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Abstract. In the last decade, there has been a growing interest in multi-
objective evolutionary algorithms that use performance indicators to
guide the search. A simple and effective one is the S-Metric Selection
Evolutionary Multi-Objective Algorithm (SMS-EMOA), which is based
on the hypervolume indicator. Even though the maximization of the
hypervolume is equivalent to achieving Pareto optimality, its computa-
tional cost increases exponentially with the number of objectives, which
severely limits its applicability to many-objective optimization problems.
In this paper, we present a parallel version of SMS-EMOA, where the
execution time is reduced through an asynchronous island model with
micro-populations, and diversity is preserved by external archives that
are pruned to a fixed size employing a recently created technique based
on the Parallel-Coordinates graph. The proposed approach, called S-
PAMICRO (PArallel MICRo Optimizer based on the S metric), is com-
pared to the original SMS-EMOA and another state-of-the-art algorithm
(HypE) on the WFG test problems using up to 10 objectives. Our expe-
rimental results show that S-PAMICRO is a promising alternative that
can solve many-objective optimization problems at an affordable com-
putational cost.


1 Introduction


We are interested in solving Multi-objective Optimization Problems (MOPs),
which have the following form:


Minimize F (x) := (f1(x), f2(x), . . . , fm(x)) (1)


subject to x ∈ S, (2)


? The first author acknowledges support from CONACyT and CINVESTAV-IPN to
pursue graduate studies in Computer Science.


?? The second author gratefully acknowledges support from CONACyT project no.
221551.


? ? ? The third author is partially funded by the Spanish MINECO and FEDER project
TIN2014-57341-R (http://moveon.lcc.uma.es).
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where x is the vector of decision variables, S ⊂ IRn is the feasible region set and
F (x) is the vector of m (≥ 2) objective functions (fi : IRn → IR). The aim is
to seek from among the set of all values, which satisfy the constraint functions
defined in equation (2), the particular set x ∗ that yields the optimum values for
all the objective functions.


Multi-objective Evolutionary Algorithms (MOEAs) are stochastic, population-
based, search techniques; which are well-suited for solving a wide variety of
complex MOPs. In the last decades several MOEAs have been proposed (see, for
example, [4, Chapter 2] and [18]), with the vast majority relying on two concepts:
Pareto dominance3 as their primary selection mechanism, followed by a density
estimator.4 The former favors non-dominated solutions over dominated ones,
whereas the latter induces a total order of incomparable solutions,5 preserving
diversity6 at the same time.


One of the main concerns is that Pareto-based MOEAs face difficulties to
reach the Pareto optimal front7 when dealing with many-objective optimization
problems (m ≥ 4) [9, 11, 13]. This is due to the fact that most or all solutions
in the population quickly become non-dominated with respect to the rest, and
the best individuals are identified only by the density estimator. Thus, in some
cases good locally non-dominated solutions in terms of convergence might be
discarded at the expense of keeping good solutions in terms of diversity, in spite
of the fact that they may be distant from the Pareto optimal front [1]. To address
this issue, a new trend is the incorporation of performance indicators8 into the
selection mechanism of a MOEA [2, 6, 20]. The hypervolume indicator [19] is,
with no doubt, a natural choice, (see for example [6, 20]) since it is the only
unary indicator that is known to be Pareto compliant. Also, it has been proven
that maximizing the hypervolume is equivalent to reaching the Pareto optimal
set [7]. However, the main drawback of this sort of approach is its computational
cost, which increases exponentially with the number of objectives [3], making it
prohibitive for many-objective optimization problems.


In this work, we focus on the S-Metric Selection Evolutionary Multi-Objective
Algorithm (SMS-EMOA) [6], due to its simplicity and superiority over Pareto-
and Aggregation-based algorithms [6, 10, 16]. This optimizer is a steady state
evolutionary algorithm that ranks individuals according to Pareto dominance
and uses the hypervolume as its density estimator. The worst-case complexity of
SMS-EMOA is O(|P |m) [17]. Parallelizing SMS-EMOA arises as a possible alter-
native to reduce its computational cost, where at least two strategies are possible


3 A solution x ∈ S dominates a solution y ∈ S (x ≺ y) if and only if ∀i ∈ {1, . . . ,m},
fi(x) ≤ fi(y) and ∃j ∈ {1, . . . ,m}, fj(x) < fj(y).


4 A density estimator models the distribution of a population, by measuring the simi-
larity degree among individuals.


5 Two solutions x,y ∈ S are incomparable if neither x ≺ y nor y ≺ x holds.
6 Diversity refers to achieving a uniform distribution of solutions covering all regions


of the objective function space.
7 POF := {F (x) ∈ IRm : x ∈ S, 6 ∃y ∈ S,y ≺ x}.
8 A performance indicator, defined as I : IRm → IR, measures the quality of an ap-


proximation set (the final population of a MOEA).
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[14]: (1) parallelization of the computations, in which the operations applied to
an individual are performed in parallel, and (2) parallelization of the population,
in which the population is partitioned and each subpopulation evolves in semi-
isolation (individuals can be exchanged between subpopulations). Klinkenberg
et al. [10] and Lopez et al. [12] have studied the first approach. In [10], a varia-
tion of SMS-EMOA parallelized the evaluations of individuals using a surrogate
model, whose purpose was to approximate the function values. In [12], the exact
hypervolume contributions of SMS-EMOA were parallelized through the use of
Graphics Processing Units (GPUs). To the best of our knowledge, our work is
the first attempt to incorporate the second sort of approach (parallelization of
the population) into SMS-EMOA.


In order to get a better grasp of the variability of the execution time of SMS-
EMOA, we sampled several points on DTLZ1 [4, p. 200], varying the number of
objective functions and the population size on a PC Intel(R) Core(TM) i7 CPU
950 @ 3.07 GHz × 8 with 3.8 GB memory, using the same parameters in all
experiments [6]. The average resulting surface is shown in Figure 1. An interes-
ting observation is that, regardless of the number of objectives, time was almost
negligible when using small populations (less than 20 individuals). This fact is
considered in our proposal, where we use micro-populations in an asynchronous
island model [15]. Furthermore, diversity is improved by external archives that
are kept to a constant size by a recently proposed density estimator [8], which
is scalable in objective space.


The remainder of this paper is organized as follows. Section 2 is devoted
to the description of our proposed parallel MOEA. In Section 3 we present
our experimental results. Finally, Section 4 provides our conclusions and some
potential lines of future research.
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Fig. 1. Average execution time of SMS-EMOA.
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2 Our Proposed Approach


The PArallel MICRo Optimizer based on the S metric (S-PAMICRO) draws
ideas from the island model, where the overall population is split into l micro-
populations, called islands. Every island evolves independently a serial SMS-
EMOA with an external archive of size l × |P |, where |P | corresponds to the
micro-population size. In this approach, the islands are connected in a logical
unidirectional ring, exchanging nmig solutions occasionally9 in an asynchronous
fashion. The goal of S-PAMICRO is to reduce the execution time of SMS-EMOA,
hopefully also improving the quality of solutions in high dimensional spaces,
because of the separated search of the islands, which changes the behavior of the
serial version and yields a new kind of algorithm [14, 15].


Algorithm 1 Outline of an island in S-PAMICRO


Input: MOP, stopping criterion, island identification i, number of islands l, number
of migrants nmig, and frequency of migration fmig.


Output: Final sub-population A
1: A← ∅ {initialize external archive}
2: n← l|P | {archive size limit}
3: Initialize micro-population P at random
4: while the stopping criterion is not satisfied do
5: P ← SMS-EMOA(MOP, fmig, P ) {execute during fmig evaluations of the


objective vector}
6: R← Check the arrival of migrants from (l + i− 1) (mod l) island
7: A← A ∪ P ∪R
8: if |A| > n then
9: A← Pruning(A,n) {see Algorithm 2}


10: S ←Uniform Random Selection(A,nmig) {nmig random solutions are selected
from A}


11: Send copies of S to the (i + 1) (mod l) island
12: P ← Elitist Ranking Replacement(P ∪ R) {dominated individuals are likely to


be discarded}
13: return A


In Algorithm 1, we present the pseudocode of an island in S-PAMICRO.
First, the external archive A and its maximum size are specified. Next, the
micro-population P is initialized at random. In line 5, SMS-EMOA is executed
during fmig function evaluations. Then, an island receives, without blocking, the
immigrants R from the source island, according to the adopted topology. In line
7, the external archive is updated, adding the current micro-population as well as
the immigrants. In lines 8 and 9, the external archive is truncated if it exceeds its
limits, using the technique described in the next paragraph. In the following two
lines, the candidates to be migrated are selected by using the policy of uniform-
random migration [15], in which nmig individuals are randomly selected from the


9 This is known as migration.
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Algorithm 2 Pruning


Input: Population P , desired size n
Output: Reduced population P
1: {F1, . . . , Fk} ← Rank population P in k fronts according to Pareto dominance.
2: Calculate zmin and zmax


3: Normalize population p.y ← p.y−z min


z max−z min , ∀p ∈ P, p.y ∈ IRm


4: while |P | > n do
5: if |Fk| ≤ |P | − n then {Remove members of the k-th front}
6: r ← Fk


7: k ← k − 1
8: else
9: D ← Calculate density of P based on the Parallel-Coordinates graph


10: r ← arg maxp∈Fk
D[p]


11: Fk ← Fk \ {r}
12: P ← P \ {r}
13: return P


archive and a copy of them is sent to the destination island. In line 12, the micro-
population is updated, replacing nmig individuals with the immigrants. Here, we
employed elitist-ranking replacement [15], where immigrants are combined with
the current population, and then they are ranked using Pareto dominance, and
the worst solutions are removed. This elitist mechanism preserves the currently
best solutions for the next iteration, assuring proximity to the Pareto optimal
front. At the end, the final sub-populations of all islands i ∈ {0, 1, . . . , l − 1}
are collected and adjusted to the size l× |P |, using the same pruning technique.
This operation is performed by a designated island.


Our pruning technique is explained in Algorithm 2. First the population is
ranked using the well-known non-dominated sorting procedure [4, p. 93]. In lines
2 and 3, the population is normalized in the objective space by means of two
reference points: zmin, composed of the best objective values found so far, and
zmax, formed with those vectors parallel to the axes with the lowest Euclidean
norm. Next, all members of the worst current k-th front are removed if the size
of this front is less or equal than the number of individuals to be removed (lines
5-7). Otherwise, the individual with the highest density value is eliminated from
the current front (lines 9-11) until the desired size is achieved.


The density estimator, originally proposed in [8], is based on a visualization
technique, called Parallel Coordinates. In this technique, a graph is built in the
2-dimensional plane where m copies of the real line IR are placed perpendicular
to the x-axis and a solution in IRm is represented by a series of connected line
segments with vertices on the parallel axes. The core idea in the density estimator
is to represent the Parallel Coordinates of each distinct pair of objective functions
as a 2D matrix, where the m(m − 1)/2 graphs are attached next to each other
and only normalized individuals are considered. The dimension of this matrix
depends on a resolution parameter (γ). An element of the matrix identifies the
level of overlapping line segments and those individuals covering a wide area of
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Table 1. Parameters adopted in our experiments


m
WFG MOEAs pMOEAs


feval
S-PAMICRO


n k |P | |P | l γ


2 24 4 100 10 10 40,000 3


3 24 4 120 10 12 50,000 2


5 47 8 196 11 18 50,000 2


10 105 18 276 11 25 80,000 2


the matrix have a better density estimator. Interested readers are referred to [8]
for more details.


S-PAMICRO was developed in the EMO Project,10 our framework for Evo-
lutionary Multi-Objective Optimization. This software is implemented in C lan-
guage and MPICH.11


3 Experimental Results


In this section, we investigate the effectiveness of S-PAMICRO on the Walking-
Fish-Group (WFG) test suite [4, p. 209]. In this benchmark, properties, such
as non-separability, multi-modality, deceptiveness and bias, are preserved as we
increase the number of objectives, making these problems harder to solve for a
MOEA. The decision variables (n), the position-related parameter (k) and the
resolution (γ) are specified in Table 1.


We compared the results of our proposed algorithm with respect to SMS-
EMOA, its parallel version using the asynchronous island model (pSMS-EMOA),
and the Hypervolume Estimation Algorithm (HypE) [2] for 2, 3, 5 and 10 ob-
jectives. HypE ranks the population by means of Pareto dominance and its
secondary selection criterion is based on the estimation of the hypervolume
contributions using Monte Carlo sampling (for 2 and 3 objectives, the exact
value is computed). All the MOEAs were implemented in the EMO Project,
using real-numbers encoding. For fair comparisons, the parameters were simi-
lar in the sequential and parallel cases (see Table 1). The variation operators
were polynomial-based mutation and simulated binary crossover (SBX) [5]. The
crossover rate and its distribution index were set to 0.9 and 20, for 2 and 3
objectives, and 1.0 and 30 for many-objective problems. The mutation rate and
its distributed index was set to 1/n and 20, respectively. For HypE, the num-
ber of sampling points was fixed to 20,000 and the resolution parameter of S-
PAMICRO (γ), as suggested in [8], is shown in Table 1. It is worth mentioning
that γ is independent of the problem to be solved.


The stopping criterion consisted of reaching a maximum number of objective
function evaluations (feval), limiting the execution time to no more than two


10 Available at http://computacion.cs.cinvestav.mx/˜rhernandez
11 https://www.mpich.org
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Fig. 2. Average execution time of optimizers.


hours for each run. The population size |P | of the sequential algorithms (SMS-
EMOA/HypE) and the parallel MOEAs (pSMS-EMOA/S-PAMICRO) are de-
fined in Table 1, as well as the number of islands or processors (l) in the latter
case. Experiments were carried on a Cluster of 10 PCs Intel(R) Core(TM) i7
CPU 950 @ 3.07 GHz × 8 with 3.8 GB memory. The frequency of migration,
fmig, was set to 80 function evaluations and the number of migrants nmig was
set to 2 (these values were empirically determined). We performed 30 indepen-
dent runs for all scenarios. For comparing results, we adopted the hypervolume
indicator, bounded by the reference points (3, 5, 7, . . .) for the instances WFG1
and WFG3; and (2.2, 4.2, 6.2, . . .) for the rest of the problems. We applied the
Wilcoxon rank sum test (one-tailed) to the mean hypervolume indicator values,
in order to determine whether S-PAMICRO performed better than the other
MOEAs at the significance level of 5%.


The average execution time, using a logarithmic scale for the y-axis, is shown
in Figure 2. As it can be observed, S-PAMICRO spent considerably less time
than SMS-EMOA and HypE. For example, with 10 objectives, a run of our
proposed approach took only 16 seconds out of the two hours that were allowed to
the other MOEAs. Using 5 objective functions, S-PAMICRO ended in 5 seconds,
in contrast to the 26 minutes spent by HypE. Even in low dimensionality, our
algorithm could reduce the run time a little bit. Furthermore, the overhead of
handling the external archive in S-PAMICRO is relatively low, compared to
pSMS-EMOA that was the fastest optimizer.


On the other hand, interesting results with respect to the quality of solutions
were obtained. In Table 2, we present the hypervolume indicator values of all the
experiments. An arrow pointing upwards (↑) means that our algorithm outper-
formed in a significantly better way, the other MOEAs compared. Conversely,
an arrow pointing downwards (↓) means that our algorithm was significantly
beaten. In the majority of the cases for 5 and 10 objectives, S-PAMICRO ob-
tained the best results, outperforming SMS-EMOA, HypE and pSMS-EMOA.
While with 2 and 3 objectives, our proposal only surpassed pSMS-EMOA, ob-
taining competitive results with respect to SMS-EMOA and HypE.


In summary, we observed that S-PAMICRO could achieve much better re-
sults than SMS-EMOA and HypE in high dimensionality, spending much less
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Table 2. Median and standard deviation of the hypervolume indicator on the WFG
benchmark. The two best values are shown in gray scale, where a darker tone corres-
ponds to the best value.


m HypE SMS-EMOA pSMS-EMOA S-PAMICRO


WFG1


2 5.17e+00 4.11e-1 ↑ 4.45e+00 3.63e-1 ↑ 3.66e+00 2.59e-1 ↑ 6.61e+00 9.65e-1


3 5.66e+01 1.62e+0 ↓ 5.28e+01 2.50e+0 ↑ 4.23e+01 3.08e+0 ↑ 5.56e+01 3.71e+0


5 2.82e+03 1.17e+2 ↑ 3.18e+03 7.20e+1 ↑ 3.91e+03 4.83e+1 ↑ 5.16e+03 3.88e+2


10 4.19e+09 1.81e+8 ↑ 1.88e+09 2.62e+8 ↑ 5.28e+09 5.76e+7 ↑ 5.87e+09 2.33e+8


WFG2


2 5.46e+00 2.79e-2 ↑ 5.47e+00 1.25e-1 ↑ 5.39e+00 1.71e-1 ↑ 5.49e+00 4.00e-2


3 5.34e+01 4.21e+0 ↓ 4.47e+01 4.47e+0 5.18e+01 2.00e+0 ↑ 5.32e+01 2.50e-1


5 4.24e+03 3.00e+2 ↑ 4.41e+03 3.32e+2 ↑ 4.66e+03 1.52e+1 ↑ 4.75e+03 2.00e+1


10 4.66e+09 3.22e+8 ↑ 3.80e+09 2.86e+8 ↑ 4.91e+09 1.75e+8 ↑ 4.93e+09 1.96e+8


WFG3


2 1.09e+01 3.06e-2 ↑ 1.09e+01 2.09e-2 ↑ 1.08e+01 3.23e-2 ↑ 1.09e+01 4.50e-2


3 7.59e+01 2.19e-1 ↑ 7.60e+01 1.52e-1 7.48e+01 1.06e-1 ↑ 7.61e+01 3.61e-1


5 5.55e+03 1.55e+2 ↑ 6.84e+03 5.88e+1 ↑ 6.93e+03 3.11e+1 ↑ 7.22e+03 5.86e+1


10 8.37e+09 1.38e+8 ↓ 7.64e+09 1.95e+8 ↑ 5.91e+09 3.30e+8 ↑ 8.19e+09 1.98e+9


WFG4


2 2.91e+00 3.46e-3 ↓ 2.90e+00 1.08e-2 2.77e+00 2.05e-2 ↑ 2.90e+00 2.10e-2


3 2.96e+01 5.19e-2 ↓ 2.97e+01 5.43e-2 ↓ 2.66e+01 2.41e-1 ↑ 2.88e+01 4.45e+0


5 1.69e+03 9.10e+1 ↑ 2.50e+03 6.71e+1 ↑ 3.13e+03 7.15e+1 ↑ 3.47e+03 1.16e+2


10 1.86e+09 1.03e+8 ↓ 1.37e+09 6.15e+7 ↓ 2.00e+09 4.38e+8 ↑ 1.22e+09 5.81e+8


WFG5


2 2.59e+00 2.40e-3 ↑ 2.58e+00 2.82e-3 ↑ 2.53e+00 1.21e-2 ↑ 2.59e+00 8.62e-3


3 2.74e+01 7.07e-1 ↓ 2.73e+01 1.38e-1 ↓ 2.52e+01 1.92e-1 ↑ 2.70e+01 1.46e-1


5 1.96e+03 1.33e+2 ↑ 2.47e+03 5.10e+1 ↑ 2.75e+03 1.50e+2 ↑ 3.31e+03 9.51e+1


10 1.95e+09 1.06e+8 ↑ 1.04e+09 3.14e+7 ↑ 1.04e+09 3.47e+8 ↑ 3.99e+09 6.24e+8


WFG6


2 2.65e+00 5.79e-2 ↑ 2.64e+00 5.43e-2 ↑ 2.56e+00 3.93e-2 ↑ 2.68e+00 2.11e-2


3 2.77e+01 2.68e-1 2.79e+01 2.12e-1 ↓ 2.52e+01 3.86e-1 ↑ 2.77e+01 4.05e-1


5 1.80e+03 1.37e+2 ↑ 2.08e+03 7.00e+1 ↑ 2.93e+03 6.19e+1 ↑ 3.39e+03 6.23e+1


10 1.83e+09 1.28e+8 ↑ 9.82e+08 3.55e+7 ↑ 2.02e+09 2.55e+8 ↑ 3.83e+09 5.36e+8


WFG7


2 2.92e+00 1.60e-3 ↓ 2.91e+00 1.05e-2 ↓ 2.84e+00 1.25e-2 ↑ 2.91e+00 3.05e-1


3 2.97e+01 2.72e-2 ↓ 2.99e+01 1.35e-2 ↓ 2.73e+01 2.64e-1 ↑ 2.93e+01 1.95e-1


5 1.82e+03 1.10e+2 ↑ 2.66e+03 7.07e+1 ↑ 3.20e+03 7.84e+1 ↑ 3.55e+03 4.62e+1


10 2.22e+09 1.08e+8 ↓ 1.26e+09 5.23e+7 1.12e+09 2.77e+8 8.52e+08 7.72e+8


WFG8


2 2.25e+00 1.46e-2 ↓ 2.24e+00 1.13e-2 ↓ 2.10e+00 2.99e-2 ↑ 2.24e+00 3.37e-2


3 2.34e+01 2.82e-1 ↑ 2.52e+01 8.04e-2 ↓ 2.19e+01 4.28e-1 ↑ 2.43e+01 5.25e-1


5 1.52e+03 1.20e+2 ↑ 2.26e+03 5.62e+1 ↑ 2.55e+03 1.16e+2 ↑ 2.86e+03 3.62e+2


10 1.84e+09 1.29e+8 ↓ 1.06e+09 4.60e+7 ↓ 1.53e+09 3.69e+8 ↓ 4.64e+08 7.71e+8


WFG9


2 2.30e+00 2.61e-1 ↑ 2.78e+00 2.34e-1 ↑ 2.63e+00 2.09e-1 ↑ 2.81e+00 4.88e-1


3 2.16e+01 1.56e+0 ↑ 2.82e+01 1.77e+0 ↓ 2.25e+01 1.10e+0 ↑ 2.74e+01 6.78e+0


5 1.75e+03 1.65e+2 ↑ 2.36e+03 1.12e+2 ↑ 2.57e+03 6.33e+1 2.61e+03 8.93e+2


10 1.66e+09 1.10e+8 ↑ 1.12e+09 6.31e+7 ↑ 1.87e+09 3.46e+8 ↑ 2.31e+09 9.27e+8
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computational time. For this reason, we claim that our proposed approach is a
promising alternative for solving many-objective optimization problems.


4 Conclusions and Future Work


This paper presented a parallel version of the S-Metric Selection Evolutionary
Multi-Objective Algorithm (SMS-EMOA). The new approach, called PArallel
MICRo Optimizer based on the S metric (S-PAMICRO), draws ideas from the
asynchronous island model with relatively small populations. Diversity is pre-
served through external archives that are pruned to a limit size, using a recently
proposed technique that is based on automatic image analysis. We compared our
proposal with respect to HypE (Hypervolume Estimation Algorithm), and with
respect to the serial version of SMS-EMOA and another parallel version of it.
We observed that S-PAMICRO is a viable alternative for solving many-objective
optimization problems at an affordable computational time. In fact, the execu-
tion time seems to be dominated by polynomial terms and not the exponential
terms when using micro-populations. Further studies are nevertheless required,
adopting more benchmarks and comparing to other state-of-the-art MOEAs. We
are also interested in studying the effects of the additional parameters related
to the migration operator.


References


1. Salem F. Adra and Peter J. Fleming. Diversity Management in Evolutionary
Many-Objective Optimization. IEEE Transactions on Evolutionary Computation,
15(2):183–195, April 2011.


2. Johannes Bader and Eckart Zitzler. HypE: An Algorithm for Fast Hypervolume-
Based Many-Objective Optimization. Evolutionary Computation, 19(1):45–76,
Spring, 2011.


3. Karl Bringmann and Tobias Friedrich. Don’t be Greedy when Calculating Hy-
pervolume Contributions. In FOGA ’09: Proceedings of the tenth ACM SIGEVO
workshop on Foundations of genetic algorithms, pages 103–112, Orlando, Florida,
USA, January 2009. ACM.


4. Carlos A. Coello Coello, Gary B. Lamont, and David A. Van Veldhuizen. Evo-
lutionary Algorithms for Solving Multi-Objective Problems. Springer, New York,
second edition, September 2007. ISBN 978-0-387-33254-3.


5. Kalyanmoy Deb and Ram Bhushan Agrawal. Simulated Binary Crossover for
Continuous Search Space. Complex Systems, 9:115–148, 1995.


6. Michael Emmerich, Nicola Beume, and Boris Naujoks. An emo algorithm using
the hypervolume measure as selection criterion. In CarlosA. Coello Coello, Ar-
turo Hernndez Aguirre, and Eckart Zitzler, editors, Evolutionary Multi-Criterion
Optimization, volume 3410 of Lecture Notes in Computer Science, pages 62–76.
Springer Berlin Heidelberg, 2005.


7. M. Fleischer. The Measure of Pareto Optima Applications to Multi-objective Meta-
heuristics. In CarlosM. Fonseca, PeterJ. Fleming, Eckart Zitzler, Lothar Thiele,
and Kalyanmoy Deb, editors, Evolutionary Multi-Criterion Optimization, volume
2632 of Lecture Notes in Computer Science, pages 519–533. Springer Berlin Hei-
delberg, 2003.
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