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Abstract

This paper presents an optimisation strategy, based on a
hybrid multi-objective genetic algorithm, to automate
the planning of traditional radiotherapy treatment. The
optimisation algorithm is formulated around the concept
of Pareto optimality to exploit a population based search
procedure thereby considering each of the objectives
independently. It explores the solutions belonging to the
Pareto optimal set prior to concentrating on the best
regions of the search space. Once the Pareto optimal set
has been determined, a posteriori articulation of the
objectives is used to provide the clinicians with a few
alternative solutions, all of them non dominated and
therefore mathematically optimal, leaving the final
decision to the clinicians.

1. Introduction

The use of radiation to treat cancer patients is over one
hundred years old [1]. However it is only recently, with
the development of fast computers that the automation of
radiotherapy treatment planning has become possible.

Traditionally, the planning of radiotherapy treatment is
performed by human operators using methods based on
trial and error, relying on experience and good practice
[2]. The aim pursued by the treatment planners is to
provide the clinicians with a plan that conforms well to
the region to be treated whilst at the same time sparing
the critical structures. This can be achieved by
determining the optimal beam arrangement, i.e. number,
orientation, shape and intensity modulation of the
beams.

The aim of beam orientation is to combine beams such
that they overlap over the diseased region and avoid
-critical structures. The use of beams incoming from
several different directions leads to an increase in the
relative dose delivered to the diseased region.

The shaping of the beams helps to focus radiation solely
on the diseased region as seen from the beam. This can
be achieved by making use of lead blocks, and/or
multileaf collimators, to shield healthy tissues from
radiation [2].

The determination of optimal beam intensity modulation

is a much more complex problem which depends on the
beam modulation device used over the course of the
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treatment. Conventional radiotherapy makes use of
wedge shaped compensators to modulate the beam
intensity. The beam modulation resulting from the use of
wedges depends on the wedge angles and the individual

" beam weightings [2].

Optimisation problems in radiotherapy have traditionally
been solved efficiently using cost functions involving
weighted sums, see for example [2, 3, 4]. However, such
approaches rely on the skill of an operator to select the
various weightings associated with the different
objectives. As the selection of these objective weightings
is performed manually there is no guarantee that they are
optimal, nor is it true that a single solution found by the
search algorithm is the best compromised solution
achievable. Indeed, it has been observed in [4, 5] that a
mathematical optimal solution found, whilst optimising
beam weightings, could lead to unbalanced plans, which
may not be clinically acceptable. '

In contrast to the weighted sum approach, which reduces
the multi objective problem into a single objective
problem, the search technique presented n this paper
enables the optimisation of various objectives in parallel.
The optimisation is performed using a heuristic search
technique, namely a multi-objective genetic algorithm.
The approach is similar to that in [6] in that Pareto
ranking forms the basis of the selection process. The
approach has, however, been modified to enable the
treatment planner to guide the optimisation as the search
progresses towards a promising region, of the solution
space, by making use of a decision maker. The best
compromise solution can then be selected from the
Pareto optimal set a posteriori, using goal attainment
weighted sum of the objectives, or by considering the
objectives by order of importance.

2. Preliminaries

The radiotherapy treatment planning problem may be
visualised in two stages. The first stage, which is to
establish the number and orientation of the beams, is
achieved using the methods described in [5, 7]. This
paper focuses attention on the second stage, that is of
estimating/evaluating the optimum beam weight/wedge
angle combination.

Wedges are the simplest beam modulation device, see
Figure 1. They are differentiated according to their
‘wedge angle’ which is the slope of the isodose contour



at standard measurement depth (i.e. 10 cm depth) [2, 5].
In this paper it is assumed that use is made of motorised
wedges which can produce any wedge angle between 0°
and 60° [8].

45° wedge

30° wedge

Fig. 1: Ilustrating 30° and 45° wedges that can be
inserted into the head of the linear accelerator to
modulate the beam intensity across the field into a
wedge shape.

In order predict the dose distribution resulting from a set
of wedges, the interactions between X-ray radiation and
the various body structures are modelled, see [5]. In this
paper, use is made of a matrix based divergent pencil
beam model, which takes into account the effects of
inhomogeneities, in-air-profile, penumbra and patient
contour correction [2, 5]. The beam modelled, which is
described in [5], relates the total dose distribution d to a
set of beam profiles b; via the following relationship

NBEAM
d= ) @b, 6]
i=1
where the index i=1..N,,,, denotes the beam

considered, b; are the vectors describing the individual
beam profiles and ®; is the dose calculation matrix
details of which may be found in [7].

3. Objectives of radiotherapy treatment

The optimisation of radiotherapy treatment plans
requires the formulation of the outcome of treatments
into mathematical expressions. There are various
methods currently available to predict the clinical
acceptability of a radiotherapy treatment plan.
Radiobiological models describe the effect of radiation
at the cell level to predict chance of complication due to
overdosage or probability of controlling tumours [3].
However the predicted outcome of treatment using
radiobiological models is still a controversial issue [3].
In this work, a more traditional objective formulation
based on prescribed and delivered dose is adopted.

Doses are expressed in terms of percentages of the dose
prescribed at the isocentre, i.e. the centre of the
cancerous region. The dose prescribed to the isocentre
depends on the location, the extent, and the nature of the
cancer. The dose limiting factors include the risk of
narcosis {1, 2] and the presence of critical structures
which tolerate only a small quantity of radiation.

In each radiotherapy treatment plan three regions of
interest are considered: the planning target area (PTA),
the organs at risk (OARs) and the other healthy tissues
(OHT) which include all the body structures not
included in the PTA and the OARs. Making use of a
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vector notation, all grid points belonging to the same
region of interest are grouped together and represented
under a vector form such that dppa, doar, Gours Opras
Soar and doyyr denote predicted and prescribed doses for
the PTA, the OARs and the OHT respectively. The
radiotherapy treatment planning objectives can then be
expressed as follows:

Cpra = [8pra - dPTA]T Wora [8p1a - dpral @)
Cour=[B0ar - dOAR]T Woar [80ar - doar] 3)
Conr= [8out - dOHT]T Wonr [8onr - donr] C)

where Cpry, Coup Conr are individual costs relating to
PTA, OARs and OHT; WPTA> WOAR’ and WOHT are
diagonal adaptive weighting matrices, which are fully
described in [5, 9], for the PTA, the OARs and the OHT
respectively. These matrices enable individual objective
weightings to be assigned for the different regions of
interest and also allows for constraints to be relaxed on
dose points satisfying the dose requirements. A low Cpra
produces a high and uniform dose in the PTA, a low
Coar produces a low dose in the OARs and Coyr helps
to keep the dose in the OHT low, leading to a uniform
dose in the OHT.

4. The Multi-objective Approach

The multi-objective genetic algorithm (MOGA)
described in this paper belongs to a family of
evolutionary algorithms aimed at solving multi-objective
optimisation problems. It is used to determine all the non
dominated solutions, belonging to the Pareto optimal set
[5, 10], prior to selecting the most suitable solution using
a posteriori articulation of the objectives [5].

Genetic algorithms

Genetic algorithms (GAs) are a guided random search
algorithms that are inspired from the natural principle of
evolution. Essentially a population search based
technique, they are particularly suited to multi objective
optimisation problems. Another advantage of GAs is
their robustness and problem independence [11, 12].
Further, as opposed to deterministic techniques such as
gradient search methods, GAs have been shown to be
capable of finding the global optimum in a search space
including several local optima {6, 11].

Factors to take into consideration to maximise the
performances of a GA include the coding system, the
search operators, the selection process, the size of the
population and the probabilities for the various operators
to be used.

Coding strategy

Alternative coding strategies have been investigated.
However, no significant advantage could be found in the
use of integer or real coding over traditional binary
coding. Therefore, a binary coded representation has
been adopted to code the physical values of the beam
weights and wedge angles. Seven bits are used to code
the beam weights and the wedge angles, which can vary
in the range [0 100%] and [-60° +60°] respectively.



Search operators

In this work use is made of both traditional genetic
search operators, such as mutation and crossover, and
more specialised operators that have been developed to
solve the particular radiotherapy optimisation problems.
Crossover combines pieces of the parents to produce an
offspring and mutation selects randomly an element of
the chromosome and changes its value. A specialised
operator based on cautious least squares is used to
generate a beam intensity and a wedge angle from a dose
prescription for a particular beam [7, 13].

Selection mechanism
The selection of a solution for ‘reproduction’ is based on
its quality, a measure of which is given by an objective
function or cost function. The value of the objective
function is not used directly but transformed into a
fitness function which indicates a probability of
selection. Such a probabilistic process is one of the
central features of GAs. It introduces an element of
‘chance’ into the selection process. The selection
mechanism presented in this paper is based on Pareto-
ranking [5, 6]. In contrast to traditional ranking
techniques, where all the solutions are ranked according
to a single objective, with each rank being unique,
Pareto ranking, assigns to all the non dominated
solutions an identical rank of 1, see Figure 2. The
dominated solutions being differentiated by the number
of solutions by which they are dominated, see Figure 2.
The rank of each possible solution is calculated as
follows

r=1 +Ndominaled (5)
where » is the rank and Ny,mees 1S the number of
solutions by which the solution considered is dominated.

Feasible solutions

Rank

Pareto optimal set

Objective 2

Objective 1

Figure 2 Illustrating the concept of Pareto optimality and
non dominated solutions for two objectives.

This approach makes use of the concept of dominance
which can be explained as follows. Considering a
minimisation problem, in which the ™ solution is
represented by an objective function vector (or criterion
vector) v,=[v;; v;, ... v;,], such a solution is said to be non
dominated if there is no element in v, which is greater
than the corresponding element in any other objective
function vector v; and that at least one element m v; is
less than its corresponding element in v; [10].

Pareto ranking could lead, after a few generations, to a
population composed solely of non dominated solutions,
with an identical probability of being selected. At this
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stage, the selection of a new individual would become a
random process. However, in most problems, solutions
located at one extreme of the Pareto set may be very
different to solutions located at the other. It is generally
accepted that a combination of two such solutions is not
likely to give rise to a better solution [6, 11, 12]. To
differentiate individual solutions of similar rank, and
favour the combination of individuals that are more
likely to produce improved solutions use is made of the
so called progressive articulation of the objectives. This
can be implemented using a weighted sum of the various
objectives. For each solution defining 7 =r; +Ar;,
where Ar; is given by

Arj—ai(x,-i—)/fxi

i=1 max(v;)// i3

©

in which A; v; and max(v), i = l..n, j=l..m, are,
respectively, the objective weightings, the values of the
" obq_]']ective in the i solution and the maximum value of
the j/© objective in all m solutions. The scalar quantity
0 <a <1 is chosen to emphasise the relative
importance of the rank » and the weighted sum of the
objectives.

Ar can be used to investigate the entire Pareto optimal
set (when no a priori information is available) or to
focus the search on a particular region of the Pareto
optimal set. The values A, may vary as the search
progresses in a deterministic or in a heuristic manner by:
¢ Alternating the objectives randomly i.e. setting one
of the weightings associated with one objective to
unity whilst the other weightings are set to zero;

e Alternating the objectives sequentially in an orderly
manner;

* Combining the objective weightings randomly, such
that the weighted sum of the objectives evolves in a
random manner;

e Varying the objective weightings around a fixed set
of values.

Such an approach is used at the beginning of the search
to explore different regions of the solution space prior to
concentrating on the ‘best’, in some sense, region.
Selecting acceptable solutions from the Pareto
optimal set

Having determined the Pareto optimal set it is necessary
to choose the best compromised solution from all the
non-dominated solutions. Ultimately, the clinicians are
responsible for the final decision, therefore the aim of
the decision maker, which is used to select acceptable
solutions, is to present the clinician with a limited
number of solutions to choose from. Provided that all the
criteria set by the clinicians can be satisfied a single
solution may be selected by the decision maker. In most
cases, however, all the objectives cannot be achieved
simultaneously, therefore compromised solutions which
favour different objectives may have to be presented to
the clinician. The clinician may then make a decision
according to some specific clinical knowledge not taken
into account in the optimisation process. The most
common approaches for selecting suitable solutions
make use of:

o coefficients to weight the relative merits of the

objectives,



e measures to indicate the degree to which each of the
objectives is attained,
e set priorities to consider the objectives according to
their relative importance.
In order to illustrate the need to present a clinician with
more than one solution in cases where a compromise
solution has to be selected, consider a plan with two
OARs close to the PTA, such that it is not possible to
deliver a low dose to both OARs when the dose in the
PTA is within prescription. In this case, different
combinations of objective weightings may be selected to
favour the PTA and one of the OARs or to favour both
OARs and reduce the dose delivered to the PTA region.
These two solutions may then be presented to a clinician
who will use clinical knowledge which may not have
been considered in the optimisation process to select a
solution which is most appropriate to a particular
patient’s needs.

A disadvantage of objective weighting is that the
weights depend on the mathematical expression used to
calculate the objectives for the different regions, which
makes them unique to a particular optimisation software.
Clinicians are not usually consulted to assess a plan in
terms of weightings associated with various objectives,
but they may be more adept to handle objectives
expressed in terms of goals or percentages. For example,
considering the PTA region, it is possible to prescribe
that 100% of the cells within the PTA receive a dose
dpyy within £5% of that prescribed. However, it may be
advantageous to allow 1% of the PTA region to receive a
dose less than specified if the maximum dose received
by an OAR can be reduced by 10%.

The use of priorities can also be beneficial where the
clinician could specify that the dose in the PTA should
be within 5% of that prescribed. Then, provided that this
can be achieved a subsequent aim would be to reduce the
dose to some OAR, to a specific level, and finally, if
possible, minimise the extent of hot spots in the OHT.

Algorithmic representation

A general algorithmic representation of the MOGA used

in this work is given as follows:

1) Create an initial population by randomly generating
solutions and seeding the population with some good
solutions.

2) Calculate the value for each objective Cpra, Coars

Conr- . -
Deduce the modified rank 7 .

3)

4) Deduce the fitness values from 7 .

5) Select parents from the population according to their
fitness to produce offspring.

6) Combine each pair of parents together to produce a
pair of offspring or create a new offspring from a
single parent.

7) Evaluate the objective costs for the new solutions.

8) Deduce the modified rank 7 .

9) Deduce the fitness values from the value of 7 .

10)Delete members of the population to insert all the

non dominated solutions (delete all dominated
solutions provided that the number of individuals in
the population is not smaller than the original
population size, otherwise delete only the worse
individuals).

11)If the maximum number of iterations is reached or

the population has converged then: use the a

posteriori decision maker to select acceptable
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solutions from the Pareto optimal set, (otherwise go
back to step 5).

5. Optimisation of wedges

To illustrate the approach, consideration is given to a
typical computed tomography slice comprising three
regions of interest, namely the PTA, the OARs
(including the spine and the rectum) and the OHT
(including the two femoral heads as well as the other
structures not included in the PTA and OARs).

The MOGA is used to determine the Pareto optimal set
for three objectives, namely Cpry, Cpyur and Coyp
associated with the PTA, the OARs and the OHT
respectively. It is observed that for a given beam
orientation, most solutions offer similar acceptable cost
for Cpry. As a consequence, the selection of the best
compromise solution uses the other two objectives Cp
and Cpyr, see Figure 3. It is found that a decrease in the
number of objectives leads to a decrease in the number
of non dominated solutions, ie. previously non
dominated solutions are now dominated.

1 ——

4 .

E ) Pareto Optimal set

0.9l
o i for Coar and Conry
[ [
2 o8} w,
~ *
2 o
o 07 %

K .
D * +
2 / ++
= N
g 0.6 N
S
3 /
.5 — N
03405 06 07 0% 03 i

Normalised cost for OAR

Figure 3: Illustrating the selection of two candidate
solutions lying on the Pareto optimal set Coag and Cogr.

Two solutions were selected from the Pareto optimal set
of Figure 3. The first solution, represented by the point
marked ‘x’, for which the isodose plot is shown in
Figure 4, is chosen to produce a relatively low error in
the OARs, whilst keeping the error in the OHT at a
reasonable level. However, the isodose plot reveals that
although the sparing of the OAR is acceptable, the plan
is unbalanced, with the right side of patient (left side in
Figure 4) receiving a dose some 10% higher than the left
side.

Hot spot

Figure 4 Solution chosen for its relatively low error in
the rectum resulting in an unbalanced plan.



In order to compensate for this effect of creating a hot
spot, a new solution was chosen, indicated by the point
marked ‘0’ in Figure 3, with the corresponding isodose
plot, shown in Figure 5. This solution has an equivalent
normalised cost for both the OAR and OHT.

Figure 5 Isodose contour plot for a solution chosen to
deliver a low dose to the OHT resulting in the
equalisation of the dose given to the femoral heads.

It can be observed that the hot spot on the left side of the
plan, c.f. Figures 4 and 5, has been removed, at the
expense, however, of a higher dose delivered to the
OARs; with two thirds of the OARSs receiving a dose of
at least 30%. Such a dose level is, however, still
acceptable. Further, the dose homogeneity in the PTA
has been improved.

It is interesting to note that the use of a Pareto optimal
approach overcomes the difficulties reported in [4]
where the optimised plans were relatively likely to be
unbalanced with unacceptable hot spots. In particular
there is no need to re-start the optimisation algorithm
with a new set of objective weightings. Since all the
solutions are optimal, a more appropriate solution can be
determined by changing the preference of the decision
maker a posteriori. Alternatively, a graphical method
can be used to select a solution from the Pareto optimal
set, although the objectives have not been specifically
aimed at reducing or equalising hot spots. Another
advantage of the Pareto optimal formulation is that it
enables the degree by which the mathematical objectives
are correlated to be determined, thus leading to a
reduced number of objectives considered [6].

6. Conclusion

This paper has shown that a multi-objective genetic
algorithm with Pareto ranking can be used to advantage
when optimising traditional radiotherapy treatment
plans. The approach, which has been evaluated on a
realistic test case, is able to overcome problems
encountered by traditional approaches which combine all
the objectives into a single weighted sum.

A problem with the proposed approach, however, is the
need to evaluate a large number of candidate solutions,
which makes it a comparatively slow process and
impractical for current use within a radiotherapy clinic.
Whilst this is likely to be less of a problem in the future,
with computer power becoming more widely available,
alternative techniques are presently being pursued in an
attempt to overcome this immediate problem.
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By exploiting clements of similarity between types of
cancer, e.g. anatomical location and patient geometry,
together with an abundance of data, it is possible to
make use of an artificial neural network (ANN) to speed
up the search for an optimal solution. The ANN would
be trained using typical treatment plans which are
appropriate for a range of patients. The ability of an
ANN to quickly determine initial solutions relevant to a
particular patient would make treatment requiring
complex planning procedures a practical clinical reality.
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