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Abstract- This paper introduces the ISPAES algorithm are present. In some problems, a simple form of constraint

for circuit design targeting a Field Programmable Tran-  handling (for instance penalty functions), is applied to the

sistor Array (FPTA). The use of evolutionary algorithms  population in order to deal with constrained search spaces.

is common in circuit design problems, where a single fit- In this paper, the ISPAES algorithm is applied to circuit

ness function drives the evolution process. Frequently, design over a Field Programmable Transistor Array model.

the design problem is subject to several goals or oper- The FPTA transistor model and circuit description was fed

ating constraints, thus, designing a suitable fitness func- into the SPICE simulator for all experiments, so “extrinsic

tion catching all requirements becomes an issue. Such evolution” was used. Experiments using the real FPTA de-

a problem is amenable for multi-objective optimiza- vice have been reported by Adrian Stoica et al. [13, 14].

tion, however, evolutionary algorithms lack an inherent  His technique, however, is driven by the optimization of the

mechanism for constraint handling. This paper intro-  sole fitness function.

duces ISPAES, an evolutionary optimization algorithm

enhanced with a constraint handling technique. Several 2 Problem Statement

design problems targeting a FPTA show the potential of

our approach. We are interested in the general non-linear programming
problem in which we want to:

1 Introduction

The success of Evolutionary Algorithms (EAs) in global op- Find x which optimizesF(x) 1)
timization has triggered a considerable amount of research subject to:
whose goal is a mechanisms to handle constraints [8]. So

far, the_ m_ost_com_mon approach ad_opted in th_e evolution- gi(x) <0, i=1,....n )

ary optimization literature to deal with constrained search )

spaces is the use of penalty functions [11]. Despite the pop- hj(x) =0, j=1,....p (3)
ularity of penalty functions, they have several drawback#hereF is the vector of objective function valuds =
from which the main one is that they require a careful fin¢fi(x), ..., fx(x)], x is the vector of solutionsx =
tuning of the penalty factors that indicates the degree of pé1, z2, ..., z-]", n is the number of inequality constraints
nalization to be applied [12]. andp is the number of equality constraints (in both cases,

Recently, some researchers have suggested the usecafistraints could be linear or non-linear).
multiobjective optimization concepts to handle constraints If we denote the feasible region with and the entire
in EAs. This paper introduces a new approach that is basedarch space wit8i, then obviouslyF C S.
on an evolution strategy that was originally proposed for For an inequality constraint that satisfigéx) = 0, then
multiobjective optimization: the Pareto Archived Evolutionwe will say that it is active ak. All equality constraints:;
Strategy (PAES) [7]. ISPAES (Inverted Shrinkable PAES]regardless of the value &f) are considered to be active at
can be used to handle constraints in single-objective optl points of F.
mization problems and does not present the scalability prob- An optimality criteria has to be defined for the multi-
lems of the original PAES. Besides using Pareto-based sabjective problems since decisions of the typleat is the
lection, our approach uses a secondary population (one lagst solution?must be taken over the population individu-
the most common notions of elitism in evolutionary multi-als. Pareto dominance is that criteria; we say one individual
objective optimization), and a mechanism that reduces tlit®ominates a second individual if the first is better in at least
constrained search space so that our technique can approaoh of the objectives while the other objectives remain with
a optimum more efficiently. no change (&b means a dominates b).

Evolvable hardware researchers apply EAs in circuit de-
sign, usually in a highly dimensional search space, whe® Basic Concepts
building a solution is more promissory than deriving it from
the premises. The common approach can be defined Agnultiobjective optimization problem (MOP) has the fol-
global optimization, that is, the objective function is repdowing the form:
resented by the fitness function, and no problem constraints Minimize [f1(2), f2(3), ..., fu(@)] @)



subject to then inequality constraints: 3. Split the population in subpopulations that are eval-
uated either with respect to the objective function or

9i(¥) =20 i=12,...,m ®) with respect to a single constraint of the problem.
and thep equality constraints: In order to sample the feasible region of the search space
h(Z) =0 i=1,2 » ) widely enough to reach the global optima it is necessary

to maintain a balance between feasible and infeasible solu-
wherek is the number of objective function : R —  tions. If this diversity is not reached, the search will focus
R. We callZ = [z1,29,... ,mn]T the vector of decision only on one area of the feasible region. Thus, it will lead to
variables. We wish to determine from among theSeff all ~ a local optima solution.
vectors which satisfy (5) and (6) the particular set of values A multiobjective optimization technique aims to find a

a3, xs, ...,z which yield the optimum values of all the set of trade-off solutions which are considered good in all

objective functions. the objectives to be optimized. In global nonlinear op-
timization, the main goal is to find the global optimum.

3.1 Pareto Optimality Therefore, some changes must be done to those approaches

in order to adapt them to the new goal. Our main concern
is that feasibility takes precedence, in this case, over non-
dominance. Therefore, good “trade-off” solutions that are
. p D= e not feasible cannot be considered as good as bad “trade-
{1,...,k} : i <wv;. Foragiven multiobjective optimiza- o go|utions that are feasible. Furthermore, a mechanism
tion problem, f(x), the Pareto optimal sef(") is defined o maintain diversity must normally be added to any evolu-
as: tionary multiobjective optimization technique. In our pro-
. / = Y posal, diversity is kept by using an adaptable grid, and by a
Pr=leer |32 eF fo) = fl@)} () selection process applied to the external file that maintains
Thus, we say that a vector of decision variabiésc F is a mixture of both good “trade-off” and feasible individuals.
Pareto optimalif there does not exist anothére F such There are several approaches that have been developed
thatf;(7) < fi(#*)foralli = 1,...,kandf;(¥) < f;(#*) using multiobjective optimization concepts to handle con-
for at least ong. In words, this definition says that is ~ straints, but due to space limitations we will not discuss
Pareto optimal if there exists no feasible vector of decisiofhem here (see for example [4, 15, 9, 10]).
variablesz’ € F which would decrease some criterion with- ~ Evolutionary multiobjective optimization has been ap-
out causing a simultaneous increase in at least one oth#ied to the synthesis of low-power operational amplifiers
criterion. Unfortunately, this concept almost always give$l6, 17]. The approach, however, is based on Genetic Algo-
not a single solution, but rather a set of solutions called thighms.
Pareto optimal setThe vectorse* correspoding to the so-
lutions included in the Pareto optimal set are caltesh- 5 |SPAES Algorithm
dominated The image of the Pareto optimal set under the

A vector @ = (uq,...,ux) is said to dominatel =
(v1,...,v;) (denoted byi =< 9) if and only if u is par-
tially less tham, i.e., Vi € {1,...,k}, u; < v; AJi €

objective functions is calleRareto front ISPAES (Inverted Shrinkable PAES) [2], uses Pareto domi-
nance as the criterion selection, but unlike the previous work
4 Related Work in the area, a secondary population is used in this case. The

approach, which is a relatively simple extension of PAES
The main idea of adopting multiobjective optimization con{7] provides, however, very good results, which are highly
cepts to handle constraints is to redefine the single-objectigempetitive with those generated with an approach that rep-
optimization off (%) as a multiobjective optimization prob- resents the state-of-the-art in constrained evolutionary opti-
lem in which we will havem + 1 objectives, wheren is  mization. The structure of ISPAES algorithm is shown in
the total number of constraints. Then, we can apply arfyigure 1. Notice the two loops operating over the Pareto
multiobjective optimization technique [5] to the new vectorset (in the external storage). The right loop aims for explo-

0= (f(@), f1(D),..., fm(Z)), wheref,(Z),..., fm(Z)are ration of the search space, the left loop aims for population

the original constraints of the problem. An ideal solutién diversity and exploitation.

would thus havef;(£)=0 for 1 < i < m and f(Z) < f(¥) ISPAES has been implemented as an extension of the
for all feasibley (assuming minimization). Pareto Archived Evolution Strategy (PAES) proposed by

These are the mechanisms taken from evolutionary mufnowles and Corne [7] for multiobjective optimization.
tiobjective optimization that are more frequently incorpoPAES’s main feature is the use of an adaptive grid on which
rated into constraint-handling techniques: objective function space is located using a coordinate sys-
tem. Such a grid is the diversity maintenance mechanism of
PAES and it constitutes the main feature of this algorithm.

2. Use of Pareto ranking [6] to assign fitness in such Zhe grid is created by bisectirigtimes the function space
way that nondominated individuals (i.e., feasible inof dimensiond (d is the number of objective functions of

dividuals in this case) are assigned a higher fitnedg® problem. In our casel is given by the total number
value. of constraints plus one. In other words,= n + p + 1,

1. Use of Pareto dominance as a selection criterion.



ISPAESALGORITHM maxsize: max size of Pareto store

max f feval: fitness function evaluations
Initialize Pareto store with maxsize individuals

INITIAL POPULATION While gen<MaxGendo
PICK PARENT FROM Pick i parents from less crowded area
LESS CROWDED AREA Run(p + A)-ES until maxffeval is met

test(Pareto store\ children)

l test: adds children to Pareto store
shrinkspace(Pareto store): reduce search space
<SELECT> End While
l MUTATION
<GETMINMAX> “ L Figure 2: Main algorithm of ourSPAES
i PARETO CHILD
Ni DOMINATES if (current< maxsizejthen {
0 PARENT? add(h);
<TRIM> if (hO c)then c=h}
¢ Yes else if(3a, efile | h O a,) then {
remove(zp); add(h)
<ADJUSTPARAMETERS> if(hoc)thenc=h;}
ADD CHILD BY USING
<RELOCATE INDIVIDUALS PROCEDURE <TEST>
ONNEW GRID> Figure 3: Pseudo-code tést(h,c,file)(called bymain of
NEW PARETO SET ISPAES)

Figure 1: The logical structure of ISPAES algorithm  represented by the individuals of the external memory. Here
we introduce the following notationz; Oz, meansz; is
located in a less populated region of the grid than The

wheren is the number of inequality constraints, gni the %seudo-code of this function is depicted in Figure 3.

number of equality constraints. Note that we add one to th
summation to include the original objective function of th
problem). The control of*? grid cells means the alloca-
tion of a large amount of physical memory for even smalPAES keeps a log of every greed location, whereas ISPAES
problems. For instance, 10 functions and 5 bisections of th@eps a log of the position of every individual. The advan-
space produce® cells. Thus, the first feature introducedtage of this inverted relationship is clear when the optimiza-
in ISPAES is the “inverted” part of the algorithm that dealgion problem has many functions (more than 10), and/or the
with this space usage problem. ISPAES'’s fitness function granularity of the grid is fine, for in this case only ISPAES
mainly driven by a feasibility criterion. Global information is able to deal with any number of functions and granularity
carried by the individuals surrounding the feasible regiofevel.

is used to concentrate the search effort on smaller areas as

the evolutionary process takes place. In consequence, the Shrinking the Objective Space

search space being explored is “shrunk” over time. Even-

tually, upon termination, the size of the search space beirgj!rinkspace(file)is the mostimportant function of ISPAES
inspected will be very small and will contain the solutionS'NCe Its task is the reduction of the search space. The space

desired (in the case of single-objective problems. For multiS réduced every number of generations. The pseudo-code

objective problems, it will contain the feasible region).  ©f Shrinkspace(file)is shown in Figure 4.
The main algorithm of ISPAES is shown in Figure 2. Its In the following we describe the four tasks performed by

goal is the construction of the Pareto front which is storegn"nkspace

in an external memory (calléide). The algorithm performs ;16 fynctionselect(file)returns a list whose elements
Maxnewloops, generating a chiklfrom a random parerdt are the best individuals found ffile. The size of
in every loop. Therefore, the ISPAES algorithm introduced the list is set tol5% of maxsize Thus, the goal of
here is based on &S(1 + 1). If the child is better than
the parent, that is, the child dominates its parent, then it
is inserted infile, and its position is recorded. A child is
generated by introducing random mutations to the parent,
thus, h = mutate(c) will alter a parent with increments

e5.1 Inverted “ownership”

select(file)is to create a list with: a) only the best
feasible individuals, b) a combination of feasible and
partially feasible individuals, or c) the “most promis-

whose standard deviation is governed by Equation 9. @007 Vector containing the smallest value of either € X
Most of main and the functiortest(h,c,file)in ISPAES Eﬁ“b:t(‘f’.fc)“" containing the largest value of either € X
™ select(file);
are devoted to three things: (1) decide whether a new child getMinMax( file, 2o, Tpob);
should be inserted ifile, and if so, (2) how to make room g&%%ﬁ;?érﬁggrg’(file);
for the new member and (3) who becomes the new parent.

Every g new children created, a new parent is randomly
picked fromfile for this purpose. Also, evemnychildren gen- Figure 4. Pseudo-code dBhrinkspace(file) (called by
erated, the space is shrunk around the current Pareto frongin of IS-PAES)



m: number of constraints
i constraint index
maxsize: max size of file
listsize: 50% of maxsize
constraintvalue(x,i): value of individual at constraint i
sortfile(file): sort file by objective function
worst(file,i): worst individual in file for constraint i
validconstraints$1,2,3,...,n};
i=firstin(validconstraints);
While (size(file)> listsize and size(validconstraints) 0) {
x=worst(file,i)
if (x violates constraint i)
file=delete(file,x)
elsevalidconstraints=removeindex(validconstraints,i)
if (size(validconstraints} 0) i=nextin(validconstraints)

if (size(file)== listsize))
list=file

else
file=sort(file)
list=copy(file,listsize) *pick the best listsize elements?|

Figure 5: Pseudo-code ofselect(file) (called by
shrinkspace

ing” infeasible individuals. The selection algorithmis
shown in Figure 5. Note thatulidconstraints (alist

of indexes to the problem constraints) indicates the
order in which constraints are tested. The loop steps
over the constraints removing only one (the worst) in-
dividual for each constraint till there is none to delete
(all feasible), or15% of file size is reached (in other
words,85% of the Pareto set will be generated anew
using the best5% individuals as parents). Also, in
order to keep diversity, a new parent is randomly cho-
sen from the less populated region of the grid after
placing on itg new individuals.

The functiongetMinMax(file) takes the listist (last
step in Figure 5) and finds the extreme values of the
decision variables represented by those individuals.
Thus, the vectorg,,,, and,,; are found.

Functiontrim (z,05, Zpo) Shrinks the feasible space
around the potential solutions enclosed in the hyper-
volume defined by the vectoss,., andZ,.,. Thus,

the functiontrim (0, Tpos) (S€€ Figure 6) deter-
mines the new boundaries for the decision variables.

The value ofg is the percentage by which the bound-
ary values of either;, € X must be reduced such
that the resulting hypervolum# is a fractiona of

its previous value. The functianim first finds in the
population the boundary values of each decision vari-
able:Zpp,; andz,,,, ;- Then the new vectors; and

x,; are updated byleltaMin;, which is the reduction

in each variable that in the overall reflects a change
in the volume by a factof. In ISPAES all objective
variables are reduced at the same fatéherefore 5

can be deduced from as discussed next. Since we
need the new hypervolume be a fractioof the pre-
vious one,

Hnew > aHg|q4 (8)

n: size of decision vector;
;. actual upper bound of thg;, decision variable
. actual lower bound of thé;, decision variable
Tpob,i- UppPer bound of,;, decision variable in population
T ot lower bound ofi,;, decision variable in population
viiie{1,..., n}
slack; = 0.05 X (Tpob,i — 7pob ) , .
width_pob; = Tpop,; — T op, it ywidth; =2, — m

/3*zuuitht—w1dth pob;
deltaMin; = ———4+5———

delta, = max(slack, deltaMlm)
7t+1 = Tpob,i + delta;; x“r
t1
if (z > Toriginal, z)then
J‘ - »L.+ — Toriginal,i) &, i = Toriginal,is
t+1 t4+1
|fL+ <'Eo7lg1nal7)thenz + +—
f+

=2, " delta;;

— gttt
7or1gznal i =i

Loriginal,i’

ib1 — .
if (z° + > Zoriginal,i) thenT; = = ZToriginal,is

Figure 6: Pseudo-code tfm (called byshrinkspace

n

n
[[@ - =o[]@ -2
=1

i=1

Eitherz; is reduced at the same ratethus

s 1[@ - zh) = a ] @ —2i_y)
=1 %

B =a

B=an

In short, the new search interval of each decision vari-
ablex; is adjusted as follows (the complete algorithm
is shown in Figure 4):

widthnew Z ﬂ X widthold

It should be noted that the value afhas an impor-
tant impact on the performance of ISPAES because it
controls the shrinking speed. In order to determine
a range within which we could set this parameter for
a large variety of problems, we studied the effect of
« on the performance of our algorithm for many test
problems. From analyzing this effect, we found that
in all cases, a range of betweer85% and97% was
always able to generate the best possible solutions to
each problem. Values smaller than 0.80 make the al-
gorithm prone to converge to local minima. Values of
a too near tal00% slow down convergence, although
they increase the probability of success. In order to
avoid a fine tuning ofv dependent of each test func-
tion, we decided to set its value to 0.90, which we
considered as a good compromise based on our anal-
ysis. As we will see later on, this value efprovided
good results in all the problems solved.

Note that also the parametei(see Figure 2), which
controls the shrinkspace rate, plays an important role
in the algorithm. To set the value ofwe performed a
similar analysis to the one previously describeddor



In this analysis, we related the behavior-ofith that Input Ramp| GA ISPAES
of aand with the performance of ISPAES. Our results 1.0v 2.2963v| 2.3711v
indicated that a value of = 2 % maxsize provided 2.5v 2.2246v| 2.2614v
convergence to the optimum in most of the problems

(mazsize is the number of elements allowed to theTable 1: Output voltages of NOT-gate synthesized by IS-
Pareto set, stored in the external file). Thus, we usédAES and a GA.

r = 200, andmazxsize = 100 in all the experiments

reported in this paper. 6 Experiments
The variableslack is calculated once every new
search interval is determined (usually se5toofthe 6.1 The targeted FPTA

interval). The role of slack is simply to prevent (UpThe FPTA model used in this paper can be described as a
to some extend) against fast decreasing rates of tegnfigurable operational amplifier. Every configuration is
search interval. made by setting 77 switches, therefore, there24fepos-
sible circuits in the search space. Several input and output
pads are available to feed in and read data back. For the
following experiments we could simply assume there is one
input and a couple of outputs.

e The last step ofhrinkspace()is a call toadjustpa-
rameters(file). The goal is to re-start the control vari-
ables through:

o= (T —z;,)/vn i€(l,...,n) 9)
6.2 NOT-Gate design
This expression is also used during the generation gfe goal of this experiment is to get two “digital” levels for
the initial population. In that case, the upper anthn input ramp. The ramp starts at 1.0v, and finishes at 2.5v
lower bounds take the initial values of the searclyve did use a Pareto set of 150 individuals, and 200 gener-
space indicated by the problem. The variation of th@tions. Every 50 generations the members of Pareto set are
mutation probability follows the exponential behaviorrecalculated after a “trim” operation. (note: for ISPAES all
suggested by &ck [3]. constraints and objective function are treated as a minimiza-
tion problem. So, the goal and constraints are restated as a
minimization case)
One objective is declared as follows:

Elitism

A special form of elitism is implemented in IS-PAES to
prevent the lost of the best individual. Elitism is imple-
mented as follows: the best individual of thg generatiory, _ OutVoltageimpur—z.5 — OutVoltageimpui—1.o < 0
is marked and only replaced by another one if it is in the (10)

feasible region and with better objective function value. The rationale behind Equation 10 is that the more negative

o , i the greater the swing between output voltages. There are
ISPAES for Optimizing problems in Discrete Search |, more requirements over the outputs, other than the max-
Space o , , _ .. imum swing. Only one constraint is defined to ISPAES; the
Simple modifications are required for discrete optimizatiofyq | is to penalize circuits that SPICE finds “impossible” to
problems. The initial value of all objective variables is &, 5 ate, or for which it generates out of scale voltages (the
random integer drawn from an un_lfqrm distribution, angas0n js also the impossibility of evaluation). Thus, correct
bounded by the upper and lower limits staten by the Py jits get a constraint value of! (feasible solution), and
cific problem. , _ invalid circuits a constraint value af (infeasible solution).
Mutation of objective variables is performed as follows, The output voltages of the NOT gate are shown in Table 1.
Notice that the output voltage swing is about 53% greater
in the circuit found by ISPAES (constrained optimization)

whereg; is the control variable of the corresponding objecthan the GA approach (unconstrained optimization) [1].
tive variable, and-and(o;) is a random number with uni-
form distribution in the interval0, o]. 6.3 NOT-gate for 4-steps ramp

Control variables; are mutated as follows, In preparation for the 2-bit ADC design example, a NOT-
gate is designed here to respond to a input ramp of 4 steps.
The ramp starts at 1.5v with step size of 0.5v The required

this is, with little less probability than the average of 0.5, thé€Sponses are the logic voltages for “0-1-0-1". We did use
control variables diminish their value by 1. a Pareto set of 150 individuals, and 200 generations. Every

The reduction of the search space is performed as shown3f} 9enerations the members of Pareto set are recalculated
Figure 6 for the real space case, except that all results of tRJEr @ “trim” operation. _ o
computations must be rounded up to the next integer. The 11iS design problem is restated by using 1 objective
variableslack is also computed as depicted in Figure 6 ifunction plus 5 constraints. One of those constraints is used

must also be rounded up, and its smallest possible valuel® Penalize impossible circuits, as described in the previ-
1. ous example. The objective function is also driven by the

2t = 2! + rand(o;)

if(random() < 0.45) theno =0+ 1; elseoc =0 —1;



Input Ramp| GA ISPAES Input Ramp| GA-LSB | ISPAES-LSB

1.5v 2.6571v| 1.9601v 1.5v 1.9311v 1.9370v

2.0v 2.7081v| 3.0914v 2.0v 1.9512v 2.015v

2.5v 2.6700v | 1.9394v 2.5v 1.9446v 1.3323v

3.0v 2.7198v| 3.1650v 3.0v 2.0813v 3.1183v
Table 2: Output voltages of NOT-gate for 4-steps ramp syfiFable 3: Output voltages of LSB for 2-bit ADC synthesized
thesized by ISPAES and a GA. by ISPAES and a GA.

o _ _ Input Ramp| GA-MSB | ISPAES-MSB
maximization of the difference between low and high out- 1.5v 2.1522v 1.6558v
put levels, as follows. 2.0v 2.4962v | 1.7497v

2.5v 2.8645v 2.3604v

3.0v 3.2514v 2.6551v

Ol = O‘/z'nzl.5v+ovin=2.5v_OVin:Q.Ov_O‘/in=3.0’u <0
i A1) taple 4: Output voltages of MSB for 2-bit ADC synthesized
In Equation 11, OV means “output voltage”. Four conby ISPAES and a GA.
straints are added to the requirements, the goal is to drivé
the output low levels below 2.0v, and the output high levels

above 2.0v, as follows. Cy, = OVESB. . —20<0 (19)
Cs = 2-0Vi25,, <0 (20)

Ci = OVipis0—2.0<0 (12) Cy = 2-0V325,, <0 (21)

Cy = OVineosy—2.0<0 (13) Cs = OValPh, —20<0 (22)

Cs = 2—OVin20,<0 (14) Co = OVp5h, —2.0<0 (23)

Ci = 2—OVinson <0 (15) Cr = 2-0Vp5%, <0 (24)

Cs = 2-0Vp!h, <0 (25)

The output voltages for this problem are shown in Ta-
ble 2. Note the difference between voltages found by the As stated before, 2 more constraints were used to penal-
unconstrained (GA) and the constrained evolutionary optize “impossible” circuits (in the same way as described in

mization approach (ISPAES). previous experiments).
Output voltages for LSB and MSB are reported in Ta-
6.4 2-bit ADC bles 3 and 4. Note that for ISPAES is natural to deal with

) ) ) ] design requirements (constraints), for instance, the common
The last experiment is the design of a 2-bit ADC. The fo”(/oltage level of 2.0v set for the outputs.

steps input ramp start at 1.5v, step size of 0.5v, so final ramp
value is 3.0v The two output values are named MSB al Final R K dc lusi
LSB (most and least significant bit). We did use a Pareto set Inal kemarks an onclusions

of 150 individuals, and run for 1000 generations. Every SR/Iany circuit design problems are amenable for multiob-

g(—f-‘n(_er'c,lltmns th_e members of Pareto set are recalculated afé%iive optimization since all requirements can be incorpo-
a “trim” operation.

rated into the design process. EAs are proper tools for un-

This problem is restated as a 12 objective problem in th@onstrained optimization but, specialized EAs, thus, aug-

following way: 2 objectives, 4 constraints on the MSB, 4040 with a constraint handling technique, are needed to

constraint on the LSB, 2 constraints for incorrect circuit§jleal with constrained problems. The easy way to deal with

((;]ne on each output). Tdhe objectives are introduced @3 raints, for instance, penalization, becomes weaker as a

shown in Equations 16 and 17. problem grows. Thus, it is rather interesting and necessary
to redefine the optimality concept in the presence of several

LSB LSB LSB goal and constraints. The ISPAES method just introduced,
Oy = OViypZis, +OVinZss, ; i
LoB 198 proposes a technique to handle constraints based on Pareto
—OVinZs.00 — OVin:S-Ov <0 (16) dominance. Even more, the main contribution is an unbi-
oysB - — oyMSBE L oyMSE ased selection operator that picks feasible and unfeasible
—OVMSE _oVMSE <0 (17) individuals, thus keeping diversity during the evolutionary
' ' process.

The constraints over voltage levels are similar to those The experiments performed are simple but results al-
used in the previous experiment, so for each output we logkady show the advantages of multiobjective optimization
for low levels below 2.0v and high levels above 2.0v. techniques for evolutionary circuit synthesis. The bene-

fits are unquestionable, for instance, the introduction of re-
quired output voltage levels, frequency response, time re-
Ci, = OVESP,, —20<0 (18)  sponse, power consumption, etc.
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