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Abstract 

 

 

In this paper, a new evolutionary technique for 
detecting continuous Pareto optimal sets is 
proposed. The technique is designed for 
functions of one real variable but it can be 
extended for several variables functions. In this 
approach an individual (a solution) is either a 
closed interval or a point. Each solution in the 
final population corresponds to a decision region 
of Pareto optimal set. Proposed technique is 
called Pareto Evolutionary Continuous Regions 
Algorithm (PECRA). In the considered 
experiment the picture of Pareto set supplied by 
PECRA has a better accuracy than that given by 
other techniques. 

1 INTRODUCTION 

Usually, Pareto evolutionary algorithms supply a discrete 
picture of the Pareto optimal set (and of the corresponding 
Pareto frontier). But, there are some cases when the 
Pareto optimal set is a continuous region in the search 
space. In those cases the Pareto continuous regions are 
represented by a discrete set. When continuous decision 
regions are represented by discrete solutions there is a 
loss of information. Moreover, reconstructing continuous 
Pareto set from a discrete picture is not an easy 
computational task (Veldhuizen, 1999). 

In this paper a new evolutionary multiobjective 
optimization approach is proposed. This technique is 
called Pareto Evolutionary Continuous Regions 
Algorithm (PECRA) and it is able to handle Pareto 
continuous regions. 

2 PECRA DESCRIPTION  

PECRA technique is designed for coping with objective 
functions of one real variable.  

 

 

Let us note that when the search space is a subset of ℜ , 
the Pareto optimal set may be represented as a set of 
points, a set of disjoint intervals or a set of disjoint 
intervals and a set of points. Within the proposed 
approach continuous decision regions may be detected. A 
solution (individual) is either a closed interval (a 
nondegenerated interval, i.e. an interval for which the 
extremities are not equal) or a point (considered as a 
degenerated interval, i.e. an interval for which the left 
extremity value is equal to the right extremity value).  

The algorithm starts with a random population of 
degenerated intervals (i.e. a population of points). The 
variation operators are mutation and crossover. Mutation 
consists of normal perturbation of interval extremities. 
Mutation is also applied to point-solutions (considered as 
degenerated intervals). By crossover new solutions are 
added to the current population. 

The solutions are detected in two stages. In the first stage 
all (local and global) Pareto solutions are detected. In the 
second stage detected solutions are refined by a fine-
tuning process when the sub-optimal regions are removed 
from population.  

2.1 REPRESENTATION AND DOMINATION 

We consider solutions are represented as nondegenerated 
or degenerated intervals in the search space Ω (where Ω is 
a nonempty subset of ℜ ). Each interval-solution k is 
encoded by an interval [xk, yk] ⊂  ℜ . Degenerated intervals 
(yk = xk ) are allowed. In this case the solution is a point. 
In order to deal with interval representation of solutions a 
new domination concept is needed. This domination 
concept is given by the next definition. 

Definition 1. An interval-solution [x, y] is said to be 
interval-nondominated if and only if all points of that 
interval [x, y] are nondominated (in Pareto sense) point-
wise solutions. An interval-nondominated solution will be 
called a Pareto-interval. 

If x = y (degenerated intervals) this dominance concept 
reduces to the ordinary non-domination notion. If no 
ambiguity arises in what follows we will use the term 
nondominated instead of interval-nondominated. 

 



Definition 2. (sub-optimal Pareto regions). A search 
space region S, S ⊂  Ω is said to be sub-optimal iff all the 
points from the set S are local Pareto optima. 

Definition 3. An interval that contains optimal and 
possibly sub-optimal sub-intervals is called an 
unhomogeneous interval. 

True Pareto set comprises distinct points which do not 
dominate each other. But, due to the representation 
capabilities these points could be represented by rounded 
versions that are equal or are dominated. For instance the 
number   x = 0.17 may be represented either as x' = 0.1 or 
as x" = 0.2, according to a given convention 
representation. Let us consider that x represent a 
nondominated solution. However it is possible that either 
x' or x" or both of them are dominated solutions. 

Therefore representation limitations may induce a 
falsification of domination relationship. As a consequence 
some points belonging to the true Pareto set could be lost 
during the search process based on domination. 

A procedure for avoiding the loose of some dominated 
solutions is highly needed. In this way a new concept of 
dominance that takes into account the representation 
precision and called ε -dominance is defined in what 
follows: 

Definition 4. (ε-dominance)  

Consider a maximization problem. Let x, y be two 
decision vectors (solutions) from the search space Ω. 

Solution x (ε-dominates) solution y if  fi(x) ≥ fi(y), ∀  i = 1, 
2,…, n, and ∃  j ∈  {1, 2, …, n}: fj(x) > fj(y) + ε.  

A similar ε-dominance definition is given in (Laumans, 
2002). 

2.2 GENETIC OPERATORS 

The genetic operators used by PECRA are mutation and 
crossover. Both of them are described in what follows. 

2.2.1 Mutation Operator  

For coping with the proposed solution encoding a new 
mutation operator is designed. Each interval extremity is 
mutated. The left extremity of an interval is always 
mutated towards left and the right extremity is mutated 
only towards right. Points are considered as representing 
degenerated intervals and they are mutated in a similar 
way.  

Therefore, two cases are considered. 

a) Degenerated interval. 

An offspring is obtained by mutation towards left. The 
obtained point represents the offspring. Parent and 
offspring compete for survival.  

If the offspring dominates the parent then the offspring is 
added to the new population. If the parent dominates the 
offspring then the parent is mutated again toward right. 

The best, in the sense of domination, enter the new 
population. 

If parent and offspring are not comparable with respect to 
domination relation then the two points define an interval 
solution which is included in the new generation. The 
point solution representing the parent is discarded. 

b) Nondegenerated interval.  

Left extremity of the interval [u, v] is mutated towards 
left. A point u’ is obtained. Consider the case when the 
offspring-point u’ and the parent-point u do not dominate 
each other. In this situation a new interval solution [u', v], 
having the point u’ as its left extremity and v as its right 
extremity is generated. If the offspring-point u’ dominates 
the parent-point u, then the interval solution [u, v] enters 
the new population. A similar mutation procedure is 
applied to the right interval extremity of the solution ([u, 
v], or [u’, v]) obtained above. 

2.2.2 Crossover Operator 

Mutation operator performs a local search of solutions. 
By contrast, the crossover operator is used for generating 
new solutions within the unexplored regions of the search 
space. Only two points in the search space are needed as 
parents for crossover. Therefore, if one (or both) parents 
are nondegenerated intervals then only one of its (their) 
extremities is considered as the true parent for crossover. 
An offspring is obtained by crossover of two parents. In 
our implementation convex crossover (Goldberg, 1999) 
has been used. Other crossover operators may also be 
used. 

2.3 POPULATION MODEL 

Problem solutions are detected in two stages. In the first 
stage (evolution stage) all (global and local) solutions are 
detected. In the second stage (fine tuning or refinement 
stage) the sub-optimal Pareto regions are removed from 
the final population. 

Most of the multiobjective optimization techniques based 
on Pareto ranking use a secondary population (an archive) 
for storing nondominated individuals. Archive members 
may be used to guide the search process. As dimension of 
secondary population may dramatically increase several 
mechanisms for reducing archive size have been 
proposed. In (Zitzler, 1999) a population decreasing 
technique based on a clustering procedure is considered. 
But preserving only one individual from each cluster 
implies a loss of information.  

The proposed approach uses a unique population. 

A dynamically size population model is considered. In 
this approach the population size may increase or 
decrease depending on the number of Pareto optimal 
points found during the search process. The algorithm 
starts with a random population of degenerated intervals 
(i.e. a population of points). The variation operators are 
mutation and crossover.  
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Several pairs of individuals are randomly selected for 
crossover. The offspring obtained by crossover are added 
to the current population only if the population size does 
not exceed a given threshold.  Note that by crossover the 
population size could increase. 

Then, each individual in the current population is 
mutated. Parents and offspring directly compete for 
survival in a binary tournament. The tournament winner 
enters the new population.  

For detecting the correct number of Pareto optimal 
regions it is necessary to have, in the final population, 
only one solution per Pareto optimal region. If two 
interval solutions partially overlap the shortest interval 
solution is discarded. Degenerated solutions included into 
non-degenerated interval-solutions are removed too. If 
two degenerated solutions are closer than a fixed 
threshold r then the worst solution is discarded. 

The algorithm stops after a specified number of 
generations. 

2.4 FINE TUNNING 

Final population may comprise unhomogeneous interval 
solutions (solutions representing global as well as local 
optima). The aim is to detect optimal sub-solutions and 
discarding sub-optimal ones. Idea of fine-tuning is to 
isolate and discard from each final interval-solution those 
sub-intervals of S representing local optima. Each 
continuous Pareto region represented by a final solution is 
mapped into a discrete set. 

Consider a final solution [x,y]. Discretized version of [x,y] 
is obtained considering points with a fixed step size. Let 
D be the set of points obtained by discretizing the solution 
interval [x,y]. Discretized solutions are compared by using 
ε-dominance concept. Let us denote by ss the step size. 
From solution [x,y] consider the points xj fulfilling the 
conditions: xj = x + j⋅ss, j = 0, 1, … and xj ≤ y. 

These points represent the discretized version D of the 
interval solution [x, y]. Each point xj within the discretized 
set is checked. If a certain point from the set D dominates 
the point xj then xj is removed from the Pareto interval [x, 
y] together with a small neighboring region R. The size of 
the removed region is equal with ss.  

The following mechanism is used to decrease population 
size:  

(i) The shortest interval solution is discarded if two 
interval solutions partially overlap. Degenerated 
solutions included into non-degenerated interval-
solutions are removed too. 

(ii) The worst solution is discarded if two degenerated 
solutions are closer than a fixed threshold r then. 

The intervals obtained after the fine tuning stage are 
considered as the true Pareto sets.   

3 A NUMERICAL EXPERIMENT 

In this experiment we compare PECRA with NSGA II 
(Deb, 2000), PAES (Knowles, 1999) and SPEA (Zitzler, 
1999). The biobjective optimization (minimization) 
problem used for comparison is given by the formulas (1) 
and (2).  

These two functions have been chosen in order to obtain a 
discontinuous Pareto set (made of a sequence of points 
and intervals. The corresponding Pareto front is also 
discontinuous.  

f1(x) = sin(x),     (1) 
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The correct Pareto set (denoted Pc) is: 

 

 

 

 

An approximation Pca of the correct Pareto Pc set may be 
written as: 

Pca = [0.78, 2.35] ∪  {4.71} ∪  [7.06, 8.63] ∪ {10.99}  

∪  [13.35, 14.92] ∪  {17.27} ∪  [19.63, 21.20] ∪  {23.56}. 

The number of generations used by NSGA II, SPEA and 
PECRA is 250. PAES used 25000 functions evaluations. 
ε-dominance value for PECRA is 0.003. PECRA, SPEA 
and NSGA II use a population of 100 individuals. PAES 
archive size is 100. 

The result obtained by the compared algorithms is 
depicted in Figure 1. 
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Figure 1. PECRA detects a very good approximation of the 
Pareto set. The other considered algorithms detect a subset of 
the correct Pareto set. 

 

The solution obtained by PECRA is: 

PPECRA = [0.81, 2.34] ∪  {4.71} ∪  [7.06, 8.63] ∪  {10.99} 
∪  [13.37, 14.9] ∪  {17.28} ∪  [19.65, 21.18] ∪  {23.56}. 

From Figure 1 we can see that the others three algorithms 
(NSGA II, PAES and SPEA) detect only a discrete set of 
Pareto set. By contrast, PECRA is able to detect the 
continuous regions and the singular solutions in a single 
run. 

4 CONCLUSION 

A new evolutionary technique for solving multiobjective 
optimization problems involving one variable functions 
has been proposed in this paper. A new encoding type and 
specific genetic operators have been used. Solutions in the 
final population represent the Pareto optimal region. The 
proposed evolutionary multiobjective optimization 
technique uses only one population. This is a dynamic 
size population consisting of local nondominated 
solutions already found. 

Evolutionary technique proposed in this paper supplies 
directly a continuous picture of Pareto optimal set and of 
Pareto frontier. This makes our approach very appealing 
for solving problems where very accurate solutions 
detection is needed. 

5 FUTURE WORK 

Further research will focus on the possibilities to extend 
the proposed technique to deal with multidimensional 
domains. 

Another research direction is to exploit the solution 
representation as intervals for solving inequality systems 

and other problems for which this representation seems to 
be natural. 
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