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SUMMARY

In this paper, we propose a new constraint-handling technique for evolutionary algorithms which
we call Inverted-Shrinkable PAES (IS-PAES). This approach combines the use of multiobjective
optimization concepts with a mechanism that focuses the search effort onto specific areas of the
feasible region by shrinking the constrained search space. IS-PAES also uses an adaptive grid to
store the solutions found, but has a more efficient memory-management scheme than its ancestor
(the Pareto Archived Evolution Strategy for multiobjective optimization). The proposed approach is
validated using several examples taken from the standard evolutionary and engineering optimization
literature. Comparisons are provided with respect to the stochastic ranking method (one of the most
competitive constraint-handling approaches used with evolutionary algorithms currently available)
and with respect to other four multiobjective-based constraint-handling techniques. Copyright ©
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1. INTRODUCTION

Evolutionary Algorithms (EAs) in general (i.e., genetic algorithms [14], evolution strategies
[31] and evolutionary programming [12]) are search and optimization techniques inspired
on the mechanism of natural selection (i.e., the survival of the fittest). However, EAs are
unconstrained optimization techniques and therefore lack an explicit mechanism able to bias
efficiently the search towards the feasible region in constrained search spaces. Such a mechanism
is highly desirable since most real-world problems have (possibly many) constraints which could
be of any type (equality, inequality, linear and nonlinear).

The success of EAs in global optimization has triggered a considerable amount of
research regarding the development of mechanisms able to incorporate information about the
constraints of a problem into the fitness function of the EA used to optimize it [5, 21]. So far,
the most common approach adopted in the evolutionary optimization literature to deal with
constrained search spaces is the use of penalty functions [28, 32]. When using a penalty function
(external penalty functions are normally adopted with EAs [25]), the amount of constraint
violation is used to punish or “penalize” an infeasible solution so that feasible solutions are
favored by the selection process. Despite the popularity of penalty functions, they have several
drawbacks from which the main one is that they require a careful fine tuning of the penalty
factors that indicates the degree of penalization to be applied [32, 5].

Recently, some researchers have suggested the use of multiobjective optimization concepts
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HANDLING CONSTRAINTS USING MULTIOBJECTIVE OPTIMIZATION CONCEPTS 3

to handle constraints in EAs (see for example [5]). This paper introduces a new approach that
is based on an evolution strategy that was originally proposed for multiobjective optimization:
the Pareto Archived Evolution Strategy (PAES) [18]. Our approach (which is an extension
of PAES) can be used to handle constraints both of single- and multiobjective optimization
problems. One of the main contributions of our approach is that it does not present the
scalability problems of the original PAES, which can easily run out of memory. Besides using
Pareto-based selection, our approach uses a secondary population (one of the most common
notions of elitism in evolutionary multiobjective optimization), and a mechanism that reduces
the constrained search space so that our approach can approach the global optimum more
efficiently. This mechanism is mostly responsible for the good performance of our approach,
which is the first constraint-handling technique based on multiobjective optimization concepts
that provides results competitive with respect to state-of-the-art approaches.

The remainder of this paper is organized as follows. Section 2 gives a formal description
of the general problem that we want to solve. Section 3 introduces some basic multiobjective
optimization concepts that we will be using throughout the paper. Section 4 describes the
previous work related to our own. In Section 5, we describe the main algorithm of IS-
PAES. Section 6 provides a comparison of results with respect to stochastic ranking (which
is representative of the state-of-the-art in constrained evolutionary optimization) and with
respect to other multiobjective-based techniques. Finally, Section 7 draws our conclusions and

provides some paths of future research.

2. PROBLEM STATEMENT

We are interested in the general non-linear programming problem in which we want to:
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4 HERNANDEZ AGUIRRE ET AL.

Find Z which optimizes f(Z) (1)
subject to:
9i(%) <0, i=1,...,n (2)
hj(Z)=0, j=1,...,p (3)
where 7 is the vector of solutions & = [z1, T2, . . ., 2,]T, n is the number of inequality constraints

and p is the number of equality constraints (in both cases, constraints could be linear or non-
linear).

If we denote with F to the feasible region and with S to the whole search space, then it
should be clear that 7 C S.

For an inequality constaint that satisfies g;(Z) = 0, then we will say that is active at Z. All
equality constraints h; (regardless of the value of & used) are considered active at all points of

F.

3. BASIC CONCEPTS

Since we will be using some multiobjective optimization concepts, it is appropriate to define

them first. A multiobjective optimization problem (MOP) has the following the form:

minimize [f1(Z), f2(Z), ..., fx(Z)] (4)

subject to the m inequality constraints:
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9:(%) <0 1=1,2,...,n (5)

and the p equality constraints:
hj(@) =0 j=1,2,...,p (6)
where k is the number of objective functions f; : R* — R. We call & = [21, 22, .. ,xn]T the

vector of decision variables. We wish to determine from among the set F of all vectors which
satisfy (5) and (6) the particular set of values z},z3,..., 2% which yield the optimum values

of all the objective functions.

3.1. Pareto Optimality

It is rarely the case that there is a single point that simultaneously optimizes all the objective
functions of a multiobjective optimization problem. Therefore, we normally look for “trade-
offs” rather than single solutions when dealing with multiobjective optimization problems. The
notion of “optimality” is therefore, different in this case. The most commonly adopted notion
of optimality is that originally proposed by Francis Ysidro Edgeworth [10] and later generalized
by Vilfredo Pareto [22]. Although some authors call this notion Edgeworth-Pareto optimality

(see for example [33]), we will use the most commonly accepted term: Pareto optimality.

A vector @ = (uy,...,u) is said to dominate @ = (vy,...,v;) (denoted by @ < @) if and
only if w is partially less than v, i.e., Vi € {1,...,k}, s <v; AT € {1,...,k} :u; < v;.

-

For a given multiobjective optimization problem, f(z), the Pareto optimal set (P*) is defined
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6 HERNANDEZ AGUIRRE ET AL.

as:

P ={feF|-37 € F f(@) < @) (7)
Thus, we say that a vector of decision variables &* € F is Pareto optimal if there does not
exist another & € F such that f;(Z) < fi(&*) for all i = 1,...,k and f;(¥) < f;(&*) for at

least one j.

In words, this definition says that £* is Pareto optimal if there exists no feasible vector of
decision variables # € F which would decrease some criterion without causing a simultaneous
increase in at least one other criterion. Unfortunately, this concept almost always gives not
a single solution, but rather a set of solutions called the Pareto optimal set. The vectors &*
correspoding to the solutions included in the Pareto optimal set are called nondominated. The

image of the Pareto optimal set under the objective functions is called Pareto front.

4. RELATED WORK

Since our approach belongs to the group of techniques in which multiobjective optimization
concepts are adopted to handle constraints, we will briefly discuss some of the most relevant
work done in this area. The main idea of adopting multiobjective optimization concepts to
handle constraints is to redefine the single-objective optimization of f(Z) as a multiobjective
optimization problem in which we will have m + 1 objectives, where m is the total number
of constraints. Then, we can apply any multiobjective optimization technique [8] to the new
vector 0 = (f(X), f1(E),. .., fm(E)), where f1(E),..., fm(£) are the original constraints of the
problem. An ideal solution Z would thus have f;(£) > 0for 1 <i <m and f(Z) < f(¥) for all
feasible ¥ (assuming minimization).
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Three are the mechanisms taken from evolutionary multiobjective optimization that are

more frequently incorporated into constraint-handling techniques:

1. Use of Pareto dominance as a selection criterion. Examples of this type of approach are
given in [4, 17, 6].

2. Use of Pareto ranking [14] to assign fitness in such a way that nondominated individuals
(i-e., feasible individuals in this case) are assigned a higher fitness value. Examples of
this type of approach are given in [26, 27, 5].

3. Split the population in subpopulations that are evaluated either with respect to the
objective function or with respect to a single constraint of the problem. This is the
selection mechanism adopted in the Vector Evaluated Genetic Algorithm (VEGA) [30].

Examples of this type of approach are given in [34, 23, 7].

In order to sample the feasible region of the search space widely enough to reach the global
optima it is necessary to maintain a balance between feasible and infeasible solutions. If this
diversity is not reached, the search will focus only in one area of the feasible region. Thus, it
will lead to a local optimum solution.

A multiobjective optimization technique aims to find a set of trade-off solutions which are
considered good in all the objectives to be optimized. In global nonlinear optimization, the
main goal is to find the global optimum. Therefore, some changes must be done to those
approaches in order to adapt them to the new goal. Our main concern is that feasibility
takes precedence, in this case, over nondominance. Therefore, good “trade-oft” solutions that
are not feasible cannot be considered as good as bad “trade-off” solutions that are feasible.
Furthermore, a mechanism to maintain diversity must normally be added to any evolutionary
multiobjective optimization technique.
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8 HERNANDEZ AGUIRRE ET AL.

5. IS-PAES ALGORITHM

All of the approaches discussed in the previous section have drawbacks that keep them from
producing competitive results with respect to the constraint-handling techniques that represent
the state-of-the-art in evolutionary optimization. In a recent technical report [20], four of the
existing techniques based on multiobjective optimization concepts (i.e., COMOGA [34], VEGA
[7], MOGA [6] and NPGA [5]) have been compared using Michalewicz’s benchmark [21] and
some additional engineering optimization problems. Although inconclusive, the results indicate
that the use of Pareto dominance as a selection criterion gives better results than Pareto
ranking or the use of a population-based approach. However, in all cases, the approaches
analyzed are unable to reach the global optimum of problems with either high dimensionality,
large feasible regions or many nonlinear equality constraints [20].

In contrast, the approach proposed in this paper uses Pareto dominance as the criterion
selection, but unlike the previous work in the area, a secondary population is used in this case.
The approach, which is a relatively simple extension of PAES [18] provides, however, very good
results, which are highly competitive with those generated with an approach that represents
the state-of-the-art in constrained evolutionary optimization.

IS-PAES has been implemented as an extension of the Pareto Archived Evolution Strategy
(PAES) proposed by Knowles and Corne [18] for multiobjective optimization. PAES’s main
feature is the use of an adaptive grid on which objective function space is located using
a coordinate system. Such a grid is the diversity maintenance mechanism of PAES and it
constitutes the main feature of this algorithm. The grid is created by bisecting k times the
function space of dimension d (d is the number of objective functions of the problem. In our

case, d is given by the total number of contraints plus one. In other words, d = n + p + 1,
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where n is the number of inequality constraints, and p is the number of equality constraints.
Note that we add one to this summation to include the original objective function of the

problem). The control of 2%4

grid cells means the allocation of a large amount of physical
memory for even small problems. For instance, 10 functions and 5 bisections of the space
produce 250 cells. Thus, the first feature introduced in IS-PAES is the “inverted” part of the
algorithm that deals with this space usage problem. IS-PAES’s fitness function is mainly driven
by a feasibility criterion. Global information carried by the individuals surrounding the feasible
region is used to concentrate the search effort on smaller areas as the evolutionary process takes
place. In consequence, the search space being explored is “shrunk” over time. Eventually, upon
termination, the size of the search space being inspected will be very small and will contain

the solution desired (in the case of single-objective problems. For multi-objective problems, it

will contain the feasible region).

The main algorithm of IS-PAES is shown in Figure 1. Its goal is the construction of the
Pareto front which is stored in an external memory (called file). The algorithm loops over the
generation of A children from a random parent c. If the child is better than the parent, that is,
the child dominates its parent, then it is inserted in file, and its position is recorded. A child
is generated by introducing random mutations to the parent, thus, h = mutate(c) will alter a
parent with increments whose standard deviation is governed by Equation 8. Most of main
and the function test(h,c,file) in IS-PAES are devoted to three things: (1) decide whether
a new child should be inserted in file, and if so, (2) how to make room for the new member
and (3) who becomes the new parent. Every g new children created, a new parent is randomly
picked from file for this purpose. Also, every r children generated, the space is shrunk around
the current Pareto front represented by the individuals of the external memory.
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10 HERNANDEZ AGUIRRE ET AL.

Here we introduce the following notation: z;Oxs means z; is located in a less populated

region of the grid than z,. The pseudo-code of this function is depicted in Figure 2.

5.1. Inverted “ownership”

IS-PAES handles the population as part of a grid location relationship, whereas PAES handles
a grid location that contains a population relationship. In other words, PAES keeps a list of
individuals on either grid location, but in IS-PAES each individual knows its position on the
grid. Therefore, building a sorted list of the most densely populated areas of the grid only
requires to sort the k elements of the external memory. In PAES, this procedure needs to
inspect every location of the grid in order to produce an unsorted list, and from there on,
the list is sorted. The advantage of the inverted relationship is clear when the optimization
problem has many functions (more than 10), and/or the granularity of the grid is fine, for in

this case only IS-PAES is able to deal with any number of functions and granularity level.

5.2. Shrinking the objective space

Shrinkspace(file) is the most important function of IS-PAES since its task is the reduction
of the search space. The space is reduced every r number of generations. The pseudo-code of

Shrinkspace(file) is shown in Figure 3.

In the following we describe the four tasks performed by shrinkspace.

e The function select(file) returns a list whose elements are the best individuals found
in file. The size of the list is set to 15% of mazsize. Thus, the goal of select(file) is
to create a list with: a) only the best feasible individuals, b) a combination of feasible
and partially feasible individuals, or ¢) the “most promising” infeasible individuals. The
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selection algorithm is shown in Figure 4. Note that validconstraints (a list of indexes
to the problem constraints) indicates the order in which constraints are tested. The loop
steps over the constraints removing only one (the worst) individual for each constraint
till there is none to delete (all feasible), or 15% of file size is reached (in other words,
85% of the Pareto set will be generated anew using the best 15% individuals as parents).
Also, in order to keep diversity, a new parent is randomly chosen from the less populated
region of the grid after placing on it g new individuals.

e The function getMinMax(file) takes the list list (last step in Figure 4) and finds the
extreme values of the decision variables represented by those individuals. Thus, the
vectors Zpop and Tpep are found.

e Function trim(z,.p, Tpop) shrinks the feasible space around the potential solutions
enclosed in the hypervolume defined by the vectors z,,5 and Zpep. Thus, the function
trim (2,0, Tpow) (see Figure 5) determines the new boundaries for the decision variables.
The value of 3 is the percentage by which the boundary values of either z; € X must be
reduced such that the resulting hypervolume H is a fraction « of its previous value. The
function trim first finds in the population the boundary values of each decision variable:

Tpob,i and z

pob,i- Lhen the new vectors T; and z; are updated by deltaMin;, which is the

reduction in each variable that in the overall reflects a change in the volume by a factor
B. In IS-PAES all objective variables are reduced at the same rate 3, therefore, 5 can be
deduced from « as discussed next. Since we need the new hypervolume be a fraction «

of the previous one,

Hnew > aH 4
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Either z; is reduced at the same rate 3, thus

n
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In short, the new search interval of each decision variable z; is adjusted as follows (the

complete algorithm is shown in Figure 3):

widthpew > B X widtheg

It should be clear that the value of a has an important impact on the performance of
IS-PAES because it controls the shrinking speed. In order to determine a range within
which we could set this parameter for a large variety of problems, we studied the effect
of a on the performance of our algorithm for each of the 11 test functions included in
Appendix A. From analyzing this effect, we found that in all cases, a range of a between
85% and 97% was always able to generate the best possible solutions to each problem.
Values smaller than 0.80 make the algorithm prone to converge to local minima. Values
of & too near to 100% slow down convergence, although they increase the probability of
success. In order to avoid a fine tuning of a dependent of each test function, we decided

to set its value to 0.90, which we considered as a good compromise based on our analysis.
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As we will see later on, this value of a provided good results in all the problems solved.
Note that also the parameter r (see Figure 1), which controls the shrinkspace rate, plays
an important role in the algorithm. To set the value of r, we performed a similar analysis
to the one previously described for «. In this analysis, we related the behavior of r with
that of @ and with the performance of IS-PAES. Our results indicated that a value of
r = 1 provided convergence to the optimum in most of the problems (in a few cases,
a value of r = 2 turns out to be better). Thus, we used r = 1 in all the experiments
reported in this paper.
The variable slack is calculated once every new search interval is determined (usually set
to 5% of the interval). The role of slack is simply to prevent (upto some extend) against
fast decreasing rates of the search interval.

e The last step of shrinkspace() is a call to adjustparameters(file). The goal is to

re-start the control variable o through:

o= @ —z) [V i€ (l,...,n) (8)

This expression is also used during the generation of the initial population. In that case,
the upper and lower bounds take the initial values of the search space indicated by
the problem. The variation of the mutation probability follows the exponential behavior

suggested by Back [2].

Elitism

A special form of elitism is implemented in IS-PAES to prevent the lost of the best individual.
Elitism is implemented as follows: the best individual of the generation is marked and only
replaced by another one if it is in the feasible region and with better objective function value.
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6. COMPARISON OF RESULTS

We have validated our approach with several problems used as a benchmark for evolutionary
algorithms (see [21]) and with several engineering optimization problems taken from the
standard literature. In the first case, our results are compared against a technique called
“stochastic ranking” [29], which is representative of the state-of-the-art in constrained
evolutionary optimization. Stochastic ranking uses a static penalty function and sorts the
population based on the penalized value of each individual. However, based on an user-defined
parameter called P f, two individuals can be sorted based only their objective function value,
regardless of feasibility. This simple mechanism helps the approach to maintain feasible and
infeasible solutions during all the process. The motivation of the approach is to try to balance
the effect of the value of the objective function and the value of the penalization in the
fitness assignment mechanism. Stochastic ranking has been found to be equally good or even
better in some cases than the homomorphous maps of Koziel and Michalewicz [19], which has
been considered since its inception, as a landmark in constraint-handling methods used with
evolutionary algorithms.

We will also provide comparisons with respect to four constraint-handling techniques based
on multiobjective optimization concepts, so that there can be a more clear idea of the

effectiveness of our proposal. The four approaches selected for this comparative study are:

1. COMOGA: Proposed by Surry & Radcliffe [34]. This approach uses a combination of
the Vector Evaluated Genetic Algorithm (VEGA) [30] and Pareto Ranking to handle

constraints in an approach called COMOGA (Constrained Optimization by Multi-

fDr. Patrick Surry helped us to develop our own C version of COMOGA.
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Objective Genetic Algorithms). In this technique, individuals are ranked depending
of their sum of constraint violation (number of individuals dominated by a solution).
However, the selection process is based not only on ranks, but also on the fitness of
each solution. COMOGA uses a non-generational GA and extra parameters defined by
the user (e.g., an parameter called € is used to define the change rate of P,ys). One of
these parameters is P.,4;, that sets the rate of selection based on fitness. The remaining
1— P,.,5 individuals are selected based on ranking values. P, is defined by the user at
the begining of the process and it is adapted during the evolutionary process using as a
basis the percentage of feasible individuals that one wishes to have in the population.

2. VEGA: Proposed by Coello [7]. This approach uses a population-based approach similar
to VEGA [30] to handle constraints in single-objective optimization problems. At each
generation, the population was split into m + 1 subpopulations of equal fixed size, where
m is the number of constraints of the problem. The additional subpopulation handles
the objective function of the problem and the individuals contained within it are selected
based on the unconstrained objective function value. The m remaining subpopulations
take one constraint of the problem each as their fitness function. The aim is that each
of the subpopulations tries to reach the feasible region corresponding to one individual
constraint. By combining these different subpopulations, the approach will reach the
feasible region of the problem considering all of its constraints.

3. MOGA: Proposed by Coello [6]. This approach uses a Pareto dominance-based selection
scheme to handle constraints in a genetic algorithm. This is an application of Fonseca
and Fleming’s Pareto ranking process [13] (called Multi-Objective Genetic Algorithm,

or MOGA) to constraint-handling. In this approach, feasible individuals are always
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16 HERNANDEZ AGUIRRE ET AL.

ranked higher than infeasible ones. Based on this rank, a fitness value is assigned to
each individual. This technique also includes a self-adaptation mechanism that avoids
the usual empirical fine-tuning of the main genetic operators.

4. NPGA: Proposed by Coello and Mezura [5]. This is a version of the Niched-
Pareto Genetic Algorithm (NPGA) [16] used to handle constraints in single-objective
optimization problems. The NPGA is a multiobjective optimization approach in which
individuals are selected through a tournament based on Pareto dominance. However,
unlike the NPGA, Coello and Mezura’s approach does not require niches (or fitnes sharing
[9]) to maintain diversity in the population. The NPGA is a more efficient technique
than traditional multiobjective optimization algorithms, since it does not compare every
individual in the population with respect to each other (as in traditional Pareto ranking),

but uses only a sample of the population to estimate Pareto dominance.

6.1. Examples

For the first part of our comparative study, we used eleven test functions described in [29, 21]
and included in Appendix A for completeness. These functions contain characteristics that
are representative of what can be considered “dificult” global optimization problems for an
evolutionary algorithm.

To get a better idea of the difficulty of solving each of these problems, a p metric (as

suggested by Koziel and Michalewicz [19]) was computed using the following expression:

p=|El/IS] 9)

where |F| is the number of feasible solutions and |S| is the total number of solutions randomly
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generated. In this work, we generated S = 1,000,000 random solutions. The different values

of p for each of the test functions chosen are shown in Table I.

The following parameters were adopted for IS-PAES in all the experiments reported next:
maxsize = 200, listsize = 15% of maxsize, a« = 90%, r = 1, g = 10, slack = 5%. IS-
PAES was implemented using Borland C++ (under Windows) in a PC with a Pentium IV
processor running at 1.7GHz and with 1 Gbyte of RAM. The maximum number of fitness
function evaluations was set to 350,000 for all the algorithms compared. This is the number
of evaluations used in [29], and such a value was adopted in order to allow a fair comparison
with respect to stochastic ranking which is the most competitive constraint-handling technique

developed for evolutionary algorithms to date.

The parameters for COMOGA were: population size = 200, crossover rate = 1.0, mutation
rate = 0.05, desired proportion of feasible solutions = 10%, and € = 0.01. The parameters
for VEGA were: population size = 350, maximum number of generations = 1000, crossover
rate = 0.6, mutation rate = 0.05, tournament size = 5. The parameters for NPGA were:
population size = 350, number of generations = 1000, crossover rate = 0.6, mutation rate =
0.05, size of sample of the population = 10, selection ratio = 0.8. The parameters for MOGA
were: population size = 350, maximum number of generations = 1000, crossover rate = 0.6,
mutation rate = 0.05. In all cases, a binary gray-coded representation with two-point crossover
and uniform mutation was adopted. Also, the total number of fitness function evaluations was,
in all cases, of 350,000.

Copyright © 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2003; 00:1-6
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18 HERNANDEZ AGUIRRE ET AL.

6.2. Discussion of Results

The results obtained by each method are shown in Tables II, III, IV, V, VI and VII. Note
that for each of the approaches compared (i.e., COMOGA, VEGA, NPGA, MOGA, IS-PAES
and stochastic ranking), 30 independent runs were performed, of 350,000 fitness function
evaluations each. Also note that comparisons with respect to stochastic ranking are only
indirect and based on the statistical results reported in [29], and taking advantage of the fact
that the authors report results for all the test functions used in the first comparative study
included in this paper. Note however that all the other methods compared were implemented
by the authors.

From Tables VI and VII we can see that the proposed approach is highly competitive.! The

discussion of results for each test function is provided next:

For g01, the best solution found by IS-PAES was: & = {1, 0.999999939809,
0.999997901977, 1,  0.999981406123, 1, 1, 0.999999242667, 0.999981194574,
2.99987534752, 2.99995011286, 2.99993014684, 0.999982112914} with F(&) =
—14.99968877 (see Table VI). The constraint values of this solution are: g¢;(%)
= {-0.000174660002, —0.000198701686, —0.000124056728, —5.00012465248, —5.00004940561,
—5.00005306898, —0.000106058603, —4.98871399999 x 105, —4.95330679999 x 10 5}. In this
case, IS-PAES was less consistent than stochastic ranking in finding the global optimum (see
Table VII for the results of stochastic ranking), mainly because the approach was trapped in a
local optimum in which F(£) = —13 during 20% of the runs. However, IS-PAES had a better

performance than any of the other multiobjective-based methods. COMOGA is clearly the

iNote that in all cases, we assumed minimization problems. That is the reason why some values of f (Z) are
negative in our tables but the global optimum is a positive value.
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approach with the worst performance in this test function (see Table II). MOGA was the best

of the multiobjective-based methods (see Table V), only below IS-PAES.

For g02 the best solution found by IS-PAES was: ¥ = {3.14860401788,
3.10915903011, 3.08909341555, 3.05835689132, 3.04000196011, 3.00100530894,
2.94955289769, 2.94207158769,0.49907406319, 0.486231653274,0.49055938302, 0.492879188045,
0.481722447567,0.471623533316,0.452037376504, 0.442565813637,0.451211591495,0.437863945589,
0.444359423833, 0.437834075871} with F(Z) = —0.803375563 (see Table VI). The constraint
values of this solution are: g;(Z) = {—0.000548020359981, —120.074192395}. As we can see, the
best result found by stochastic ranking was better than the best result found by IS-PAES (see
Table VII). However, the statistical performance measures of IS-PAES were better (particularly
the standard deviation which is significantly lower), which seems to indicate that our approach
had more robustness in this problem. Regarding the other four multiobjective-based approaches
implemented, NPGA had the best performance (see Table IV), but its results were poorer than
those produced by IS-PAES. VEGA was the approach with the worst performance in this test

function (see Table IIT).

The best solution found by IS-PAES for g03 was: £ = {0.316703041297, 0.315651505081,
0.316134923616, 0.316278204068,0.31704736156, 0.3153235498, 0.316606164753, 0.316219548386,
0.316085870843,0.316381756491} with F(Z) = —1.00047671446 (see Table VI). The constraint
values of this solution are: g;(Z) = {—2.21822119784 x 10~7}. In can be clearly seen in this
case that both IS-PAES and stochastic ranking had an excellent performance (see Table VII).
In this case, NPGA was again the best among the other multiobjective-based approaches
implemented (see Table IV), but its results were poorer than those produced with IS-PAES.
VEGA was again the approach with the worst performance in this case (the approach was
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never able to produce a feasible solution in any of the runs performed) (see Table III).

The best solution found by IS-PAES for g04 was: £ = {78, 33.00000002, 29.99525605, 45,
36.77581285 } with F(¥) = —30665.53867 (see Table VI). The constraint values of this solution
are: g;(%) = {—4.56757594941 x 1079 —91.9999999954, —11.1594996911, —8.8405003089,
—4.9999999992, —8.04911332031 x 10~ 1%}. The behavior of IS-PAES in this test function was
practically the same as stochastic ranking (see Table VII). In this case, NPGA was also the
best among the other multiobjective-based approaches (see Table IV), but MOGA was not too
far from NPGA in terms of performance (see Table V). However, neither MOGA or NPGA
were better than IS-PAES. COMOGA occupied the last place in terms of performance for this

test function (see Table II).

For g06, the best solution found by IS-PAES was: £ = {14.0950000092, 0.842960808844}
with F(Z) = -6961.813854 (see Table VI). The constraint values of this solution are: g;(Z) =
{—4.15492107386 x 102, —1.42450804486 x 10~ ®}. Note that both approaches (i.e., stochastic
ranking and IS-PAES) reached the global optimum in this case, but IS-PAES was more
consistent, with very small variations in the results and a much lower standard deviation
than stochastic ranking (see Table VII). In this case, MOGA was the best among the other
multiobjective-based approaches (see Table V), and the NPGA was the second best (see
Table IV). However, none of these two approaches (NPGA or MOGA) were better than IS-

PAES. COMOGA occupied again the last place in terms of performance (see Table II).

Stochastic ranking was clearly better in all aspects than IS-PAES for g07 (see Table VII).
The best solution found by IS-PAES was: Z = {2.16996489702, 2.36701436984, 8.76882720318,
5.07418756668,0.943992761955,1.32027308617, 1.31870032997,9.82673763033, 8.26988778617,
8.36187863755} with F(Z) = 24.33817628 (see Table VI). The constraint values of
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this solution are: g;(Z) = {—0.000530879660006, —0.000896337350003, —8.78072999289 x
1075, —0.0453044976875, —0.00211782207532, —0.000269286602308, —6.31896729469,

—49.9668859294}. NPGA was the best among the other multiobjective-based approaches for
g07 (see Table IV), and MOGA was the second best (see Table V). However, none of these
two approaches (NPGA or MOGA) were better than IS-PAES. COMOGA occupied again the

last place in terms of performance for this test function (see Table II).

For g08, the best solution found by IS-PAES was: & = {1.227971353, 4.245373368} with
F(¥) = —0.095825041 (see Table VI). The constraint values of this solution are: g;(Z) =
{—1.73745972421, —0.167763263276}. Both IS-PAES and stochastic ranking had the same
performance in this test function (see Table VII). In this case, MOGA was the best among
the other multiobjective-based approaches (see Table V), and VEGA and NPGA shared the
second place (see Tables III and IV). COMOGA occupied again the last place in terms of
performance for this test function (see Table II). Note however that in this case all approaches

tried had an acceptable performance.

Both stochastic ranking and IS-PAES reached the global optimum for g09, but IS-PAES
had better statistical measures (see Tables VII and VI). The best solution found by IS-PAEs
was: & = {2.33155464246, 1.95170473767, -0.4777639392, 4.36501371674, -0.627393647911,
1.04100115201,1.59671155682} with F'(#) = 680.630601799. The constraint values of this solu-
tion are: g;(Z) = {—0.000156311060875, —252.549012109, —119.289298995, —8.37410965562 x
10~°}. From the other multiobjective-based approaches, NPGA was the best (see Table IV),
and MOGA placed second (see Table V). However, none of these two approaches (NPGA or
MOGA) were better than IS-PAES. Once again, COMOGA occupied the last place in terms
of performance for this test function (see Table II).
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Except for the best solution found (which is better for stochastic ranking), the statistical
measures of IS-PAES are better than those of stochastic ranking for g10 (see Tables VI and
VII). The best solution found by IS-PAEs was: & = {105.6345328, 1179.227593, 6070.09281,
122.497943, 257.1979828, 277.4889774, 265.2967614, 357.197398} with F(Z) = 7062.019117.
The constraint values of this solution are: g;(F) = {3.71167275 x 107>, —5.36934575 x
107°,—0.00013458717, —7.75297849997, —8.32504183682, —45.013847191}. In this case, MOGA
was the best of the other multiobjective-based approaches tried (see Table V), and NPGA
placed second (see Table IV). However, none of these two approaches (NPGA or MOGA) were

better than IS-PAES. VEGA was the worst performer in this test function (see Table III).

For gl1l both stochastic ranking and IS-PAES had a very good performance (see
Tables VI and VII). The best solution found by IS-PAES was: & = {-0.707871504966,
0.501171903771} with F(Z) = 0.74991153713. The constraint values of this solution are:
g:(Z) = {-1.01637706393 x 10~5}. In this case, MOGA was again the best of the other
multiobjective-based approaches tried (see Table V), and NPGA placed second (see Table IV)
(very close to MOGA). All the approaches had a very good performance in this case, with

VEGA being the worst performer (see Table IIT).

Finally, for g13, stochastic ranking had a better performance than IS-PAES, in terms
of all the statistical measures reported (see Tables VII and VI). The best solution found
by IS-PAES was: £ = {-1.66625191713, 1.53633838622, 1.91898897695, 0.748626384518,
0.787660303986} with F(Z) = 0.0552048784108. The constraint values of this solution are:
9:(T) = {3.98920742766 x 10711, —1.43917028495 x 10~11, —6.0520770646 x 10~11}. Note that
in this case, none of the other multiobjective-based approaches tried were able to converge to
the feasible region of the problem (see Tables II, ITI, IV, and V). IS-PAES, however, was able
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to reach the feasible region in all of the 30 runs performed and it was able to converge to a

distance of 3% from the global optimum.

In general, we can see that IS-PAES was superior to any of the other multiobjective-based
approaches implemented in all of the test functions tried. MOGA and NPGA competed for
the second best performer, but had obvious difficulties with most of the test functions. In fact,
these two approaches were not able to reach the global optimum in most of the problems tried,
unlike IS-PAES. Also, COMOGA and VEGA competed for the worst performer. Qur main
conclusion is that Pareto-based techniques perform better than population based techniques
(such as VEGA) and hybrids (such as COMOGA), which is something that we had already

found in some previous work [20].

As we indicated before, we used 350,000 fitness function evaluations for our experiments,
so that we could compare results with respect to stochastic ranking [29]. However, it is
also interesting to analyze the correlation between number of iterations and accuracy of
our proposed approach. Thus, we performed some experiments to determine, for each of the
previously indicated test functions, how many iterations were required by IS-PAES to converge
to the global optimum (or the best known solution). Figures 6 and 7 show in the x-axis the
distance to the optimum (expressed as a percentage) and on the y-axis the number of fitness
function evaluations. Note in Figure 6 that g06 and g09 are the two test functions that are
more difficult to IS-PAES. However, for the set of test functions included in Figure 6 (i.e.,
g04, g06, g08, g09 and g11), IS-PAES is able to converge to a distance of 1% of the global
optimum using only 55,000 fitness function evaluations. This first set, is composed of “easy”
test functions. In Figure 7, we can see that the second set of test functions (i.e., g01, g02,
g03, g07, g10, and g13) requires of the full 350,000 fitness function evaluations performed
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in order to converge to a distance of 1% of the global optimum. Obviously, this is the set of
“difficult” test functions. It is also worth noticing that IS-PAES cannot converge to a distance
of 1% of the global optimum for gl13, which is the most difficult function used. However, it
converges to a distance of 3% of the global optimum, whereas none of the other methods based
on multiobjective optimization concepts adopted for our comparative study was able to reach
the feasible region.

Figure 8 is used to illustrate the consistency of IS-PAES. First, it is important to indicate
that IS-PAES was able to converge to the feasible region in all of the 30 runs performed per
function. For g01, g03, g04, g06, g08, g09, and gl1, IS-PAES was able to converge to a
distance of 1% from the global optimum in the 30 runs performed. For g07, 29 of the 30 runs
performed converged to a distance of 1% from the global optimum and the other one converged
to a distance of 2% from the global optimum. For g02, IS-PAES was able to converge to 1%
from the global optimum in 15 of the 30 runs performed. However, note that in 29 of the 30
runs performed, IS-PAES converged to a 2% distance from the global optimum and in the
remaining run, it converged to a distance of 3% from the global optimum. For g10, IS-PAES
was able to converge to a 1% distance from the global optimum only in 6 of the 30 runs
performed. However, in 21 runs, it converged to a distance of 2% from the global optimum and
in the remaining runs, it converged to a distance of 4% from the global optimum. The most
difficult function is g13, in which IS-PAES was able to converge to a distance of 3% from the
global optimum only in 2 of the runs performed.

To give an indication of computational cost of IS-PAES (this time varies according to the

problem being solved), the “easy”? test functions such as g08 take between 5 and 10 minutes

$Difficulty in this case is defined in terms of the cost of evaluating the objective function and the constraints
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for 30 runs (using 350,000 fitness function evaluations per run). That would be about 20
seconds per run. For a “difficult” problem such as g10 takes between 25 and 30 minutes for 30
runs (using 350,000 fitness function evaluations per run). That is approximately, one minute
per run. Regarding the other multiobjective-based approaches implemented, COMOGA is the
slowest, taking, on average, 2 minutes per run when solving g08, and 3 minutes per run when
solving g10 (this additional time taken by COMOGA has to do with its nongenerational
nature and the ranking of solutions that it requires). VEGA takes, on average, 10 seconds per
run when solving g08 and 42 seconds per run when solving g10. NPGA takes, on average,
58 seconds per run when solving g08 and 88 seconds per run when solving g10 (the time
difference of NPGA has to do with the use of Pareto dominance checkings, which have an
O(kM?) complexity, where k is the number of objectives and M is the population size).
Finally, MOGA takes, on average, 15 seconds per run when solving g08 and 46 seconds per
run when solving g10. VEGA and MOGA are the fastest algorithms, but they do not provide
results as good as IS-PAES. Computational times for stochastic ranking are not available,
but, most likely, they will be slower than IS-PAES due to the fact that stochastic ranking
was implemented in MATLAB. However, if stochastic ranking is implemented in C/C++,
it may take approximately the same CPU time as IS-PAES, because it does not involve any
algorithmic process that is significantly more or less expensive than those included in IS-PAES.
Note that in the evolutionary computation literature, it is more common to report fitness
function evaluations (see for example [19, 29]), because it is well-known that any evolutionary
algorithm has a low computational complexity (its computational complexity is obtained by
multiplying the population size times the number of iterations performed) and most of the

computational time taken by a typical run is normally spent evaluating the fitness function.
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Since none of the approaches evaluated performs any computationally expensive operation in
the fitness function, we preferred to perform the comparison of approaches assuming the same

number of fitness function evaluations for all of them.

6.3. Optimization of a 49-bar plane truss

The first engineering optimization problem chosen is the optimization of the 49-bar plane truss
shown in Figure 9. The goal is to find the cross-sectional area of each member of the truss,
such that the overall weight is minimized, subject to stress and displacement constraints. The
weight of the truss is given by F (&) = 2;9:1 vA;Lj, where A; is the cross-sectional area of
the jy, member, L; is the corresponding length of the bar, and v is the volumetric density
of the material. We used a catalog of Altos Hornos de Mézico, S.A., with 65 entries for the
cross-sectional areas available for the design. Other relevant data are the following: Young
modulus = 2.1 x 10% kg/cm?, maximum allowable stress = 3500.00 kg/cm?, y = 7.4250 x 103
kg/cm?®, and a horizontal load of 4994.00 kg applied to the nodes: 3, 5, 7, 9, 12, 14, 16, 19, 21,

23, 25 y 27. We solved this problem for two cases:

1. Case 1. Stress constraints only: Maximum allowable stress = 3500.00 kg/cm?. A
total of 49 constraints, thus 50 objective functions.

2. Case 2. Stress and displacement constraints: Maximum allowable stress = 3500.00
kg/cm?, maximum displacement per node = 10 cm. There is a total of 72 constraints,
thus 73 objective functions.

3. Case 3. Real-world problem: The design problem considers traction and compression
stress on the bars, as well as their proper weight. Maximum allowable stress = 3500.00
kg/cm?, maximum displacement per node =10 cm. A total of 72 constraints, thus 73
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objective functions.

The average result of 30 runs for each case are shown in Tables VIII, IX and X. We compare
IS-PAES with previous results reported by Botello et al. [3] using other heuristics with a
penalty function [28] (SA: Simulated Annealing, GA50: Genetic Algorithm with a population
of 50, and GSSA: General Stochastic Search Algorithm with populations of 50 and 5).

We can clearly see that in all the cases tried, IS-PAES produced the lowest average weight.

6.4. Optimization of a 10-bar Plane Truss

The second engineering optimization problem chosen is the optimization of the 10-bar plane
truss shown in Figure 10. We want to find the coss-sectional area of each bar of this truss such
that its weight is minimized, subject to stress and displacement constraints. The weight of the

truss is given by:

10
F(@) =Y yA;L; (10)

where: ¥ is a candidate solution, A; is the cross-sectional area of the jth member. L; is the
length of member j and -y is the volumetric weight of the material.

The maximum allowable displacement for each node (vertical and horizontal) is assumed
as 5.08 cm. There are 10 stress constraints and 8 displacement constraints in total. The
maximum and minimum allowable value for the cross-sectional areas are 0.5062 cm? and 999.0

2| respectively. The remaining assumed data are: Young’s modulus E = 7.3x10° kg/cm?,

cm
maximum allowable stress = 1742.11 kg/cm?, v = 7.4239x1073 kg/cm?, and a vertical load
of —45454.0 kg applied at nodes 2 and 4.

Table XI shows the minimum value found for this problem by different heuristic algorithms
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[3]: GSSA (general stochastic search algorithm with a population size of five, crossover rate of
zero, and mutation rate 0...10/(number_of_bars), and simulated annealing with a = 1.001),
VGA (variable-length genetic algorithm of Rajeev and Krishnamoorthy [24], with population
size of 50), MC (Monte-Carlo annealing algorithm of Elperin [11]), SAARSR (Simulated
Annealing with Automatic Reduction of Search Range, proposed by Tzan and Pantelides
[35]), ISA (Iterated Simulated Annealing, of Ackley [1], and SSO (State Space Optimal [15]).

We can see in Table XI that IS-PAES found better results than any of the other methods.
Note that MC found a solution with a lower weight than IS-PAES, but such a solution violates

stress and displacement constraints, as can be seen in Tables XII and XIII.

7. CONCLUSIONS AND FUTURE WORK

We have introduced a constraint-handling approach that combines multiobjective optimization
concepts with an efficient reduction mechanism of the search space and a secondary population.
We have shown how our approach overcomes the scalability problem of the original PAES
(which was proposed exclusively for multiobjective optimization) from which it was derived,
and we also showed that the approach is highly competitive with respect to the state-of-the-
art technique in the area and with respect to other multiobjective-based constraint-handling
techniques.

The main contribution of the proposed approach is that this is the first constraint-handling
technique based on Pareto dominance that provides competitive results with respect to
stochastic ranking (which is currently the best constraint-handling techniques used with
evolutionary algorithms reported in the literature). IS-PAES not only was able to match
many of the results of stochastic ranking, but was also more consistent (in terms of
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statistical performance) than stochastic ranking. Additionally, the main advantage of IS-PAES
with respect to stochastic ranking is that the former can be extended for multiobjective
optimization problems in a more natural way (in fact, this is part of our future work and
some preliminary results indicate its viability). The application of IS-PAES to multiobjective
optimization problems is straightforward, because even single-objective problems are handled
as multiobjective problems by the approach. In contrast, stochastic ranking would require a
re-definition that considers the use of Pareto dominance in the selection of solutions in order
to work with multiobjective optimization problems.

Another aspect that we want to explore in the future is the elimination of all of the
parameters of IS-PAES using on-line or self-adaptation. This, however, may interfere with

the mechanism used to reduce the search space and therefore requires a careful study.
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APPENDIX A: Test Functions Adopted

1. gO01:
Minimize:
4 4 13
ERE) SRE) DS 9
i=1 i=1 i=5
subject to:

21 + 2z2 + 210+ 211 —10<L0

g1(%)

2z1 + 2x3 + 10 + 212 — 10 <0

92(%)
93(%) = 2x2 + 223 + 11 + 212 — 10 < 0
ga(%) = —8x1 + 210 <0

95(&) = —8z2 +x11 <0

g6(%) = —8x3 + x12 <0

g7(Z) = =224 — 5 + 310 < 0

98(%) = —2z6 — 27+ 211 <0

go(%) = —2z8 —x9 + 712 <0

where the bounds are 0 < z; <1 (i =1,...,9),0 <z; <100 (¢ = 10,11,12) and 0 < 213 < 1.
The global optimum is at z* = (1,1,1,1,1,1,1,1,1,3,3,3,1) where f(z*) = —15. Constraints

g1, 92, g3, g4, g5 and ge are active.

2. g02:
Maximize:
1) = Zlncos‘l(mi) — 211, cos?(x;) (11)
Varia? |
subject to:
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a@ = 075—]Ja <0
=1
@@ = Y 2i-T75m<0 (12)
i=1
where n = 20 and 0 < z; < 10 (¢ = 1,...,n). The global maximum is unknown; the best

reported solution is [29] f(z*) = 0.803619. Constraint g; is close to being active (g1 = —107%).

3. g03:
Maximize:
1@ = (Vo) [[ = (13)
i=1
subject to:
n
ME) = Y 2i-1=0 (14)
i=1

wheren =10and 0 < z; <1 (¢ =1,...,n). The global maximumisat z; =1//n (i =1,...,n)

where f(z*) =1.

4. g04:
Minimize:
f(@) = 5.3578547x§ + 0.8356891x1 x5 + 37.293239z: — 40792.141 (15)
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subject to:
91(£) = 85.334407 + 0.0056858x2x5 + 0.0006262x1 x4 — 0.0022053z325 — 92 < 0
g2(%) = —85.334407 — 0.0056858x2x5 — 0.0006262x1 x4 + 0.0022053z325 < 0
g3(€) = 80.51249 + 0.0071317z2x5 + 0.0029955z1 2 + 0.0021813z3 — 110 < 0
ga(£) = —80.51249 — 0.0071317z2x5 — 0.002995521 2 — 0.0021813z3 + 90 < 0
g5(Z) = 9.300961 + 0.0047026x3x5 + 0.0012547x1 235 + 0.00190852324 — 25 < 0
g6(£) = —9.300961 — 0.0047026x3x5 — 0.0012547x1 23 — 0.0019085z3x4 +20 < 0

(16)

where: 78 < z1 < 102, 33 < zy < 45, 27 < z; < 45 (¢ = 3,4,5). The optimum solution is
xz* = (78, 33,29.995256025682, 45, 36.775812905788) where f(z*) = —30665.539. Constraints g;
and ge are active.

5. g06
Minimize:

f(@) = (z1 — 10)® + (z2 — 20)° (17)

subject to:

91(2) —(z1—5)* — (2 —5)*+ 100 < 0

92(F) = (z1—6)"+ (x2—5)° —82.81 <0 (18)

where 13 < z1 < 100 and 0 < z2 < 100. The optimum solution is z* = (14.095, 0.84296) where
f(z*) = —6961.81388. Both constraints are active.

6. g07
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Minimize:

f(@) = 2} +23+x120 — 1421 — 1622 + (23 — 10)% + 4(xs — 5) + (x5 — 3)?

+2(x6 — 1) + bx? + T(xs — 11)* + 2(x9 — 10)*

+(x10—7)2 4+ 45 (19)

Subject to:

g1(€) = —105+4x1 +5r2 —3w7 + 928 <0

92(Z) = 10x1 —8x2 — 17x7 + 228 <0

gg(f) = —8x1+2x2+5r9 — 2210 —12<0

ga(®) = 3(x1—2)%+4(x2 —3)* + 225 — Txs —120<0

g5() = bxi48zs+ (z3—6)° —2z4 —40 <0

g6(Z) = i+ 22 —2)° — 2w120 + 1425 — 626 <0

gr(&) = 0.5(x1—8)"+2(z2a—4)" +3z5 —x6 —30<0

gs(®) = —3x1+6x2+ 12(zo —8)° — Tz10 < 0 (20)
where —10 < z; < 10 (¢ = 1,...,10). The global optimum is z* = (2.171996,

2.363683, 8.773926, 5.095984, 0.9906548, 1.430574, 1.321644, 9.828726,

8.280092, 8.375927) where f(z*) = 24.3062091. Constraints g1, g2, g3, g4, g5 and ge are active.

7. g08
Maximize:
. 3 .
o sin®(27z1) sin(27zs)
(@)= 3 (21)
z3(z1 + z2)

subject to:
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] —22+1<0

g1(%)

@@ = l-z1+(@2-4)°<0 (22)

where 0 < z1 < 10 and 0 < z3 < 10. The optimum solution is located at z* =

(12279713, 4.2453733) where f(z*) = 0.095825.

8. g09
Minimize:
f(@) = (1 —10)% +5(x2 — 12)% + x5 + 3(wa — 11)?
+1028 + 722 + 27 — dxexy — 1026 — 827 (23)
subject to:
g(Z) = —127+ 227 + 325 + x3 + 4ai + 5z5 < 0
g2(@) = —282+4 Tz1+ 3wz + 1022 + 24 — 25 <0
g3(Z) = —196 4 23x; + 3 + 625 —8x7 <0
g4(Z) = 4z} + 25— 3x122 + 205 + 5xs — 1127 <0 (24)
where -10 < =z < 10 (¢ = 1,...,7). The optimum solution is z* =

(2.330499, 1.951372, —0.4775414, 4.365726, —0.6244870, 1.038131, 1.594227) where f(z*)

680.6300573. Two constraints are active (g1 and g4).

9. gl0
Minimize:
f@)=z1+z2+x3 (25)
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subject to:

gi() = —1+40.0025(zs+z6) <0

g2(Z) = —-140.0025(xs +x7 —x4) <0

g3(f) = —1+40.01(zs—z5) <0

ga(Z) = —z1we + 833.3325224 + 1001 — 83333.333 < 0

95() = —zom7 + 12505 + o4 — 125024 <0

96(Z) = —wmaxs+ 1250000 + z3zs — 250025 < 0 (26)

where 100 < z1 < 10000, 1000 < z; < 10000, (i = 2,3), 10 < z; < 1000, (i = 4,...,8). The
global optimum is: z* = (579.3167, 1359.943, 5110.071,

182.0174, 295.5985, 217.9799, 286.4162, 395.5979), where f(z*) = 7049.3307. g1, g> and g3 are

active.
10. gl1
Minimize:

F(&) = o] + (w2 —1)° (27)
subject to:

h(Z) = z2—2i=0 (28)
where: —1 < z; < 1, =1 < 2 < 1. The optimum solution is z* = (£1/v/2,1/2) where
f(z*) =0.75.

11. g13
Minimize:
£(@) = emreamanees 29)
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subject to:

g@) = zi+aei+zi+ai+zi—10=0
92(&) = wows —bzraxs =0
g3(@) = ai+23+1=0 (30)

where —2.3 < z; <23 (1 =1,2) and —3.2 < z; < 3.2 (¢ = 3,4,5). The optimum solution is

z* = (—1.717143, 1.595709, 1.827247, —0.7636413, —0.763645) where f(z*) = 0.0539498.
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maxsize: maximum size of file
c¢: current parent € X (decision variable space)
h: child of ¢ € X, ap: individual in file that dominates h
aq: individual in file dominated by A
current: current number of individuals in file
cnew: number of individuals generated thus far
g: pick a new parent from less densely populated region every g new individuals
r: shrink space at every r new individuals
current = 1; cnew=0;
¢ = newindividual();
add(c);
While cnew<MaxNew do
h = mutate(c); cnew+ =1;
if (c<h) then Label A
else if (h<c) then { remove(c); add(g); c=h; }
else if (3 a, € file | a5 X h) then Label A
else if (3 aq € file | h < a4) then {
add( h); V a4 { remove(aq); current— =1 }
else test(h,c file)
Label A
if (cnew % g==0) then ¢ = individual in less densely populated region
if (cnew % r==0) then shrinkspace(file)
End While

Figure 1. Main algorithm of IS-PAES
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if (current < maxsize) then {
add(h);
if (h O ¢) then c=h }

else if (Jap€file | h O ap) then {
remove(ap); add(h)
if (h Oc) thenc=h;}

Figure 2. Pseudo-code of test(h,c,file) (called by main of IS-PAES)
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Zpob: Vector containing the smallest value of either z; € X
Tpob: vector containing the largest value of either z; € X
select(file);

getMinMax( file, Zpob, Tpob);

trim(@pob: Tpob );

adjustparameters(file);

Figure 3. Pseudo-code of Shrinkspace(file) (called by main of IS-PAES)
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m: number of constraints
i: constraint index
maxsize: max size of file
listsize: 15% of maxsize
constraintvalue(x,i): value of individual at constraint i
sortfile(file): sort file by objective function
worst(file,i): worst individual in file for constraint i
validconstraints={1,2,3,...,m};
i=firstin(validconstraints);
While (size(file) > listsize and size(validconstraints) > 0) {
x=worst(file,i)
if (x violates constraint i)
file=delete(file,x)
else validconstraints=removeindex(validconstraints,i)
if (size(validconstraints) > 0) i=nextin(validconstraints)

if (size(file) == listsize))
list=file
else
file=sort(file)
list=copy (file,listsize) *pick the best listsize elements*

Figure 4. Pseudo-code of select(file) (called by shrinkspace)
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n: size of decision vector;
T;: actual upper bound of the i, decision variable
x;: actual lower bound of the i;, decision variable
Tpob,i: upper bound of i, decision variable in population
Zpop,;: lower bound of 4;, decision variable in population
Vi:ie{1l,...,n}
slack; = 0.05 X (Tpob,i — Lpop. ;)
width_pob; = Tpob,i — Zppob,is wzdtht =7 xt

deltaMmz _ B*wzdth —undth_pob
delta; = max(slack;, deltaMln,)

E‘H_l = xpob i+ dEltala L —pob,i - delt(li;
lf( H_ > -’Eomgznal 7.) then
CIZ'§+1_ = J; +1_ xomginal i3 w = Eoriginal,i;
lf( t+ < Zoriginal, 7,) then _t+1+ - %riginal,i - ££+1.
$t+

t+ — Zoriginal, i 1
lf( > momgznal z) then Z; = Zoriginal,i)

Figure 5. Pseudo-code of trim (called by shrinkspace)
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Figure 6. Graphical display of the distance to the optimum (expressed as a percentage) achieved by

IS-PAES with respect to the number of fitness function evaluations (values in the y-axis are multiplied
by 1 x 10*). This figure includes only test functions g04, g06, g08, g09, and gl1.
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Figure 7. Graphical display of the distance to the optimum (expressed as a percentage) achieved by
IS-PAES with respect to the number of fitness function evaluations (values in the y-axis are multiplied
by 1 x 10%). This figure includes only test functions g01, g02, g03, g07, g10 and g13.
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Figure 8. Graphical representation of the distance from the optimum (expressed as a percentage)
achieved by IS-PAES with respect to the successful runs performed (over the total of 30 runs performed
on each test function).
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127m. 2.54n. 2.54n. 2.54n. 127,
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Figure 9. 49-bar plane truss used as the first engineering optimization example.
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Figure 10. 10-bar plane truss used as the second engineering optimization example.
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TF | n | Type of function p LI | NI | NE | LE
g0l | 13 quadratic 0.0003% 9 0 0 0
g02 | 20 nonlinear 99.9973% | 2 0 0 0
g03 | 10 nonlinear 0.0026% 0 0 1 0
g0d | 5 quadratic 27.0079% | 4 2 0 0
g6 | 2 nonlinear 0.0057% 0 2 0 0
g07 | 10 quadratic 0.0000% 3 5 0 0
g08 | 2 nonlinear 0.8581% 0 2 0 0
g09 | 7 nonlinear 0.5199% 0 4 0 0
gl0 | 8 linear 0.0020% 6 0 0 0
gll | 2 quadratic 0.0973% | 0 0 1 0
gl3 | 5 nonlinear 0.0000% | 0 0 2 1

Table I. Values of p for the eleven test problems chosen. n is the number of decision variables, LI is the
number of linear inequalities, NI the number of nonlinear inequalities, NE is the number of nonlinear
equalities, and LE is the number of linear equalities.
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TF | optimal Best Mean Median Worst Std Dev
g01 -15.0 -4.806906 -1.203723 0.000000 0.000000 1.638475
g02 | -0.803619 0.021716 0.016409 0.017607 0.007805 0.003410
g03 -1.0 -0.022967 -0.001121 -0.000042 -0.000000 -0.004195
g04 | -30665.539 | -30483.474609 | -30397.133659 | -30389.091797 | -30320.294922 37.640510
g06 | -6961.814 -6622.280273 -6058.865120 -6157.552979 -4859.331055 436.786555
g07 24.306 468.216675 1173.033939 1690.598938 1933.539917 610.679874
g08 | -0.095825 -0.095813 -0.095447 -0.095652 -0.093345 0.000499
g09 680.630 723.854919 873.917936 877.980988 995.981873 68.385708
glo | 7049.331 11129.170898 | 15875.698828 | 15952.260254 | 20528.048828 | 2371.513317
gll 0.750 0.749014 0.749308 0.749297 0.749880 0.000186
gl3 | 0.053950 N.F. N.F. N.F. N.F. N.F.

Table II. Results produced by COMOGA. N.F. = Not Feasible (i.e., the method was unable to reach
the feasible region).
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TF | optimal Best Mean Median Worst Std Dev
g01 -15.0 -11.136517 -10.249717 -10.148078 -9.534448 0.349041
g02 | -0.803619 0.000212 0.000077 0.000048 0.000008 0.000057
g03 -1.0 N.F. N.F. N.F. N.F. N.F.
g04 | -30665.539 | -30652.330078 | -30638.775977 | -30637.970703 | -30625.042969 5.337246
g06 | -6961.814 -6941.932129 -6873.139681 -6871.179932 -6743.495117 46.609326
g07 24.306 28.631790 32.014552 32.026387 35.525009 1.736919
g08 | -0.095825 -0.095826 -0.095826 -0.095826 -0.095826 0.000000
g09 680.630 693.252319 717.023442 717.820679 744.084412 11.384411
glo | 7049.331 11259.611328* | 14046.409651* | 13283.869629" | 22271.488281* | 2773.263053"
gll 0.750 0.749426 0.760147 0.752852 0.811940 0.018649
gl3 | 0.053950 N.F. N.F. N.F. N.F. N.F.

Table II1. Results produced by VEGA. N.F. = Not Feasible (i.e., the method was unable to reach the
feasible region). * One of the runs of VEGA converged to a non-feasible solution. Therefore, these
statistics were computed using only the results of 29 rumns.
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TF | optimal Best Mean Median Worst Std Dev
g01 -15.0 -11.007717 -8.033259 -7.654563 -4.719421 1.718908
g02 | -0.803619 0.790404 0.769520 0.772691 0.739923 0.012923
g03 -1.0 -0.981203 -0.928032 -0.927160 -0.884223 -0.021715
g04 | -30665.539 | -30659.656250 | -30653.059961 | -30654.006836 | -30639.603516 5.022099
g06 | -6961.814 -6956.971680 -6776.418766 -6818.011475 -6310.125488 176.181100
g07 24.306 26.232813 28.296385 28.167288 30.784266 1.106179
g08 | -0.095825 0.095826 0.095826 0.095826 0.095826 0.000000
g09 680.630 680.872986 681.473741 681.515137 682.188416 0.326890
glo | 7049.331 8812.435547 11134.727006 9896.345215 15609.163086 | 2381.940642
gll 0.750 0.749007 0.749099 0.749049 0.749713 0.000142
gl3 | 0.053950 N.F. N.F. N.F. N.F. N.F.

Table IV. Results produced by NPGA. N.F. = Not Feasible (i.e., the method was unable to reach the
feasible region)
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TF | optimal Best Mean Median Worst Std Dev
g01 -15.0 -14.504487 -13.981660 -13.997746 -13.306435 0.320086
g02 | -0.803619 0.680874 0.58471 0.569982 0.499295 0.048400
g03 -1.0 -0.868598 -0.561975 -0.578549 -0.263762 0.157852
g04 | -30665.539 | -30659.845703 | -30615.247591 | -30614.80273 | -30552.658203 28.262409
g06 | -6961.814 -6957.950684 -6903.774691 | -6906.598389 | -6845.432129 29.742030
g07 24.306 27.512201 36.427887 33.668530 80.891251 10.502327
g08 | -0.095825 -0.095825 -0.095825 -0.095825 -0.095825 0.000000
g09 680.630 681.324036 686.101556 684.921814 700.550598 4.505219
glo | 7049.331 7372.459961 8566.307992 8316.973145 | 12552.230469 | 1159.513051
gll 0.750 0.749002 0.749063 0.749041 0.749312 0.000072
gl3 | 0.053950 N.F. N.F. N.F. N.F. N.F.

Table V. Results produced by MOGA. N.F. = Not Feasible (i.e., the method was unable to reach the
feasible region)
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TF | optimal Best Mean Median Worst Std Dev
g01 -15.0 -14.9997 -14.494 -14.997 -12.446 9.3x1071
g02 | -0.803619 | -0.803376 | -0.793281 -0.793342 | -0.768291 9.0x1073
g03 -1.0 -1.000 -1.000 -1.000 -1.000 9.7x107°
g04 | -30665.539 | -30665.539 | -30665.539 | -30665.539 | -30665.539 0.0
g06 | -6961.814 | -6961.814 | -6961.813 | -6961.814 | -6961.810 8.5x107°
g07 24.306 24.338 24.527 24.467 24.995 1.7x1071
g08 | -0.095825 | -0.095825 | -0.095825 | -0.095825 | -0.095825 0.0
g09 680.630 680.630 680.631 680.631 680.634 8.1x10°*
gl0 | 7049.331 7062.019 7342.944 7448.014 7588.054 1.4x10?
gll 0.750 0.750 0.750 0.750 0.751 2.6x107*
gl3 | 0.053950 0.05517 0.28184 0.2779 0.5471 1.776x10"

Table VI. Results produced by our IS-PAES algorithm.
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TF | optimal Best Mean Median Worst Std Dev
g01 -15.0 -15.0 -15.0 -15.0 -15.0 0.0
g02 | -0.803619 | -0.803515 | -0.781975 | -0.785800 | -0.726288 2x107?
g03 -1.0 -1.000 -1.000 -1.000 -1.000 1.9x107*
g04 | -30665.539 | -30665.539 | -30665.539 | -30665.539 | -30665.539 | 2.0x107°
g06 | -6961.814 | -6961.814 | -6875.940 | -6961.814 | -6350.262 1.6x10?
g07 24.306 24.307 24.374 24.357 24.642 6.6x1072
g08 | -0.095825 -0.095825 | -0.095825 | -0.095825 | -0.095825 | 2.6x107'7
g09 680.630 680.630 680.656 680.641 680.763 3.4x1072
gl0 | 7049.331 7054.316 7559.192 7372.613 8835.655 5.3x 102
gll 0.750 0.750 0.750 0.750 0.750 8.0x107°
gl3 | 0.053950 0.053957 0.0675543 0.057006 0.216915 3.1x107?

Table VIIL. Results produced by the stochastic ranking algorithm [29] using Pf = 0.45.
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Algorithm | Average Weight (Kg)
IS-PAES 610
SA 627
GA50 649
GSSA50 619
GSSA5 625

Table VIII. Comparison of different algorithms on the 49-bar struss, case 1.
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Algorithm | Average Weight (Kg)
IS-PAES 725
SA 737
GA50 817
GSSA50 748
GSSA5 769

Table IX. Comparison of different algorithms on the 49-bar struss, case 2.
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Algorithm | Average Weight (Kg)
IS-PAES 2603
SA 2724
GA50 2784
GSSA50 2570
GSSA5 2716

Table X. Comparison of different algorithms on the 49-bar struss, case 3.
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Element IS-PAES | GSSA VGA MC SSO ISA SAARSR
1 190.53 205.17 | 206.46 | 200.01 | 193.75 269.48 201.35
2 0.6466 0.6452 | 0.6452 | 0.6452 | 0.6452 79.810 0.6452
3 146.33 134.20 | 151.62 | 129.04 | 150.15 178.45 161.55
4 95.07 90.973 | 103.23 | 90.328 98.62 152.90 95.68
5 0.6452 0.6452 | 0.6452 | 0.6452 | 0.6452 70.390 0.6452
6 3.0166 0.6452 | 0.6452 | 0.6452 3.23 10.260 4.19
7 47.677 55.487 54.84 51.616 48.18 147.87 49.16
8 129.826 | 127.75 | 129.04 | 145.17 | 136.64 14.710 131.55
9 133.282 133.56 | 132.27 96.78 139.47 156.06 134.32
10 0.6452 0.6452 | 0.6452 | 0.6452 | 0.6452 87.740 0.6452
Vol. (cm®) 801624.5 | 805777 | 833258 | 765710 | 828956 | 1313131 833258
Weight (kg) 5951 6186 6186 5685 6155 9750 6187

Table XI. Comparison of weights for the 10-bar plane truss of the second engineering example.
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Element | IS-PAES GSSA VGA MC SSO ISA SAARSR
1 483.27 -447.65 -444.75 -460.10 -475.31 | -209.75 -476.58
2 -73.37 0.41 3.41 -15.30 91.98 -111.35 43.99
3 -613.26 670.31 593.43 695.72 597.46 449.90 569.04
4 -478.62 499.60 440.30 503.06 461.46 239.13 485.80
5 1741.30 | -1464.09 | -1428.68 | -1757.16 | -1754.88 | 362.13 -1641.04
6 -15.72 0.41 3.41 -15.30 18.37 -866.13 14.83
7 1313.54 | -1134.31 | -1148.24 | -1214.48 | -1299.10 | -763.45 | -1311.60
8 -507.89 513.60 508.24 453.71 482.74 1064.60 528.83
9 482.80 -481.25 -485.97 -664.00 -461.46 | -331.34 -492.79
10 103.985 0.58 -4.82 21.64 -130.07 143.23 -65.61

61

Table XII. Comparison of stresses for the 10-bar plane truss of the second engineering example. We
indicate in boldface the elements in which the stress constraints are being violated.
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Element | IS-PAES | GSSA VGA MC SSO ISA SAARSR
1 0.5134 0.5602 | 0.5528 0.5954 0.4802 | 0.4022 0.5419
2 -5.080 -5.0798 | -4.9040 | -5.4352 | -4.9056 | -3.8008 5.0889
3 -1.368 -1.4654 | -1.2948 | -1.5016 | -1.3264 | -0.8631 -1.3213
4 -5.060 -5.0792 | -4.8997 | 5.4543 | -4.8826 | -4.8857 | -5.0746
5 0.6053 0.5607 | 0.5571 0.5763 0.5954 | 0.2627 0.5970
6 -1.878 -1.8474 | -1.8303 | -1.7130 | -1.8047 | -2.9298 -1.9303
7 -0.768 -0.8396 | -0.7433 | -0.8715 | -0.7484 | -0.5636 -0.7129
8 -4.059 -3.6813 | -3.6199 | -3.9140 | -4.0030 | -2.4762 -3.9901

Table XIII. Comparison of displacements for the 10-bar plane truss of the second engineering example.
We indicate in boldface the elements in which the displacement constraints are being violated.
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