.e. the solution gives the choice between
solutions that can be more than twice less compact).  The
center of gravity is at a minimum distance of 10 mm and at a
maximum of 17.3 mm away from the target.  The
accessibility exhibits the best range with a minimum of 3 and
a maximum of 9.  The minimum value cannot be less than 3
due to the fan, which must remain in between the radiator
and the motor block.
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Figure 15.  Three objective Pareto set of the car engine ECDP
provided by the CDOM.

 From the mechanical engineering point of view, the
extreme solutions (Figures 13 and 14) can be compared to
existing designs.  First, the solutions presented do not align
the fan and the longitudinal axis of the motor block.  Since no
fluid flow factors nor cooling were taken into account, the fan
and the radiator are moved in order to optimize inertia and
center of gravity objectives.  In most cars the fan is aligned
with the central longitudinal axis of the car.  Putting the
battery and water tank close to the motor might be a bad
choice, first because the coolant must be put away from heat,
second because the battery may take the place of another
component necessary to the motor such as the air filter, and
third because local areas of the motor block might be more
specifically accessible.  The addition of a heat transfer
objective would address these issues.

CONCLUSION
 This paper introduced a method based on a Genetic

Algorithm using a population of clouds of points to discover
Pareto alternate solutions to free-form configuration design
problems.

 The generality of the CDOM is assessed by its
robustness in handling different shapes.  The decrease in
performance is, on average, linear, while the complexity
increases exponentially.  However, three limitations must be
taken into account.  First, the number of penalty functions
increases exponentially with the number of objects.  Second,
the size of the genomes increases linearly as a function of the
number of variables times the number of points in each cloud
of the GA population. For a population composed of 15 point
per cloud, the genome size of each individual is 15*(number
of variables)*(number of bits per variable). Thus, there is a
trade off between the number of components the CDOM is
able to manage and the number of points per clouds used by
the GA.

 Two strategies have been presented to enhanced the
CDOM performance: Local Search and Range Relaxation.

 Local search, which is usually used to improve the
accuracy of the solutions is used in CDOM to retrieve a
feasible solution from an unfeasible one and thus improves
the chances to discover new feasible configurations.
Eventually, the analysis of the test cases pointed to two
technical flaws in the LS and in the relative placement of
objects.  First, the LS used introduced a bias in the feasible
configurations penalizing the maintainability objective
function.  Second, it is preferable to avoid relative placement
when many components can be permuted (like in the cubes
configuration problem).

 In addition to the local minima introduced by the
mechanical objective functions and the penalties, the
distribution of the points along the Pareto set introduces many
local optima in the landscape investigated by the GA. The
RLX method, which consists of inflating the region
investigated around the latest best solution, helps to escape
these local minima and thus provides better points
distribution.

 From the mechanical engineering point of view, the
output of the CDOM provides useful information to the
designer.  First, a set of alternate optimal solutions is given
(Figures 9 and 15) guiding the positioning of the components.
Second the Pareto set can be used as a basis to compare ‘hand
generated’ solutions and either point out configurations that
were never investigated or indicate if some previous designs
were optimal.  Third, mechanical characteristics of the system
might emerge from the study of the solution set.  For
example, the fact that the set is small on the center of gravity
axis might prove that moving components has little influence
on this objective.

APPENDIX
Technical Descriptions

 
 Galib-2.4 is a C++ library developed at the

Massachusetts Institute of Technology by Matthew B. Wall
(1996).  The GA used in the CDOM is a Steady State GA i.e.
a GA with overlapping populations.  The overlap of each
population is 25%.  The selection scheme is a Roulette Wheel
selector that selects individuals proportionally to the value of
their fitness (Goldberg 1989).  The scaling method
consistently used along all this work is Sigma Truncation and
the crossover is a single point crossover.  The population size
is of 15 members and the number of designs per child is 15.
The genes length is 10 bits providing a precision of L/210

(roughly L/1000) on each variable, where L is the size of the
variable interval of variation during the current run.

 Due to the fact that each genome represents in fact a
set of 15 different configurations (and each configuration
being itself defined by N variables), the total length of each
individual genome is equal to 10*(N)*15 bits.  The stopping
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criterion is based on convergence.  A failure to improve the
best fitness of 0.001% stops the current GA run and possibly
starts a new one.

 
Genetic Algorithms Technical  Descriptions

Population size: 20.
Genome length: 10.
Termination Criterion upon convergence over 20
generations: 0.99999.
Probability of Mutation: 0.005.
Probability of Crossover: 0.6.
Scaling: Sigma Truncation.
Selection: Roulette Wheel.

 The scaling method consistently used along all this
work is Sigma Truncation.  The selection scheme adopted is
the Roulette Wheel Selector, which selects an individual with
a probability proportional to the magnitude of its fitness score
relatively to the rest of the population.

 The second GA used in this work is a SteadyStateGA
i.e. a GA with overlapping populations.  The overlap of each
population is 25%.

 The population size was of 15 members and the
number of designs per child is 15.  The genome length is 10.
This makes the length of each individual genome equal to
10*(number of variables)*15 bytes.  The maximum genome
length is thus equal to 2700 bytes (18 variable 3D CDPs).

The stopping criterion is based on convergence.  A
failure to improve the best fitness of 0.001% stops the GA.

ACKNOWLEDGMENTS
The authors wish to gratefully acknowledge the support

of NASA under grants Number NGT10008 and NAG3-2046,
and of the US Army Tank-Automotive and Armaments
Command- National Automotive Center under Grant Number
DAAE07-97-C-X130.

REFERENCES
Chevalier, A. (1986). Guide du dessinateur industriel,

Hachette.
 
Corcoran, A. L., and Wainwright, R. L. (1992). “A genetic

Algorithm for Packing in Three Dimensions”. SAC'92
Proceedings of the 1992 ACM/SIGAPP Symposium,
Kansas City, ACM Press NY.

 
National Research Council (1991). Improving Engineering

Design. Designing for Competitive Advantage,
National Academy Press.

 
Dassault Systemes, CATIA Solutions, 9 Quai Marcel

Dassault, Suresnes, France.
 
Fonseca, C. M., and Fleming, J., (1993). “Genetic Algorithms

for Multi Objective Optimization, Formulation,

Discussion and Generalization”. Proc. 5th Int. Conf.
on Genetic Algorithms, Urbana Champaign, IL.

 
Goldberg, D. E. (1989). Genetic Algorithms in Search,

Optimization, and Machine Learning. Reading, MA,
Addison-Wesley.

 
 Grignon P.M. and Fadel, G. M., (1999) “ Multi-objective

Optimization by Iterative Genetic Algorithm” ASME
DETC99/DAC-8576, Las Vegas, NV

 
 Grignon, P. M. (1999), “Configuration Design Optimization

Method”. Ph.D. Dissertation, Clemson University
Mechanical Engineering Department, Clemson SC.

 
Grignon, P. M., Wodziak, J. R, and Fadel, G. M. (1996). “Bi-

Objective Optimization of Components Packing Using
a Genetic Algorithm.” Multidisciplinary Analysis and
Optimization Conference, AIAA/NASA, Seattle, WA,

 
Grignon, P. M., and Fadel, G. (1997). “Quality criteria

measures for multi objective solutions Obtained with a
Genetic Algorithm”. AIAA SDM Conference, Orlando.

 
Holland, J. H. (1975). Adaptation in Natural and Artificial

Systems., The University of Michigan Press. Ann
Arbor, MI

 
Lewis, H. R., and Papadimitriou, C. H. (1978). “The

Efficiency of Algorithms.” Scientific
American(January): 96-109.

 
Lomangino, P. F. (1994). “Grammar and Optimization-Based

Mechanical Packaging”, Ph.D. Thesis, Georgia
Institute of Technology.

 
Moscato,  P.  (1989).  “On Evolution, Search,

Optimization,  Genetic Algori thms and
Martial  Arts:  Toward Memetic Algori thms”.
Pasadena,  CA, CalTech .

O'Rourke, J. (1993). Computational Geometry in C.
Cambridge, Cambridge University Press.

 
Schaffer, J. D. (1984). “Some Experiments in Machine

Learning Using Vector Evaluated Genetic
Algorithms”.

 
Shaffer, J. D., and Grefenstette, J. J. (1985). “Multiobjective

Learning via GA.” Proc. 9th Int. J. Conf. Artif. Intel.:
593-595.

 



13 Copyright © 1999 by ASME

Sobol, I. M. (1967). “On the distribution of points in a cube
and the approximate evaluation of integrals.” USSR
Comput. Math. math. Phys. 7: 86-112.

 
Sobol, I. M. (1990). “A Global search for multicriterial

problems”. 9th International conference on Multiple
Criteria Decision Making, Washington.

 
Stewart, I. (1993). “Packing Problems in a Sport-gear

Shipping Room.” Scientific American: 142.
 
Szykman, S., and Cagan, J. (1995). “A Simulated Annealing

Approach to Three-Dimensional Component Packing.”
ASME Journal of Mechanical Design, 117(2A):308-
314.

Szykman, S., and Cagan, J. (1996). “Constrained Three
Dimensional Component Layout Using Simulated
Annealing.” ASME Journal of Mechanical Design,
119(1):28-35.

 
Sachdev S., Paredis, C. J. J., Gupta S. K., and Talukdar S. N.,

"3D Spatial Layouts Using A-Teams," Proceedings of
DETC98,  Atlanta, GA.

Venugopal, V., and Narendran, T. T. (1992). “A Genetic
Algorithm Approach to the Machine-Component
Grouping Problem with Multiple Objectives.”
Computers and Industrial Engineering 22(4): 469-480.

 
Wodziak, J. R. (1994). “Optimal Packing Utilizing Genetic

Algorithms”. MS thesis, Mechanical Engineering.
Clemson University.

Yin S. and Cagan, J. (1998). "A Pattern Search-Based
Algorithm For Three-Dimensional Component
Layout." Proceedings of DETC98,  Atlanta, GA.


