

IS-PAES: MULTIOBJECTIVE OPTIMIZATION
WITH EFFICIENT CONSTRAINT HANDLING

Arturo Hernández Aguirre
Salvador Botello Rionda
Giovanni Lizárraga Lizárraga
Center for Research in Mathematics
Department of Computer Science, Guanajuato, Gto. 36240, MEXICO
artha,botello,giovanni@cimat.mx

Carlos Coello Coello
CINVESTAV-IPN, EE Dept., Computer Science Section
México, D.F. 07300, MEXICO
ccoello@cs.cinvestav.mx

Abstract This paper introduces a new constraint-handling method called Inverted-
Shrinkable PAES (IS-PAES), which focuses the search effort of an evolu-
tionary algorithm on specific areas of the feasible region by shrinking the
constrained space of single-objective optimization problems. IS-PAES
uses an adaptive grid as the original PAES (Pareto Archived Evolu-
tion Strategy). However, IS-PAES does not have the serious scalability
problems of the PAES. The viability of the proposed approach is vali-
dated with several examples taken from the standard evolutionary and
engineering optimization literature.

1. Introduction
Evolutionary Algorithms (EAs) in general (i.e., genetic algorithms,

evolution strategies and evolutionary programming) lack a mechanism
able to bias efficiently the search towards the feasible region in con-
strained search spaces. Such a mechanism is highly desirable since most
real-world problems have constraints which could be of any type (equal-
ity, inequality, linear and nonlinear). The success of EAs in global op-
timization has triggered a considerable amount of research regarding
the development of mechanisms able to incorporate information about
the constraints of a problem into the fitness function of the EA used

1

2

to optimize it [4, 7]. So far, the most common approach adopted in
the evolutionary optimization literature to deal with constrained search
spaces is the use of penalty functions. When using a penalty function,
the amount of constraint violation is used to punish or “penalize” an
infeasible solution so that feasible solutions are favored by the selection
process. Despite the popularity of penalty functions, they have several
drawbacks from which the main one is that they require a careful fine
tuning of the penalty factors that indicates the degree of penalization to
be applied [9, 4]. Recently, some researchers have suggested the use of
multiobjective optimization concepts to handle constraints in EAs (see
for example [4]). This paper introduces a new approach that is based
on an evolution strategy that was originally proposed for multiobjec-
tive optimization: the Pareto Archived Evolution Strategy (PAES) [6].
Our approach can be use to handle constraints both of single- and mul-
tiobjective optimization problems and does not present the scalability
problems of the original PAES. The remainder of this paper is organized
as follows. Section 2 briefly describes the work related to our own. In
Section 3, we describe the main algorithm of IS-PAES. Section 4 pro-
vides a comparison of results and Section 5 draws our conclusions and
provides some paths of future research.

2. Related Work
Since our approach belongs to the group of techniques in which mul-

tiobjective optimization concepts are adopted to handle constraints, we
will briefly discuss some of the most relevant work done in this area.
The main idea of adopting multiobjective optimization concepts to han-
dle constraints is to redefine the single-objective optimization of f(�x)
as a multiobjective optimization problem in which we will have m + 1
objectives, where m is the total number of constraints. Then, we can
apply any multiobjective optimization technique [5] to the new vector
v̄ = (f(�x), f1(�x), . . . , fm(�x)), where f1(�x), . . . , fm(�x) are the original con-
straints of the problem. An ideal solution �x would thus have fi(�x)=0 for
1 ≤ i ≤ m and f(�x) ≤ f(�y) for all feasible �y (assuming minimization).

Based on this main idea, several approaches have proposed in the last
few years. Some of them use population-based techniques (e.g., [3]), and
others use Pareto ranking (e.g., [10]). However, all of these techniques
are normally more useful to approach the feasible region, but are not
as effective for reaching the global optimum of a problem. We argue
in this paper that the main reason for having this limitation has to do
with the focus of the search in traditional multiobjective optimization
algorithms. Rather than focusing the effort on finding good “trade-offs”

IS-PAES: Multiobjective Optimization with Efficient Constraint Handling 3

(as in multiobjective optimization), we propose to focus the search in
finding the boundary between the feasible and the infeasible regions and
then concentrating the search effort on reaching the global optimum.
Such is the nature of the algorithm proposed in this paper.

3. IS-PAES Algorithm
IS-PAES has been implemented as an extension of the Pareto Archived

Evolution Strategy (PAES) proposed by Knowles and Corne [6] for mul-
tiobjective optimization. PAES main feature is the use of an adaptive
grid on which objective function space is located using a coordinate sys-
tem. Such a grid is the diversity maintenance mechanism of PAES and
its the main feature of this algorithm. The grid is created by bisecting
k times the function space of dimension d = g + 1. The control of 2kd

grid cells means the allocation of a large amount of physical memory for
even small problems. For instance, 10 functions and 5 bisections of the
space produce 250 cells. Thus, the first feature introduced in IS-PAES
is the “inverted” part of the algorithm that deals with this space usage
problem. IS-PAES’s fitness function is mainly driven by a feasibility
criterion. Global information carried by the individuals surrounding the
feasible region is used to concentrate the search effort on smaller areas as
the evolutionary process takes place. In consequence, the search space
being explored is “shrinked” over time. Eventually, upon termination,
the size of the search space being inspected will be very small and will
contain the solution desired. The main algorithm of IS-PAES is shown
in Figure 1.

The function test(h,c,file) determines if an individual can be added
to the external memory or not. Here we introduce the following notation:
x1�x2 means x1 is located in a less populated region of the grid that x2.
The pseudo-code of this function is depicted in Figure 2.

3.1 Inverted “ownership”
IS-PAES handles the population as part of a grid location relationship,

whereas PAES handles a grid location contains population relationship.
In other words, PAES keeps a list of individuals on either grid location,
but in IS-PAES either individual knows its position on the grid. There-
fore, building a sorted list of the most dense populated areas of the grid
only requires to sort the k elements of the external memory. In PAES,
this procedure needs to inspect every location of the grid in order to
produce an unsorted list, there after the list is sorted. The advantage
of the inverted relationship is clear when the optimization problem has
many functions (more than 10), and/or the granularity of the grid is

4

maxsize: max size of file
c: current parent ∈ X (decision variable space)
h:child of c ∈ X, ah: individual in file that dominates h
ad: individual in file dominated by h
current: current number of individuals in file
cnew: number of individuals generated thus far
current = 1; cnew=0; c = newindividual() ; add(c)
While cnew≤MaxNew do

h = mutate(c); cnew+ =1;
if (c�h) then exit loop
else if (h�c) then { remove(c); add(g); c=h; }
else if (∃ ah ∈ file | ah � h) then exit loop
else if (∃ ad ∈ file | h � ad) then

add(h); ∀ ad { remove(ad); current− =1 }
else test(h,c,file)
if (cnew % g==0) then c = individual in less densely populated region
if (cnew % r==0) then shrinkspace(file)

End While

Figure 1. Main algorithm of IS-PAES

if (current < maxsize) then add(h)
if (h � c) then c = h

else if (∃ap∈file | h � ap) then { remove(ap); add(h) }
if (h � c) then c = h;

Figure 2. Pseudo-code of test(h,c,file)

fine, for in this case only IS-PAES is able to deal with any number of
functions and granularity level.

3.2 Shrinking the objective space
Shrinkspace(file) is the most important function of IS-PAES since

its task is the reduction of the search space. The pseudo-code of Shrink-
space(file) is shown in Figure 3. The function select(file) returns a list
whose elements are the best individuals found in file. The size of the list
is 15% of maxsize. Since individuals could be feasible, infeasible or only

IS-PAES: Multiobjective Optimization with Efficient Constraint Handling 5

xpob: vector containing the smallest value of either xi ∈ X
xpob: vector containing the largest value of either xi ∈ X
select(file); getMinMax(file, xpob, xpob)
trim(xpob, xpob)
adjustparameters(file);

Figure 3. Pseudo-code of Shrinkspace(file)

partially feasible, the best individuals are chosen from the file sorted by
“objective-function” then by “constraint#1”, then by “constraint#2”,
and so on. The function getMinMax(file) takes this list and finds the
extreme values of the decision variables represented by those individuals.
Thus, the vectors xpob and xpob are found. Function trim(xpob, xpob)
shrinks the feasible space around the potential solutions enclosed in the
hypervolume defined by the vectors xpob and xpob. Thus, the function
trim() (see Figure 4) determines the new boundaries for the decision
variables.

n: size of decision vector;
xi: actual upper bound of the ith decision variable
xi: actual lower bound of the ith decision variable
xpob,i: upper bound of ith decision variable in population
xpob,i: lower bound of ith decision variable in population
∀i : i ∈ { 1, . . . , n }

slacki = 0.05 × (xpob,i − xpob,i)
width pobi = xpob,i − xpob,i; widtht

i = xt
i − xt

i

deltaMini = β∗widtht
i−width pobi

2
deltai = max(slacki, deltaMini);
xt+1

i = xpob,i + deltai; xt+1
i = xpob,i − deltai;

if (xt+1
i > xoriginal,i) then

xt+1
i − = xt+1

i − xoriginal,i; xt+1
i = xoriginal,i;

if (xt+1
i < xoriginal,i) then xt+1

i + = xoriginal,i − xt+1
i ;

xt+1
i = xoriginal,i;

if (xt+1 > xoriginal,i) then xt+1
i = xoriginal,i;

Figure 4. Pseudo-code of trim

6

The value of β is the percentage by which the boundary values of
either xi ∈ X must be reduced such that the resulting hypervolume is
a fraction α of its initial value. In our experiments, α = 0.90 worked
well in all cases. Clearly, α controls the shrinking speed, hence the al-
gorithm is sensitive to this parameter and it can prevent it from finding
the optimum solution if small values are chosen. In our experiments,
values in the range [85%,95%] were tested with no visible effect in the
performance. Of course, α values near to 100% slow down the conver-
gence speed. The last step of shrinkspace() is a call to adjustpa-
rameters(file). The goal is to re-start the control variable σ using:
σi = (xi−xi)/

√
n i ∈ (1, . . . , n) This expression is also used during the

generation of the initial population. In that case, the upper and lower
bounds take the initial values of the search space indicated by the prob-
lem. The variation of the mutation probability follows the exponential
behavior suggested by Bäck [1].

4. Comparison of Results
We have validated our approach with several problems used as a

benchmark for evolutionary algorithms (see [7]) and with several engi-
neering optimization problems taken from the standard literature. In the
first case, our results are compared against a technique called “stochas-
tic ranking” which is representative of the state-of-the-art in constrained
evolutionary optimization (see [8] for details). Regarding the engineer-
ing optimization problems, we compared results with respect to those
previously reported in the literature.

4.1 Test problems used with EAs
The following parameters were adopted in this case: maxsize = 200,

bestindividuals = 15%, slack = 0.05, r = 400, MaxNew = 350000.

1 Problem g06

Minimize F (x) = (x1 − 10)3 + (x2 − 20)3 (1)

subject to:

g1(x) = −(x1 − 5)2 − (x2 − 5)2 + 100 ≤ 0
g2(x) = (x1 − 6)2 + (x2 − 5)2 − 82.81 ≤ 0 (2)

where 13 ≤ x1 ≤ 100 y 0 ≤ x2 ≤ 100. The global optimum
is located at x∗ = {14.095, 0.84296}, with F (x∗) = −6961.81388.
Both constraint are active. The best solution found by IS-PAES is:
x ={14.0950000092 0.842960808844 }, with F (x) = −6961.813854.

IS-PAES: Multiobjective Optimization with Efficient Constraint Handling 7

Note in Table 1 how IS-PAES had a better average result and a
lower standard deviation than R&Y.

Measure IS-PAES R&Y

Best -6961.814 -6961.814

Worst -6961.810 -6350.262

Average -6961.813 -6875.940

Std. Deviation 8.5E-05 1.6E+02

Median -6961.814 -6961.814

Feasible solutions 30 30

Table 1. Comparison of results for problem g06

2 Problem g08

MinimizeF (x) =
sin3(2πx1) sin(2πx2)

x3
1(x1 + x2)

(3)

subject to:

g1(x) = x2
1 − x2 + 1 ≤ 0

g2(x) = 1 − x1 + (x2 − 4)2 ≤ 0 (4)

where 0 ≤ x1 ≤ 10 y 0 ≤ x2 ≤ 10. The global optimum is located
at x∗ = {1.2279713, 4.2453733}, with F (x∗) = 0.095825. The best
solution found by IS-PAES was: x ={1.227971353, 4.245373368},
with F (x) = −0.095825041. The performance of both algorithms
is similar for this problem. Results are shown in Table 2.

Measure IS-PAES R&Y

Best -0.095825 -0.095825

Worst -0.095825 -0.095825

Average -0.095825 -0.095825

Std. Deviation 0.0 2.6E-17

Median -0.095825 -0.095825

Feasible solutions 30 30

Table 2. Comparison of results for problem g08

4.2 Optimization of a 49-bar plane truss
The last problem is the optimization of a 49-bar plane truss. The goal

is to find the cross-sectional area of each member of the truss, such that

8

the overall weight is minimized, subject to stress and displacement con-
straints. The weight of the truss is given by F (x) =

∑49
j=1 γAjLj, where

Aj is the cross-sectional area of the jth member, Lj is the correspond-
ing length of the bar, and γ is the volumetric density of the material.
We used a catalog of Altos Hornos de México, S.A., with 65 entries for
the cross-sectional areas available for the design. Other relevant data
are the following: Young modulus = 2.1 · 106kg/cm3, maximum allow-
able stress= 3500.00kg/cm2 , γ = 7.4250 · 10−3, and a horizontal load of
4994.00 kg applied to the nodes: 3, 5, 7, 9, 12, 14, 16, 19, 21, 23, 25 y
27. We solved this problem for two cases:
Case 1. Stress constraints only. Maximum allowable stress =
3500.00kg/cm2 A total of 49 constraints, thus 50 objective functions.
Case 2. Stress and displacement constraints. Maximum allow-
able stress = 3500.00kg/cm2 , maximum displacement per node = 10cm
A total of 72 constraints, thus 73 objective functions.
Case 3. Real design problem. The design problem considers trac-
tion and compression stress on the bars, as well as the proper weight.
Maximum allowable stress = 3500.00kg/cm2 , maximum displacement
per node = 10cm. A total of 72 constraints, thus 73 objective functions.
The average result of 30 runs for each case are shown in Tables 3, 4 and 5.
We compare IS-PAES with previous results reported by Botello [2] (SA:
Simulated Annealing, GA50: Genetic Algorithm with a population of
50, and GSSA: General Stochastic Search Algorithm with populations
of 50 and 5).

Algorithm Average Weight (Kg)

IS-PAES 610

SA 627

GA50 649

GSSA50 619

GSSA5 625

Table 3. Comparison of different algorithms on the 49-bar struss, case 1

5. Conclusions and Future Work
We have introduced a constraint-handling approach that combines

multiobjective optimization concepts with an efficient reduction mecha-
nism of the search space and a secondary population. We have shown
how our approach overcomes the scalability problem of the original PAES
from which it was derived, and we also showed that the approach is
highly competitive with respect to the state-of-the-art in the area. As

IS-PAES: Multiobjective Optimization with Efficient Constraint Handling 9

Algorithm Average Weight (Kg)

IS-PAES 725

SA 737

GA50 817

GSSA50 748

GSSA5 769

Table 4. Comparison of different algorithms on the 49-bar struss, case 2

Algorithm Average Weight (Kg)

IS-PAES 2603

SA 2724

GA50 2784

GSSA50 2570

GSSA5 2716

Table 5. Comparison of different algorithms on the 49-bar struss, case 3

part of our future work, we want to refine the mechanism adopted for
reducing the search space being explored, since in our current version
of the algorithm, premature convergence may occur in some cases. The
elimination of the parameters required by our approach is another goal
of our current research. Finally, we also intend to couple the mechanisms
proposed in this paper to other multiobjective evolutionary algorithms.

Acknowledgments
The first author acknowledges partial support from CONCyTEG project

No. 01-02-202-111 and CONACyT No. I-39324-A. The second au-
thor acknowledges support from CONACyT project No. 34575-A. The
last author acknowledges support from CONACyT project No. NSF-
CONACyT 32999-A.

References

[1] Thomas Bäck. Evolutionary Algorithms in Theory and Practice. Oxford Uni-
versity Press, New York, 1996.

[2] Salvador Botello, José Luis Marroqúın, and et al. Solving Structural Opti-
mization problems with GAs and simulated annealing. International Journal of
Numerical Methods in Engineering, 45:1–16, 1999.

[3] Carlos A. Coello Coello. Treating constraints as objectives for single-objective
evolutionary optimization. Engineering Optimization, 32(3):275–308, 2000.

[4] Carlos A. Coello Coello. Theoretical and Numerical Constraint Handling Tech-
niques used with Evolutionary Algorithms: A Survey of the State of the Art.
Computer Methods in Applied Mechanics and Engineering, 191(11-12):1245–
1287, January 2002.

[5] Carlos A. Coello Coello, David A. Van Veldhuizen, and Gary B. Lamont. Evo-
lutionary Algorithms for Solving Multi-Objective Problems. Kluwer Academic
Publishers, New York, June 2002. ISBN 0-3064-6762-3.

[6] J.D. Knowles and D.W. Corne. Approximating the Nondominated Front using
the Pareto Archived Evolution Strategy. Evolutionary Computation, 8(2):149–
172, 2000.

[7] Zbigniew Michalewicz and Marc Schoenauer. Evolutionary Algorithms for Con-
strained Parameter Optimization Problems. Evolutionary Computation, 4(1):1–
32, 1996.

[8] T.P. Runarsson and X. Yao. Stochastic Ranking for Constrained Evolutionary
Optimization. IEEE Transactions on Evolutionary Computation, 4(3):284–294,
September 2000.

[9] Alice E. Smith and David W. Coit. Constraint Handling Techniques—Penalty
Functions. In Thomas Bäck, David B. Fogel, and Zbigniew Michalewicz, editors,
Handbook of Evolutionary Computation, chapter C 5.2. Oxford University Press
and Institute of Physics Publishing, 1997.

[10] Patrick D. Surry and Nicholas J. Radcliffe. The COMOGA Method: Constrained
Optimisation by Multiobjective Genetic Algorithms. Control and Cybernetics,
26(3):391–412, 1997.

11

