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Abstract. Nearly all Multi-Objective Evolutionary Algorithms (MOEA)
rely on random generation of initial population. In large and complex
search spaces, this random method often leads to an initial population
composed of infeasible solutions only. Hence, the task of a MOEA is not
only to converge towards the Pareto-optimal front but also to guide the
search towards the feasible region. This paper proposes the incorpora-
tion of a novel method for constructing initial populations into existing
MOEAs based on so-called Pareto-Front-Arithmetics (PFA). We will pro-
vide experimental results from the field of embedded system synthesis
that show the effectiveness of our proposed methodology.

1 Introduction and Related Work

Many optimization techniques have been proposed in the literature to solve
global optimization problems [1]. A special class of stochastic optimization meth-
ods that can be applied to Multi-objective Optimization (MOP) problems is
called Multi-Objective Evolutionary Algorithms (MOEA) [2]. MOEAs are itera-
tively improving optimization techniques, i.e., starting from a set of initial so-
lutions, the so-called initial population, a MOEA tries to improve this set of
solutions. Due to complexity reasons, nearly all MOEAs use a simple random
sampling from search space to construct the initial population. In the presence
of search spaces containing only a few feasible solutions, these random sampling
methods are expected to produce only infeasible solutions. Hence, it is the task
of the MOEA to guide the search not only towards the Pareto-optimal front but
also towards the feasible region. To find the feasible region can be as complicated
as improving a feasible solution to find the Pareto-optimal front.

This paper proposes the incorporation of constructive methods into exist-
ing MOEAs to create the initial set of solutions. Therefore, a novel approach
called Pareto-Front-Arithmetics (PFA) is proposed which allows a fast approx-
imation of the Pareto-optimal front [3]. Although this method is expected to
generate infeasible and suboptimal solutions, we will show by experiment that
this approach is indeed useful when applied to the task of initial population
construction. The key idea is as follows: First the MOP is separated into several



subproblems, these subproblems are optimized independently using any stan-
dard optimization strategy. Afterwards, the results of the suboptimizations are
combined in the fast PFA step. The obtained non-dominated solutions are used
as initial solutions to the overall optimization problem. An advantage of the
proposed methodology is that this technique can be integrated into any existing
MOEA.

In [4], Gandibleux et al. compare population-based optimization runs which
use different seeding solutions. Their basic idea is, that some solutions can be
computed efficiently by constructive of heuristic methods. Their idea is is based
on the fact that solutions of each combinatorial optimization problem are com-
posed of so-called supported efficient solutions, i.e., solutions which can be com-
puted by a weighted sum approach suggesting a convex Pareto front, and so-
called non-supported efficient solutions. In their test cases, Gandibleux et al. use
either constructed single-objective solutions, the supported efficient solutions, or
an approximation of the supported efficient solutions for seeding the population-
based optimization strategy. The same authors present in [5] a multi-objective
optimization approach that incorporates knowledge of supported efficient solu-
tions in the crossover operator. In their experiments it can be seen that using
this information during crossover improves the convergence of the optimization
of their particular problem enormously. Hence, the motivation is very similar to
the one presented in this paper.

However, the proposed PFA methodology is more comparable to subdivision
techniques. In subdivision approaches, the optimization complexity is reduced by
separating the MOP into several subproblems. By solving these subproblems, the
solutions to the original problem may be found. These techniques have some lim-
itations regarding the optimization problem [6-8]. This will be discussed in detail
in Section 3. However, these methods are proposed as stand alone approaches,
whereas our idea is the use of subdivision techniques for the initialization.

The rest of the paper is organized as follows: Section 2 provides the neces-
sary mathematical background and the problem formulation to this paper. In
Section 3, a method called Pareto-Front-Arithmetics, for initial population con-
struction is discussed in detail. Experimental results showing the effectiveness
of our approach are presented in Section 4. In all test cases, the method using
Pareto-Front-Arithmetics on average outperforms the random-based traditional
method. Finally, Section 5 concludes the paper.

2 MOPs and MOEAs

This section will provide the formal background and the problem description this
paper is dedicated to. We will start with a formal notation of multi-objective
optimization problems.

Definition 1 (Multi-Objective Optimization Problem). A multi-objective
optimization problem (MOP) is given by:

minimize f(z),

subject to ¢(z) <0



where © = (21, T2, ...,Tm) € X is the decision vector and X is called the deci-
sion space. Furthermore, the constraints ¢(x) < 0 determine the set of feasible
solutions, where ¢ is k-dimensional, i.e., c(x) = (c1(x), c2(x), - . -, cx(x)).

The objective function f is n-dimensional, i.e., n objectives are optimized
simultaneously. Only those decision vectors © € X that satisfy all constraints ¢;
are in the set of feasible solutions, or for short in the feasible set called X¢ C X.
The objective space Y is the image of X under f and is defined as Y = f(X) C
R™, where the objective function f on the set X is given by f(X) = {f(z) |
z € X}. Analogously, the feasible region of the objective space is denoted by
¥i = F(X1) = {f(@) | = € X},

Without loss of generality, only minimization problems are considered. In
contrast to single-objective optimization problems, a MOP may have not just
one, but many optimal solutions. Due to the many, and often competing, objec-
tives in a MOP, there are several tradeoff solutions which are optimal in a sense
that there is no solution better in all objectives simultaneously. These optimal
solutions are called Pareto-optimal solutions.

Definition 2 (Pareto dominance). For any two decision vectors a and b,

a > b (a dominates b) iff f(a) < f(b) A f(a) # f(b)
a > b (a weakly dominates b) iff f(a) < f(b)
b

a ~ b (a is incomparable to b) iff f(a) £ f(b) A f(a) Z f(b).

where the relations o € {=,<,<,>,>} are defined as: f(a) o f(b) iff Vj =
1,...,n: fi(a)o f;(b).

In multi-objective optimization problems, there is generally not only one global
optimum, but a set of so-called Pareto-optimal solutions. A Pareto-optimal so-
lution z,, is a decision vector which is not worse than any other decision vector
Z € X in all objectives. The set of all Pareto-optimal solutions is called the
Pareto-optimal set, or the Pareto set X, for short.

Definition 3 (Pareto optimality). A decision vector x € X; is said to be
non-dominated regarding o set A C Xy iff

aec A:as 2.

A decision vector x is said to be Pareto-optimal iff x is non-dominated regarding
Xi\{z}. The Pareto-optimal front s given by Y, = f(Xp).

An approximation of the Pareto-set X}, will be termed approzimation set X,. All
elements in X, are incomparable to each other. In order to approximately solve a
MOP, Multi-Objective Evolutionary Algorithms (MOEAs) are particularly well
suited. This is because (i) they improve a set of solutions, (ii) they do not
explicitly assume any properties of the objective functions, and (iii) they work
well in large and non-convex search spaces [9].

Alg. 1 outlines a generic optimization strategy as proposed by nearly all
MOEA applications. In a first step, the population P of solutions is initialized.



Alg. 1 Optimization procedure

OPTIMIZE
IN: MOP multi-objective optimization problem
OUT: P’ archive containing best solutions
BEGIN
t<0
P, « initialize(MOP)
P/ <update(P;)
WHILE (lterminate(P;, ¢)) DO
t=t+1
P, +generate(P;_1, Pi_;)
P/ «<update(P:, P{_;)
ENDWHILE
RETURN P,
END

This is usually done using some random sampling from search space. Next, the
archive P’ is updated. Then, in a loop, new solutions are constructed from the
solutions in the population P and the archive P’, until some termination criterion
is fulfilled.

Using a random sampling method for the initial population often results in
many infeasible solutions. Alg. 2 shows an improved version of the algorithm
as proposed in this paper. Firstly, the multi-objective optimization problem
MOP is separated into ! disjunctive subproblems {MOP,, MOP,, ..., MOP;}.
Although not in the scope of this paper, this separation can be simply done by
partitioning the decision space or by any other and more sophisticated technique.
Secondly, a novel method, called Pareto-Front-Arithmetics (PFA) [3], constructs
the initial population. Hopefully, this initial population contains better solutions
to the overall MOP than a random generated initial population. Finally, the op-
timization is performed as already outlined in Alg. 1.

Of course, there are several limitations to this approach as already discussed
in literature (cf. [10]), but as will be shown by experiments in this paper, a
constructive approach can outperform the random-based approaches in many
practical problems. Next, the proposed construction of the initial population
and its limitations will be discussed in detail.

3 Pareto-Front-Arithmetics

An interesting approach of reducing the complexity in solving MOPs was pro-
posed by Abraham et al. [7] where feasibility filters and optimality filters were
used to find the Pareto-optimal front. After separating the multi-objective op-
timization problem MOP in subproblems @(MOP) = {MOP,,...,MOP}, in
a first step, the partial decision spaces X; corresponding to the subproblems
MOP; are filtered regarding feasibility and optimality. Afterwards in a second
step, the remaining solutions are combined to form a new decision space at the



Alg. 2 Improved optimization procedure

OPTIMIZE
IN: MOP multi-objective optimization problem
OUT: P’ archive containing best solutions
BEGIN
t<0
// Partition MOP into I subproblems
O(MOP) = {MOP,, MOP,,..., MOP;}
// Use Pareto-Front-Arithmetics to construct initial population
P, + pfa(@(MOP))
P/ «<update(P,;)
WHILE ('terminate(P,t)) DO
t=t+1
P, +generate(P;_1, Pi_;)
P/ «<—update(P;, P{_;)
ENDWHILE
RETURN P
END

next level of hierarchy. The resultant decision space is again filtered. A global
feasibility test is needed since not all constraints can be separated and shifted to
lower levels of hierarchy. Abraham et al. [7] proved that they can construct the
true Pareto-optimal set if the decomposition of the design space is monotonic,
i.e., the MOP is separable.

In this section, an approach called Pareto-Front-Arithmetics (PFA) will be
proposed that is somehow similar to the approach proposed by Abraham et
al. but does not assume any monotonicity property of the objective function.
PFA will be used later on for the construction of the initial population of a
MOEA. For the PFA method, the MOP is decomposed into [ subproblems
O(MOP) = {MOP,,MOP,,...,MOP,} [3]. Next, for each partial optimiza-
tion problem MOP; the optimization is performed. This can be done by using
a MOEA as outlined in Alg. 1, i.e., a MOEA using randomly generated initial
population. The results are combined in a special combination step, the PFA.
This is outlined in Figure 1.

The inputs to Pareto-Front-Arithmetics are the approximation sets X,
resulting from the individual optimization of the partial problems MOP; €
O(MOP) which are filtered regarding local feasibility (f) and Pareto optimality
(P). These approximation sets are combined at higher levels of abstraction ac-
cording to the structure of the overall MOP. This combination step is discussed
in detail below. The combined set X' is again filtered regarding Pareto optimal-
ity and feasibility leading to an approximation set X, of the overall MOP. Of
course, this approximation set may contain infeasible and suboptimal solutions.

The motivation for Pareto-Front-Arithmetics is the same as given by Abra-
ham et al. who name three advantages of hierarchical decomposition [7]:
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Fig. 1. Concept of Pareto-Front-Arithmetics. In a first step, the approximation sets
of the subproblems named X, X,...,X; are combined at a higher level of hierarchy
to X’. In a second step, these results are filtered regarding Pareto optimality and
feasibility leading to an approximation set X,.

X

1. The size of each subproblem’s decision space is smaller than the top-level
decision space, i.e.,

Vmor.eomop) : | X(MOP;)| <|X(MOP)|.

2. The evaluation effort for each subproblem MOP; is low because of the
smaller complexity of the subproblem, i.e., the evaluation of the objective
functions f(x) which can be substantial in practical problems is reduced.

3. The number of top-level solutions to be evaluated is a small fraction of the
size of the original decision space.

[ X:(MOP)| < II  1xcmoPy).
MOP;€©(MOP)

The last and most important advantage states that a feasible solution at the
top-level must be composed of feasible partial solutions. Thus, the search space
can be reduced dramatically.

Abraham et al. define necessary and sufficient conditions of the decom-
position function of the objectives which guarantee Pareto optimality for the
top-level solution depending on the Pareto optimality of solutions of the sub-
problems [7]. Pareto-optimal solutions of a top-level MOP are composable of
Pareto-optimal solutions of the partial MOPs iff the composition function of
each objective function is a monotonic function, i.e., the top-level MOP is sep-
arable. Although this observation is important and interesting, many practical
objective functions unfortunately do not possess these monotonicity properties.

Despite these results, we will use PFA also in non-separable problems to con-
struct an initial population to a MOEA optimization run. The key idea of PFA
is to do the necessary combinations in the objective space only. This substan-
tially reduces the computation time. Moreover, optimality filtering is performed



as soon as possible in order to restrict the search space. From the previous dis-
cussions, it should be obvious that these combinations may lead to suboptimal
optimization results. This is due to the non-monotonic property of the decom-
position operator for many objective functions. Especially, in the application of
the technique to design space exploration of embedded systems, as used in this
paper as case study later on, all properties are non-monotonically decompos-
able. On the other hand, the combined results may be infeasible as well. That
results from the omitted feasibility check at deeper levels of hierarchy. Of course,
each partial solution is tested for feasibility, but only independent from the top-
level problem, i.e., it cannot be guaranteed that a feasible partial solution may
contribute to a feasible overall solution. Nevertheless, as will be shown by ex-
periments later on, the PFA method may contribute to a fast convergence of the
top-level problem by using this method for construction of an initial population.
But first, the operations performed by the box named PFA in Figure 1 will be
discussed.
In general, a PFA operation can be defined as an n-dimensional function:

f=h(y1,y2,...,u), where y; € Y; o, with1 <j <l

Note, the combination is only done in objective space. The objective values of
a solution are determined by the objective values of the partial solutions Y} ob-
tained at lower levels of hierarchy. If this function is monotonically increasing or
monotonically non-decreasing in a minimization problem, the top-level design is
indeed Pareto-optimal as discussed above. Such multi-level optimization prob-
lems are termed separable optimization problems (see, e.g., [10]). Unfortunately,
in many MOPs most objectives functions cannot be formulated as monotonic
functions in a hierarchical context.

Although these drawbacks are crucial, monotonic functions will be used in
Pareto-Front-Arithmetics in order to approximate the true Pareto front. It is also
a common technique in other technical fields to determine worst case and best
case approximations by using over-simplified assumptions. Hence, one has to un-
derstand that PFA is able to rapidly construct an approximation of the overall
problem, but this approximation may contain suboptimal and infeasible solu-
tions. On the other hand, as mentioned above, by only considering local feasible
partial solutions in the combination step, there might be a high probability to
construct a feasible implementation as well. Moreover, the constructed top-level
solution, even if infeasible is composed of many feasible parts. An interesting
fact which can be seen by the experiments is that these feasible parts introduce
genetic information into the initial population which definitely contributes to
the convergence speed of a MOEA.

Here, only the worst case approximation represented by an addition will be
discussed. The best case approximation can be performed similarly by applying
the maximum operator. Figure 2 outlines the addition of the objective of two
or more Pareto points: Figure 2(a) shows two partial objective spaces. Each
Pareto-optimal solution pi; is combined with each point py;. Here, the resulting
objectives are calculated as the sum of the objectives of the subsystems, i.e.,
fe(®) = fr(p1i) + fr(pe;) for k = 1,2. The results are shown in Figure 2(b).



Fig. 2. Pareto-Front Arithmetics addition operation. (a) Two approximation sets. (b)
The two approximation sets are combined using the addition Pareto-Front Arithmetics
operation, e.g., p13 and pa4 result in p = (fi(p13) + fi(p24), f2(p13) + fo(p24)).

To get a better approximation of the Pareto-front, the algorithm described
above has to prevent the rejection of good points. The PFA approach can be
improved by considering both, the best and worst case approximation, simulta-
neously (cf. [3]), leading to the notion of property intervals. A property interval
is represented by the combination of best case and worst case methods, leading
to a lower and an upper bound of the objectives. For example, in the design
of embedded systems, the implementation cost of a system that is composed
of two subsystems can be restricted by the maximum implementation cost of
each subsystem and the sum of those cost. The maximum of the cost of the two
subsystems corresponds to the case where both subsystems share the same re-
source (best case), while the sum of the cost model the fact that both subsystems
are implemented using dedicated resources (worst case). Unfortunately, by us-
ing property intervals, the definition of dominance as introduced so far becomes
meaningless. To solve this problem, Teich [11] proposed the notion of probabilis-
tic dominance for Pareto optimality. Due to space limitations, the discussion of
probabilistic dominance will be omitted here.

4 Experimental Results

In this section, we will provide some experimental results from using Pareto-
Front-Arithmetics for initial population construction of population-based multi-



objective optimization methods, e.g., MOEAs.. To analyze the performance of
our proposed strategy, we have chosen a MOP from the area of embedded system
synthesis [12,13]. The actual optimization problem is a combinational selection
and graph partitioning MOP: Starting from a mathematical problem formulation
called specification graph, a set of applications given as task graphs (hierarchi-
cally organized) as well as resources from a target architecture must be selected.
Later the set of applications has to be mapped onto the selected architecture.
Each solution to the MOP represents an implementation of the embedded sys-
tem. An implementation may be feasible or infeasible due to constraints imposed
on the partitioning of tasks (for a detailed discussion cf. [12]). The three objec-
tives used during the optimization are technical properties of embedded systems,
namely implementation cost, power dissipation, and latency. All these proper-
ties are to be minimized and they are non-monotonic due to resource sharing,
power consumption being dependent on the binding, etc. Hence, PFA may fail
to construct optimal and feasible implementations. But note: Even if not the
best solutions are constructed, good implementations can be generated in less
time by using PFA. In order to apply the PFA approach, the partitioning of
the MOP is naturally given by the hierarchical structure of the task graph, i.e.,
a subproblem is defined by a leaf task graph, the target architecture and the
mapping relation corresponding to the selected subgraph.

The following subsection provides quantitative results from the comparison
between the two optimization strategies proposed in Alg. 1 and Alg. 2, i.e.,
a MOEA with a randomly generated initial population and a MOEA with a
PFA generated initial population. The PISA (Platform independent Interface
for Search Algorithms) [14] framework was chosen for optimization purposes. In
the present work, the SPEA2 selection procedure [15] was applied.

4.1 Comparison Methodology

The experiments are performed as follows: A generator program is used to ran-
domly construct MOP instances (specification graphs), where several parameters
determine the architecture template, the application, possible mappings, and the
attributes used to compute the objective values. Due to different random values
the generated problem instances are similar in structure, but not equal. Each
MOP instance is optimized by both methods (with and without PFA). It is note-
worthy that the optimization of the subproblems terminates if no improvement
in terms of coverage and distance thresholds between two consecutive gener-
ations is obtained (in the forthcoming test cases the coverage threshold was
chosen to be 90% and the distance threshold to be 0.05) or a maximum number
of generations is reached (140 in forthcoming test cases). After the optimization
of each problem instance, the non-dominated solutions found by both methods
are combined in a single reference set. This reference set is Pareto-filtered and
is used to quantitatively assess the performance of both methods.

The MOP instances (specification graphs) can be generated from a few pa-
rameters. The most important ones are: (i) The number of resources r in the
architecture template. From these resources a subset must be chosen during



optimization. Hence, this number affects the problem size. (i) the number of
hierarchical tasks ¢, and non-hierarchical tasks ¢, in the task graph. The ap-
plication selection is done from a hierarchical task graph. Using the hierarchical
structure the problem separation can be easily done by selecting the leaf graphs.
Leaf graphs only contain non-hierarchical tasks. Again, these numbers affect the
MOP size. (iii) The number of hierarchical levels I and number of refining sub-
graphs s per hierarchical task in the task graph. Obviously, these numbers also
directly affect the problem size. From all subgraphs refining a hierarchical task
exactly one has to be selected during optimization (algorithm selection). (iv)
The number of mapping relations m per non-hierarchical task. A task can be
only partitioned into a cluster corresponding to a resource which is selected and
a mapping relation exists between the task and the resource. Hence, the number
of mapping relations has a large influence of the MOP size. (v) The number of
edges in the tasks graph is given by a probability value p. This value determines
the probability that two tasks are connected by an edge. An edge represents a
data dependency among these two tasks. Due to the feasibility requirement, the
number of data dependencies affects the complexity of the optimization problem.
The complexity increases with the number of data dependencies.

The performance indicators used in the present work are: the coverage [16]
and the normalized distance [10] to assess the convergence, and the entropy
indicator with 100 grid points [17] to assess the diversity. A detailed discussion
on performance indicators can be found in [18]. The approximation sets obtained
from both optimization methods are compared to the reference set by using the
coverage and normalized distance indicators. Since the entropy indicator is a
unary indicator, no reference set is needed. Moreover, the average time needed for
a fix number of generations is calculated as well. The estimation of the consumed
processor time is realized by the ”clock”-function of the Linux operating system.

4.2 Quantitative Results

In this section, the four most interesting test cases are discussed. In both meth-
ods, with and without PFA, the same kind of selection, crossover, mutation,
parameters for the SPEA2 algorithm, and random seed is used to have a clear
comparison. All results are averaged over 20 MOP instances, where MOP in-
stances were omitted if both methods were not able to find any feasible solution.
Infeasibilities are treated as objective functions, i.e., the number of errors in an
implementation is counted and used for optimization. In an infeasible solution,
all other objectives are set to infinity. The number of generations is set to 400.
For the first two cases the worst case approximation, in cases three and four the
property intervals are used for PFA. Table 1 shows the parameter values chosen
for the four test cases:

TC1 In this test case, there exist 2-6 = 12 subgraphs and 12-10 = 120 leaf tasks,
each having four different mappings to one of the 49 resources. Thus, there are
4120 possible mappings. The average number of non-dominated solutions found
was 232 (minimum 6, maximum 656).



Table 1. The four test cases for performance assessment.

Test Case ||r |th |tnh |l |s |m |p

TC1 49 6 10 2 2 4 0.3
TC2 49 6 20 2 2 4 0.3
TC3 49 2 10 3 2 4 0.3
TC4 81 6 10 2 2 4 0.6

The averaged optimization results are illustrated in Figure 3. Figure 3(a)
shows the coverage of the reference set by both methods. Figure 3(b) shows
the normalized distance of both methods to the reference set. One can see that
the method using PFA for initial population constructions starts on average 180
seconds later than the method using random initial population. This is exactly
the time needed for the construction of the initial population. The second result
is, that after this initialization phase, the method using PFA produces better
results than the method without PFA| i.e., it covers a higher percentage of the
reference set and it is closer to the points in the reference set. With respect to
the time, the exploration with PFA is always quantitatively better. After about
700 seconds both methods converge in both, coverage and distance.

TC2 Taking the same parameters as in TC1, only the number of non-hierarchical
tasks is increased to be 20 instead of 10, i.e., the subproblem size is increased.
Again, there are 12 refinements and 49 resources, but now, the number of leaf
tasks increases to be 240. Hence, there are 4240 possible mappings. On average,
491 non-dominated solutions were found (minimum 47, maximum 760).

The results are nearly analogous to TC1 and are shown in Figure 4. However,
the differences between both methods in coverage and distance are smaller in this
test case. This results, from the fact that the search space contains more feasible
solutions, and, hence, both methods are more likely to find these solutions.
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Fig. 3. (a) Coverage of reference set by both methods in case TC1. (b) Distance of
both methods to reference set in case TC1.
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Fig. 4. (a) Coverage of reference set by both methods in case TC2. (b) Distance of
both methods to reference set in case TC2.

TC3 Similar parameters to TC1 were chosen. However, an additional level of
hierarchy was introduced, i.e., the number of subproblems was increased. The
depth of the task graph is three. As a consequence, more PFA steps are neces-
sary than in TC1 or TC2. Moreover, PFA is performed with property intervals.
To limit the complexity of the search space, the task graph only contains two
hierarchical tasks at each level. There are 16 leaf subgraphs and 160 leaf tasks
with 4189 mapping relations. On average, 257 non-dominated solutions have been
found (minimum 18, maximum 594).

The results of TC3 are shown in Figure 5. Again, the construction of the
initial population consumes a lot of time using PFA. But, this method clearly
outperforms the method using random-based population generation.

TC4 Here, the probability for data dependencies between processes has been
doubled (60%) in comparison to TC1-TC3. Furthermore, there are additional
resources (81) and the PFA is performed with property intervals. The number
of subgraphs, leaf tasks, and mapping relations is the same as in TC1. Due
to the increased number of resources and data dependencies, the search space
is expected to contain less feasible solutions than in TC1-TC3. This could be
shown by the average number of non-dominated solutions to be 7 (minimum 2,
maximum 29).
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Fig. 5. (a) Coverage of reference set by both methods in case TC3. (b) Distance of
both methods to reference set in case TC3.
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Fig. 6. (a) Coverage of reference set by both methods in case TC4. (b) Distance of
both methods to reference set in case TCA4.

The results are presented in Figure 6. Again, the method with PFA per-
formed better than the method without PFA. The increasing number of data
dependencies and the additional resources result in a search space with only
a small fraction of feasible solutions. Only the method using initial population
construction by PFA was able to find feasible solutions at all. 61 MOP instances
have been tested, until 20 of them led to feasible solutions, indicating the large
number of infeasible solutions in the corresponding search spaces. In all 20 MOP
instances, the randomly generated initial population did not contain any feasible
solution and the succeeding MOEA run could not construct feasible solutions.
An interesting fact is that in 4 of the 20 MOP instances, the initial population
constructed from Pareto-Front-Arithmetics did not contain any feasible solu-
tion. Despite this fact, the succeeding MOEA run found feasible solutions! Ob-
viously, using PFA introduces better genetic information into the chromosomes.
Although this cannot be claimed for all problems (in deceptive problems, cf. [19],
PFA will fail), the way PFA works suggests that partial feasible solutions are
constructed (by combining feasible subsolutions). This will be investigated in
future work.

Finally, Figure 7 shows the entropy of all test cases. The method using PFA
show a better diversity than the method using random-based construction. In
summary, in all test cases, the method using PFA performs better on average
than the MOEA using just a randomly generated initial population. As ex-
pected, the initial populations constructed by PFA were superior to the random
generated initial populations on average (we also compared the initial popula-
tion directly). These better populations were the basis of better overall solutions
in the later optimization run. Moreover, in complicated cases, PFA has led the
search towards the feasible region.

5 Conclusions and Future Work

This paper proposes a constructive method for construction of good initial pop-
ulation in MOEAs. Any MOEA can be enhanced by such a constructive method
in order to improve the convergence. Although this seems to be not useful in the
general case (especially deceptive problems), such a method can be helpful in
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Fig. 7. (a) Entropy of both methods in case TC1, (b) TC2, (c) TC3, and (d) TCA4.

the presence of search spaces containing some feasible solutions (also in the case
of deceptive problems). The proposed method, called Pareto-Front-Arithmetics,
which performs the construction by approximating the solutions in the objective
space only, was applied to the MOP of optimizing resource allocation and bind-
ing problems encountered in embedded system design. In all experiments, the
method using PFA for initial population construction outperformed a random-
based approach on average. This leads to the conclusion that spending some
computational effort in constructing initial populations helps to improve the
convergence in optimization. In future work, we will evaluate more test cases
to study the effect of initial populations on the optimization results even more.
Here, also different separation techniques will be of concern. Moreover, we will
apply archive reduction techniques known from, e.g., SPEA 2, NSGA-II, etc., to
reduce the intermediate results in the Pareto-Front-Arithmetics step.
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