

Solving Hierarchical Optimization Problems
Using MOEAs?

Christian Haubelt1, Sanaz Mostaghim2, Jürgen Teich1, and Ambrish Tyagi2

1 Department of Computer Science 12
Hardware-Software-Co-Design

University of Erlangen-Nuremberg
{christian.haubelt, teich}@cs.fau.de

2 Computer Engineering Laboratory (DATE)
Department of Electrical Engineering and Information Technology

University of Paderborn
{mostaghim, tyagi}@date.upb.de

In Evolutionary Multi-Criterion Optimization
by Carlos M. Fonseca, Peter J. Fleming, Eckart Zitzler, Kalyanmoy Deb, and Lothar Thiele (Eds.).

In Lecture Notes in Computer Science (LNCS), Volume 2632, c© Springer, Berlin, Heidelberg, 2003.

Abstract. In this paper, we propose an approach for solving hierarchi-
cal multi-objective optimization problems (MOPs). In realistic MOPs,
two main challenges have to be considered: (i) the complexity of the
search space and (ii) the non-monotonicity of the objective-space. Here,
we introduce a hierarchical problem description (chromosomes) to deal
with the complexity of the search space. Since Evolutionary Algorithms
have been proven to provide good solutions in non-monotonic objective-
spaces, we apply genetic operators also on the structure of hierarchical
chromosomes This novel approach decreases exploration time substan-
tially. The example of system synthesis is used as a case study to illustrate
the necessity and the benefits of hierarchical optimization.

1 Introduction

The increasing complexity of typical search spaces demands new strategies in
solving optimization problems. One possibility to overcome the large computa-
tion times is the hierarchical decomposition of the search as well as the objective
space. The decomposition of optimization problems was already mentioned in
[1] and formalized in [2]. While [1] only shows experimental results, Abraham
et al. [2] discuss a very special kind of search space which possesses certain
monotonicity properties that do not hold in SoC design.

Since Multi-Objective Evolutionary Algorithms (MOEAs) [3] provide good
results in non-monotonic optimization problems, we propose an extension of
MOEAs towards hierarchical chromosomes. By using hierarchical chromosomes,
we capture the knowledge about the search space decomposition. The concept of
hierarchical chromosomes is based on the idea of regulatory genes as described
in [4] where the activation and deactivation of genes is used to adapt to non-
stationary functions. In this paper, the structure of the chromosome itself affects

? This work was supported in part by the German Science Foundation (DFG), SPP
1040.

Solving Hierarchical Optimization Problems Using MOEAs 163

the fitness calculation, i.e., also the structure of the chromosomes is subject to the
optimization. Therefore, two new genetic operators are introduced: (i) composite
mutation and (ii) composite crossover.

In this paper, we consider the example of system synthesis as a case study
which includes binding and allocation problems to illustrate the necessity and
benefits of hierarchical optimization. When applying hierarchical optimization to
system synthesis, we have to consider two extensions: a) hierarchical problem de-
composition and b) hierarchical design space exploration. In previous approaches
such as [5], [6], etc., both the application specification and the architecture are
modeled non-hierarchically. Here, we introduce a hierarchical approach to model
embedded systems. This hierarchical structure could be coded directly in hierar-
chical chromosomes. We will show by experiment that for our particular problem
the computation time required for the optimization decreases substantially.

This paper is organized as follows: Section 2 introduces the problem of hierar-
chical optimization. Also first approaches to code these problems in hierarchical
chromosomes including the genetic composite operators are presented. After-
wards, we apply this novel approach to the task of system synthesis. The benefits
of hierarchical optimization in system synthesis are illustrated in Section 4.

2 Hierarchical Optimization Problems

This section describes the formalization of hierarchical optimization problems.
Starting from (non-hierarchical) multi-objective optimization problems, we in-
troduce the notion of hierarchical decision and hierarchical objective spaces.

2.1 Multi-Objective Optimization and Pareto-Optimality

First, we give a formal notation of multi-objective optimization problems.

Definition 1 (Multi-Objective Optimization Problem (MOP)). A multi-
objective optimization problem (MOP) is given by:

minimize o(x), subject to c(x) ≤ 0
where x = (x1, x2, . . . , xm) ∈ X is the decision vector and X is called the search
space. Furthermore, the constraints c(x) ≤ 0 determine the set of feasible solu-
tions, where c is k-dimensional, i.e., c(k) = (c1(x), c2(x), . . . , ck(x)).

The objective function o is n-dimensional, i.e., we optimize n objectives si-
multaneously. There are q constraints ci, i = 1, . . . , q. Only those decision vectors
x ∈ X that satisfy all constraints ci are in the set of feasible solutions, or for short
in the feasible set called Xf ⊆ X. The image of X is defined as Y = o(X) ⊂ Rn,
where the objective function o on the set X is given by o(X) = {o(x) | x ∈ X}.
Analogously, the objective space is denoted by Yf = o(Xf) = {o(x) | x ∈ Xf}.

Since we are dealing with multi-objective optimization problems, there is
generally not only one global optimum, but a set of so-called Pareto-points [7].
A Pareto-optimal solution xp is a decision vector which is not worse than any

164 Christian Haubelt et al.

x5,1 x5,2x2,4x2,3x2,2x2,1

x7,1 x7,2 x8,1 x8,2 x8,3

x1 x2 x3 x4 x5

x9x8x7x6

Fig. 1. Example of a hierarchical decision vector consisting of a non-hierarchical part
x1, x3, x4, x6, x9 and a hierarchical part x2, x5, x7, x8.

other decision vector x̃ ∈ X in all objectives. The set of all Pareto-optimal
solutions is called the Pareto-optimal set, or the Pareto-set Xp for short. An
approximation of the Pareto-set Xp will be termed quality set Xq subsequently.

2.2 Hierarchical Search Spaces and Hierarchical Objective Spaces

In the following, we assume that the search space has a hierarchical structure, i.e.,
each element xi of a decision vector x itself may be a vector (xi1, xi2, . . . , xiki).
In general, the decision vector x consists of a non-hierarchical and a hierarchical
part, i.e., x =

(
xn, xh

)
. Each element xh

j ∈ xh itself may be a decision vector
consisting of a non-hierarchical and a hierarchical part. Hence, this structure is
not limited to only a single level of hierarchy.

Example 1. Fig. 1 shows the example of a hierarchical decision vector x. The non-
hierarchical part xn of the decision vector is given by the elements x1, x3, x4, x6,
and x9. The hierarchical part xh of x consists of four elements x2, x5, x7, and x8.

By using hierarchical decision vectors, we must reconsider the objective func-
tions, too. On the top-level, the objective function is given by: o(x1, x2, . . . , x9).
Since we do not assume monotonicity for the objective functions, we must intro-
duce a decomposition operator ⊗ to construct the top-level objective function
from deeper levels of hierarchy, i.e., o(x1, x2, . . . , x9) = on(x1, x3, x4, x6, x9) ⊗
oh(x2, x3, x4, x6, x9), where on denotes the partial objective function for the non-
hierarchical part of the decision vector. oh denotes the partial objective func-
tion for the elements of the hierarchical part of the decision vector. In general,
o(x) = on(xn)⊗ oh(xh) where oh(xh) =

⊗
xh

i
o(xh

i).

Abraham et al. name three advantages of hierarchical decomposition [2]:

1. The size of each search space of a decision vector xh
i ∈ xh in the hierarchical

part xh of the decision vector is smaller than the top-level search space.
2. The evaluation effort for each decision vector xh

i ∈ xh of the hierarchical
part xh is low because these elements are less complex.

3. The number of top-level decision vectors to be evaluated is a small fraction of
the size of the original search space, when using a hierarchical search space.

The last advantage refers to the fact that a feasible decision vector must be
composed of feasible decision vectors of the elements in the subsystem. Thus,

Solving Hierarchical Optimization Problems Using MOEAs 165

10101

1 00 0

101001

1 1 00 0

011

1 0 0 0

0 0

101001

1 1 00 0

RepairingComposite
Mutation

(d)(b)

0101

1 1 01

0

10 01 1

1001 10

0101

1 1 01

0

1 1 00 0

101001

RepairingComposite
Mutation

(c) (e)

0101

1 0 0

0

1

1001 10

1 1 00 0

(a)

Fig. 2. Example of composite mutation in hierarchical chromosome.

we are able to restrict our search space dramatically. Unfortunately, we cannot
generally assume that a Pareto-optimal top-level decision vector is composed of
Pareto-optimal decision vectors of the elements in the hierarchical part. Abraham
et al. define necessary and sufficient conditions of the decomposition function of
the objectives which guarantee Pareto-optimality for the top-level decision vector
depending on the Pareto-optimality of elements in the hierarchical part of the
decision vector [2]. Pareto-optimal solutions of a top-level decision vector are
only composable of Pareto-optimal solutions of the decision vector xh

i ∈ xh iff
the decomposition function of each objective function is a monotonic function.

Although this observation is important and interesting, many optimization
goals unfortunately do not possess these monotonicity properties. In fact, they
depend on the decomposition operator ⊗.

2.3 Chromosome Structure for Hierarchical Decision Vectors

Due to the non-monotonicity property of the decomposition of the objective
function, heuristic techniques are preferable for the optimization of hierarchically
coded problems. Furthermore, Evolutionary Algorithms (EAs) seem to be good
at exploring selection and assignment problems. Since we are dealing with multi-
objective optimization problems, we propose a special chromosome structure
particular to our problem for Multi-Objective Evolutionary Algorithms.

In this paper, we focus on problems where the hierarchical part xh of the
decision vector corresponds to a selection problem, i.e., the selection of an el-
ement xh

i ∈ xh implies the selection of at least one subelement xh
i,j ∈ xh

i . For
example, consider Fig. 1. The selection of element x2 implies the selection of at
least one of the elements x2,1, x2,2, x2,3, or x2,4. Many problems like the selection
of scenarios supported by a network processor can be coded that way [8]. This
results in a number of network processors optimized for different scenarios.

The advantage of such a strategy should be clear. As in the example of the
network processors, we are not only interested in a single type of network proces-
sor. In fact, we would like to design a diversity of processors special to different

166 Christian Haubelt et al.

Composite
Crossover

10101

1 1 0 0

000 0 10

00 01 1

11

0

0 1

0 0 1

1

10 01 1

100 1 11

11

0

0 1

0 0 1

1

10

00 0 0 11

01 1

10101

1 1 0 0

00 1 1 10

1 1 00 0

(c)

(d)(b)

(a)

Fig. 3. Example of composite crossover applied to a hierarchical chromosome resulting
in one valid and one invalid decision vector.

packet streams in type and number. The knowledge about an optimal imple-
mentation of a simple network processor may help to design more sophisticated
types.

The novelty of this approach is that not only parameters are optimized but
also the structure of such a problem. Note, this differs from [4] where redun-
dant chromosomes are provided for adapting to non-stationary environments.
Thus, we need to define two new genetic operators regarding the structure of
the chromosomes, namely (i) composite mutation and (ii) composite crossover.

Composite Mutation The hierarchical nodes xh
i ∈ xh in a hierarchical chro-

mosome directly encode the use of associated elements xh
i,j ∈ xh

i of the decom-
position of the problem. The composite mutation of a hierarchical chromosome
changes a selection bit in a selection list LS from selected to deselected, or vice
versa. As a result, leaves of the chromosome are selected or deselected. Fig. 2
shows the two cases that may occur during composite mutation.

Here, we assume that at least one element xh
i ∈ xh has to be selected and if

an element xh
i is selected at least one associated subelement xh

i,j ∈ xh
i must be

selected, too. Fig. 2(a) shows one valid assignment to our decision vector.
In Fig. 2(b), we see the deselection of an element xh

i ∈ xh. Since no element
xh

i ∈ xh of the hierarchical part xh is selected, the assignment is invalid. Hence,
in Fig. 2(d) one of the hierarchical elements xh

i is selected. In the second case
(Fig. 2(c)), an element xh

i ∈ xh is selected leading to an invalid assignment
(no associated subelement is selected). Thus, we randomly choose one of the
associated subelements xh

i,j ∈ xh
i (Fig. 2(e)).

Composite Crossover The second operator is called composite crossover. An
example of how composite crossover works is shown in Fig. 3. Two individuals
(Fig. 3(a) and (b)) are cut at the same hierarchical node in the chromosome.
After that we interchange these two subvectors. This results in two new decision
vectors as depicted in Fig. 3(c) and (d). This operation again may invalidate one

Solving Hierarchical Optimization Problems Using MOEAs 167

p=50
c=50

SB

RISC2
p=400
c=800

CL

CL
p = 400

p = 350
FPGA1

FPGA2FPGA1

p=600

c=1000

FPGA2

p=700

c=500

p = 0 p=100 p = 200p=10 p = 0p=300p=10 p=100p=0

Scene

Network

RISC1
p=450
c=750

p=0
c=0

p=0
c=0

SB

ALDL FLCL 4 5CCC 3C 2C 1

Fig. 4. Specification graph for an MPEG4 coder.

or both assignments (as in Fig. 3(d)). We can repair this infeasibility by randomly
choosing one of the associated subelements of a new selected hierarchical element.

3 Case Study: Hierarchical Optimization in System
Synthesis

This section illustrates a way to code hierarchical optimization problems. As case
study, we use the example of system synthesis. Since Evolutionary Algorithms
have been proven to be a good optimization technique in system design [5],
we extend this approach by proposing a hierarchical chromosome structure, the
objective space decomposition, and the genetic composite operators.

3.1 Specification of Embedded Systems

Blickle et al. propose a graph-based approach for embedded system optimization
and synthesis [5]. We introduce this model as a starting point and derive our
enhanced hierarchical model subsequently based on this basic model.

The specification model [5] consists of two main components:

– A given functional specification that should be mapped onto a suitable archi-
tecture of hardware components as well as the class of possible architectures
are described each by means of a universal directed graph g(V,E).

– The user-defined mapping constraints Em between tasks and architecture
components are specified in a specification graph gs. Additional parameters
which are used for formulating the objective functions and further functional
constraints may be assigned to either vertices or edges of gs.

Example 2. The example used throughout this paper is an MPEG4 coder. The
problem graph is shown in the upper part of Fig. 4. We start with a given scene
(C1). This scene is decomposed into audio/visual objects (AVO) like images,

168 Christian Haubelt et al.

video, speech, etc. using the decomposition layer (DL). Each AVO is coded by
an appropriate coding algorithm (CL). In the next step (Access Unit Layer.
AL), the data are provided with time stamps, data type, etc. The FlexMux
Layer (Flexible Multiplexer, FL) allows to group streams with the same quality
of service requirements and sends the data to the network (C5). Between two
data flow dependent operations, we insert an additional vertex in order to model
the required communication.

The processes of the problem graph are mapped onto a target architecture
shown in Fig. 4 (lower part), consisting of two RISC processors, two field pro-
grammable gate arrays (FPGAs), and a single shared bus (SB). Additionally,
the processor RISC1 is equipped with two special ports.

The mapping edges (dashed edges) relate the vertices of the problem graph
to vertices of the architecture graph. The edges represent user-defined mapping
constraints in the form of a relation: “can be implemented by”. For the purpose of
better visibility, additional mapping edges are depicted in the lower right corner
of Fig. 4. The mapping edges are annotated with additional power consumptions
which arise when a mapping edge is used in the implementation. Furthermore, all
resources in Fig. 4 are annotated with allocation cost and power consumptions.
These values have to be taken into account if the corresponding resource is used
in an implementation of the problem.

3.2 Implementation and the Task of System Synthesis

An implementation, being the result of a system synthesis, consists of two parts:

1. the allocation α that indicates which elements of the problem and architec-
ture graph are used in the implementation and

2. the binding β, i.e., the set of mapping edges which define the binding of
vertices in the problem graph to components of the architecture graph.

The term implementation will be used in the same sense as formally defined in
[5]. It is useful to determine the set of feasible allocations and feasible bindings:
Given a specification graph gs and an allocation α, a feasible binding is a binding
β that satisfies the following requirements:

1. Each mapping edge e ∈ β starts and ends at an allocated vertex.
2. For each problem graph vertex being part of the allocation, exactly one

outgoing mapping edge is part of the binding β.
3. For each allocated problem graph edge e ∈ (vi, vj):

– either both operations vi and vj are mapped onto the same vertex
– or they are mapped on adjacent resources connected by an allocated edge

to establish the required communication.

With these definitions, we can define the feasibility of an allocation: A feasible
allocation is an allocation α that allows at least one feasible binding β.

We define an implementation by means of a feasible allocation and binding.

Solving Hierarchical Optimization Problems Using MOEAs 169

Definition 2 (Implementation). Given a specification graph gs, a (valid or
feasible) implementation is a pair (α, β) where α is a feasible allocation and β
is a corresponding feasible binding.

Example 3. The dashed mapping edges shown in Fig. 4 indicate a binding for
all processes: β = {(C1,Scene), (DL,RISC1), (C2,SB), (CL,RISC2), (C3,SB),
(AL,RISC1), (C4,RISC1), (FL,RISC1), (C5,Network)}. The allocation of ver-
tices in the architecture graph is: α = {SB,RISC1,RISC2,Network,Scene}.
Given this allocation and binding, one can see that our implementation is indeed
feasible, i.e., α and β are feasible.

With the model introduced previously, the task of system synthesis can be
formulated as a multi-objective optimization problem.

Definition 3 (System Synthesis). The task of system synthesis is the fol-
lowing multi-objective optimization problem:

minimize o(α, β),
subject to:

α is a feasible allocation,
β is a feasible binding,
ci(α, β) ≤ 0, ∀i ∈ {1, . . . , q}.

The constraints on α and β define the set of valid implementations. Additionally,
there are functions ci, i = 1, . . . , q, that determine the set of feasible solutions.
All possible allocations α and bindings β span the design space X.

The task of system synthesis defined in Definition 3 is similar to the op-
timization problem defined in Definition 1 where α and β correspond to the
decision vector x. In the following, we show how to solve this (non-hierarchical)
optimization by using Evolutionary Algorithms as described in [5].

3.3 Chromosome Structure for System Synthesis

We start with the chromosome structure of an EA for non-hierarchical specifica-
tion graphs as described in [5]: Each individual consists of two components, an
allocation and a binding, as defined in the previous section. The mapping task
as described in [5] can be divided in three steps:

1. The allocation of resources is decoded from the individual and repaired with
a simple heuristic,

2. The binding is performed, and
3. The allocation is updated in order to eliminate unnecessary resources and

all necessary edges in the architecture graph are added to the allocation.

One iteration of this loop results in a feasible allocation and binding of the
vertices and edges of the problem graph gp to the vertices and edges of the
architecture graph ga. If no feasible binding could be found, the whole decoding
of the individual is aborted.

170 Christian Haubelt et al.

α = {SB, FPGA2, Network}

Repairing
100 101 0

SB RISC1 RISC2 FPGA1 FPGA2 Scene Netw.
alloc

Decode

Binding

RISC1 RISC2 Netw. SB FPGA2 Scene FPGA1LR

α = {SB, RISC1, FPGA2, Scene, Network}

Allocation

Individual

DL CL AL FLL O C 1 C 2 C 3 C 4 C 5

Binding

L B (CL) RISC2 FPGA1 FPGA2

L B Scene

(DL)L B RISC1

(C)L B 2 SB

(C 1)

(C)L B 3 SB

L B (AL) RISC1

L B RISC1

L B (FL) RISC1

(CL B Network

(C)4

)5

1= {(C , Scene), (DL, RISC1), (C , SB),2

(CL, FPGA2), (C3 , SB), (AL, RISC1),

(C , Network)}54 , RISC1), (FL, RISC1), (C

β

Fig. 5. An example of the coding of an allocation.

The allocation of resources is directly encoded as bit string in the chromo-
some. This simple coding might result in many infeasible allocations. A simple
repair heuristic only adds new resources to infeasible allocation until each pro-
cess could be bound to at least one resource [5]. The order in which additional
resources are added is automatically adapted by a repair allocation priority list
LR. This list also undergoes genetic operators.

The problem of coding the binding lies in the strong inter-dependence of the
binding and the allocation. As crossover or mutation might change the allocation,
a directly encoded binding could be meaningless for a different allocation. Hence,
an allocation independent coding of the binding is used: A binding order list LO

determines the next problem graph vertex to be bound. For each problem graph
vertex, a priority list LB containing all adjacent mapping edges is coded. The
first edge in LB that gives a feasible binding is included in the binding. Note
that it is possible that no feasible binding is specified by the individual. In this
case, β is the empty set, and the individual will be given a penalty value as its
fitness value.

Finally, resources that are not used will be removed from the allocation.
Furthermore, all edges e ∈ Ea in the architecture graph ga are added to the
allocation that are necessary to obtain a feasible binding.

3.4 Hierarchical Modeling

Many applications are composed of alternative functions and algorithms. For ex-
ample, the coding layer of the MPEG4 coder could be refined by several different
coding schemes. We can apply the same refinement also to the architecture graph
in order to model different IP cores placed on an FPGA, etc. Thus, hierarchy

Solving Hierarchical Optimization Problems Using MOEAs 171

CL

SyntheticObjects Image&VideoSynthesizedSoundNaturalSound

dup

CM

CELPCoder

LPCanalyze

LPCcoeff

IN DIFF

LF

DCT Q

Q
−1

REC DCT
−1

SF

BM
RF

MTC VM

SC

MPEG4VideoCoder

AudioCoder VisualCoder

Fig. 6. Refinements of the coding layer of the MPEG4 coder shown in Fig. 4.

is used to model the designer’s knowledge about possible refinements and the
decomposition of the system.

To model these refinements, we propose a hierarchical extension to the pre-
viously introduced model of a specification graph. This hierarchical model [9]
is based on hierarchical graphs. Each vertex v in the architecture or problem
graph can be refined by a set of subgraphs associated with v. If a subset of these
subgraphs is selected as a refinement of a vertex v, we are able to flatten our
model, i.e., to replace the vertex v by the selected subgraphs.

Example 4. Fig. 6 shows possible refinements of the coding layer of the MPEG4
coder shown in Fig. 4. There are two types of codings: audio and visual cod-
ing. The audio coder subgraph consists only of a single vertex and no edges. In
the next level of the hierarchy, for example we can refine the audio coder vac

by different subgraphs (NaturalSound,SynthesizedSound, . . .). One of the cod-
ing schemes for natural sounds is the CELP algorithm (Code Excited Linear
Prediction) depicted in the upper left corner of Fig. 6.

Thus, a hierarchical specification graph consists of three parts:

1. a hierarchical problem graph gp(Vp, Ep)
2. a hierarchical architecture graph ga(Va, Ea), and
3. a set of mapping edges Em map leaf problem graph vertices to leaf architec-

ture graph vertices.

3.5 Hierarchical Chromosomes

In Section 3.3, an Evolutionary Algorithm coding for allocations and bindings
of non-hierarchical specification graphs was revised. Here, we want to present

172 Christian Haubelt et al.

EA-based technique for hierarchical graphs. Therefore, we consider an EA that
exploits the hierarchical structure of the specification by encoding the structure
in the chromosome itself. In order to extend the presented approaches, we have
to capture the hierarchical structure of the specification in our chromosomes
first. Fig. 7 gives an example for such a chromosome.

The depicted chromosome encodes an implementation of the problem graph
first introduced in Fig. 6. The underlying architecture graph is the one shown in
Fig. 4. The structure of the chromosome in Fig. 7 resembles the structure of the
problem graph given in Fig. 6. The leaves of the chromosome are nearly identical
to the non-hierarchical chromosome structure described in Section 3.3 except for
the lack of the allocation and allocation repairing list. These have moved to the
top-level node of the chromosome (see Fig. 7). Note that the allocation and
allocation repairing list form the non-hierarchical part (xn) of the chromosome.

0 1 1

AudioCoder

0

Synth.Object

1 0

Image&Video

11 0

VisualCoder

L S L S

L S L S

0 1

NaturalSound

0

Synth.Sound

L SL S

Binding

coeff analyze dupCML O

FPGA1RISC1(coeff)L B

Scene(dup)L B

Network(CM)L B

RISC2RISC1(analyze)L B

CELPCoder

REC Q DCT RF INL O

Binding

Scene(IN)L B

Network(RF)L B

RISC1 RISC2(Q)L B

RISC1 FPGA1(REC)L B

MPEG4VideoCoder

11 Top LevelSL

Allocation

FPGA1RISC2RISC1 Scene NetworkFPGA2L R SB

alloc 01 1 0 1 11

Fig. 7. Hierarchical chromosome structure for the problem graph given in Fig. 6 and
the architecture graph given in Fig. 4.

Each hierarchical node in the chromosome resembles a subgraph of the un-
derlying problem graph. For each hierarchical vertex in the corresponding sub-
graph, the hierarchical node contains a selection list LS. Each entry in this list

Solving Hierarchical Optimization Problems Using MOEAs 173

describes the use of a subgraph in the implementation. Thus, the selection list
LS corresponds to the hierarchical part (xh) of the chromosome. If we encounter
a subgraph that does not include hierarchical vertices, we encode it by using a
non-hierarchical chromosome as described above. The binding order list and the
binding priority list form the non-hierarchical part (xn) at this level of hierarchy.

Despite the modified internal structure, our hierarchical chromosome resem-
bles exactly the non-hierarchical chromosome by still encoding an allocation and
a binding. The main difference lies in the variable number of problem graph ver-
tices allocated and bound in any given individual. We therefore still can use the
same evolutionary operations, namely mutation and crossover. However, we pro-
pose two additional genetic operators making use of the hierarchical structure
of the chromosome which have been introduced in Section 2.3.

In summary, composite mutation is used in order to explore the design space
of different allocations of leaf graphs of the problem graph (flexibility). The sec-
ond genetic operator, composite crossover, is used for the same purpose, allowing
larger changes as when using the composite mutation operator only.

4 Experimental Results

This section presents first results obtained by using our new hierarchical chro-
mosome structure with the multi-objective evolutionary algorithm SPEA2 [10].

As example, we use the specification of the MPEG4 coder layer. Due to space
limitations, we omit a detailed description. A detailed description of this case
study including possible mappings of all modules as well as the results can be
found in [9]. The specification consists of six leaf graphs for the coding layer,
each representing a different coding algorithm. Our goal is to implement at least
one of these algorithms while minimizing cost, power, and maximizing flexibility.
The underlying architecture consists of 15 resources. The search space for this
example consists of more than 2200 points.

4.1 Objective Space

Here, we introduce the three most important objectives during system synthesis
namely the cost, power consumption, and flexibility of an implementation.

Implementation Cost The implementation cost cost(i) for a given implemen-
tation i = (α, β) is given by the sum of cost of all allocated resources v ∈ α. Note,
due to the resource sharing, the decomposition function of the implementation
cost is a non-monotonic function.

Power Consumption Our second objective, the overall power consumption is
the sum of the power consumptions of all allocated resources and the additional
power consumptions originating by binding processes to resources.

Example 5. The implementation described in Example 3 possesses the overall
power consumption power(i) = 1620.

174 Christian Haubelt et al.

Flexibility The third objective, the reciprocal of a system’s flexibility, captures
the functional richness an implementation possesses. Without loss of generality,
we only treat system specifications throughout this paper where the maximal
flexibility equals the number of leaf graphs. For a comprehensive illustration of
a system’s flexibility, see [11].

4.2 Parameters of the Evolutionary Algorithm

All results were obtained by using the SPEA2 algorithm [10] with the follow-
ing parameter: In our experiments, we have chosen a population size of 300
and an archive size of 70. The specific encoding of an individual makes special
crossover and mutation schemes necessary. In particular, for the allocation α
uniform crossover is used, that randomly swaps a bit between two parents with
a probability of 0.25. For the lists (repair allocation priority lists LR, binding
order lists LO and the binding priority lists LB(v)), order based crossover (also
names position-based crossover) is applied (see [12]).

For the composite crossover in hierarchical chromosomes, single-point crossover
with a probability of 0.25 is chosen. Composite mutation is done on the selection
list of each node of the hierarchical chromosome, and by swapping one element
of the selection list with a probability of 0.2.

4.3 Exploration Results

As due to complexity reasons, we do not know the true Pareto-set, we compare
the quality sets obtained by each approach against the quality set obtained by
combining all these results and taking the Pareto-set of this union of optimal
points. This set consists of 38 Pareto-optimal design points. A good measure of
comparing two quality sets A and B is then to compute the so-called coverage
C(A,B) as defined in [13], where C(A,B) = |{b∈B|∃a∈A:a�b}|

|B| .

Hierarchical Chromosomes By using hierarchical chromosomes, the cover-
age of the Pareto-set increases fast. After t = 1100 generations we achieved a
coverage of C(o(Xhc

q,t), o(Xp)) ≈ 0.83% (average over the results from 5 different
runs). As Fig. 8 shows, the hierarchical EA produces only a few Pareto-optimal
points at the beginning. This is due to the fact, that the EA is also responsible
for the exploration of allocations in the problem graph. The hierarchical EA
could reach a full coverage of the Pareto-set when run sufficiently long.

Non-Hierarchical EAs Here, we compare our new approach against a non-
hierarchical approach. In this non-hierarchical exploration algorithm, we explore
the design spaces individually for all 2k−1 possible combinations where k is the
total number of leaf subgraphs in the problem graph. Therefore, we perform six
different exploration runs for each individual leaf subgraph,

(
6
2

)
= 15 runs for

combinations that select exactly two leaf subgraphs, etc. All in all, there are

Solving Hierarchical Optimization Problems Using MOEAs 175

C(o(Xq, t), o(X
fm

p))

C(o(Xq, t), o(Xp))
hc

100 200 300 400 500 600 700 800 900 1000 1100 1200

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

t

C

Fig. 8. Coverage of the Pareto-optimal implementations found after a given number of
generations compared to the Pareto-set.

26−1 = 63 combinations of leaf subgraphs, where at least one leaf subgraph has
to be chosen. Note that this method is in general not a feasible way to go as the
number of EA runs grows exponentially with the number of leaf graphs.

For each of these 63 cases we apply the EA for a certain number of genera-
tions for each combination k to obtain the quality set of the different leaf graph
selections. Since we use the same number of generations for each combination,
we simulate the case where each combination is selected with the same proba-
bility. With the given archives, we are able to construct the quality set of the
top-level design, denoted by X fm

q,t, by simply taking the union of all archives of
the combinations and calculating the Pareto-optimal points in the union. Fig. 8
shows the result compared with the Pareto-set of our particular problem.

For our particular problem, we see that the hierarchical EAs is superior to
the non-hierarchical exploration. At the beginning, the non-hierarchical EA con-
structs more Pareto-optimal solutions, since the hierarchical EA has to compose
problem graphs with Pareto-optimal implementations first. By using the non-
hierarchical EA, the maximum coverage of the Pareto-front is C(X fm

q,1200, Xp) ≈
52%. However, as in the case of the hierarchical chromosomes, it should be pos-
sible to find all Pareto-optimal solutions by using this non-hierarchical EA.

5 Conclusions

In this paper, we propose an approach for solving hierarchical multi-objective
optimization problems. Two challenges have to be considered: (i) the complex-
ity of the search space and (ii) the non-monotonicity of the objective-space. We
propose hierarchical chromosomes in order to deal with the complexity of these
search spaces. Furthermore, two new genetic operators, namely composite muta-
tion and composite crossover, have been introduced in order to not only optimize
parameters but also the structure of the chromosome. We applied our novel ap-
proach to the problem of synthesis of embedded systems. The results to our

176 Christian Haubelt et al.

particular problem have shown the benefits of this new idea of hierarchical op-
timization by finding solutions with higher convergence than a non-hierarchical
method in less number of generations.

In the future, we would like to show the relevance of this approach on other
more general optimization problems.

References

1. Josephson, J.R., Chandrasekaran, B., Carroll, M., Iyer, N., Wasacz, B., Rizzoni,
G., Li, Q., Erb, D.A.: An Architecture for Exploring Large Design Spaces. In: Proc.
of the Nat. Conference of AI (AAAI-98), Madison, Wisconsin (1998) 143–150

2. Abraham, S.G., Rau, B.R., Schreiber, R.: Fast Design Space Exploration Through
Validity and Quality Filtering of Subsystem Designs. Technical report, Hewlett
Packard, Compiler and Architecture Research, HP Laboratories Palo Alto (2000)

3. Rudolph, G., Agapie, A.: Convergence Properties of Some Multi-Objective Evolu-
tionary Algorithms. In: Proc. of the 2000 Congress on Evolutionary Computation,
Piscataway, NJ, IEEE Service Center (2000) 1010–1016

4. Dasgupta, D., McGregor, D.R.: Nonstationary Function Optimization using the
Structured Genetic Algorithm. In Männer, R., Manderick, B., eds.: Proceedings
of Parallel Problem Solving from Nature (PPSN 2), Brussels, Belgium, Elsevier
Science (1992) 145–154

5. Blickle, T., Teich, J., Thiele, L.: System-Level Synthesis Using Evolutionary Algo-
rithms. In Gupta, R., ed.: Design Automation for Embedded Systems. 3. Kluwer
Academic Publishers, Boston (1998) 23–62

6. Dick, R., Jha, N.: MOGAC: A Multiobjective Genetic Algorithm for Hardware-
Software Cosynthesis of Distributed Embedded Systems. In: IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 17(10). (1998) 920–935

7. Pareto, V.: Cours d’Économie Politique. Volume 1. F. Rouge & Cie., Lausanne,
Switzerland (1896)

8. Thiele, L., Chakraborty, S., Gries, M., Künzli, S.: A Framework for Evaluating
Design Tradeoffs in Packet Processing Architectures. In: Proceedings of the 39th
Design Automation Conference (DAC 2002). (2002) 880–885

9. Teich, J., Haubelt, C., Mostaghim, S., Slomka, F., Tyagi, A.: Techniques for Hi-
erarchical Design Space Exploration and their Application on System Synthesis.
Technical Report 1/2002, Institute Date, Department of EE and IT, University of
Paderborn, Paderborn, Germany (2002)

10. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the Strength Pareto
Evolutionary Algorithm. Technical report, Swiss Federal Institute of Technology
(ETH) Zurich (2001) TIK-Report 103. Department of Electrical Engineering.

11. Haubelt, C., Teich, J., Richter, K., Ernst, R.: Flexibility/Cost-Tradeoffs in
Platform-Based Design. In Deprettere, E., Teich, J., Vassiliadis, S., eds.: Em-
bedded Processor Design Challenges. Volume 2268 of Lecture Notes in Computer
Science (LNCS)., Berlin, Heidelberg, Springer (2002) 38–56

12. Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. John
Wiley & Sons (2001)

13. Zitzler, E.: Evolutionary Algorithms for Multiobjective Optimization: Methods
and Applications. PhD thesis, Department of Electrical Engineering, Swiss Federal
Institute of Technology (ETH) Zurich (1999)

