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Abstract- Recently, the technology that can control NOx
and Soot values of diesel engines by changing the elec-
tronically controllable parameters has been developed.
However, there is a trade-off relationship between fuel
economy and NOx values. Therefore, the diesel engines
that can change their characteristics with along to the
driving environment should be emerged in the future.
For designing these kinds of engines, the Pareto solu-
tions that can express the trade-off between fuel econ-
omy and NOx values are needed. In that case, the de-
rived non dominated solutions should have the diver-
sity not only in the objective space but also in the de-
sign variable space. SPEA2+ is one of multi objective
genetic algorithms and is developed based on SPEA2.
The derived non dominated solutions by SPEA2+ have
the diversity in both objective space and design variable
space. In this study, the diesel engines that have high
fuel economy and small amounts of NOx and Soot are
designed by SEPA2+. The results are compared with
those of SPEA2 and NSGA-II. From the discussions, it
is found that the solutions of SPEA2+ have the diversity
not only in the objective space but also in the design vari-
able space. These characteristics are very suitable for
designing diesel engines whose parameters are changing
against the driving environment.

1 Introduction

The diesel engine has excellent fuel economy, and is widely
used especially in commercial vehicles, machine tools, and
in large-scale ocean vessels. In addition, it is widely used in
Europe because the levels of carbon dioxide in the exhaust
are low. On the other hand, diesel engines are not widely
used by the general public in Japan because the implemen-
tation of catalyzers in Japan lags considerably behind Eu-
rope. In addition, there are ever increasing concerns with
regard to environmental problems, drawing attention to air
pollution caused by the NOx (nitric oxide) and Soot exhaust
from diesel engines. Restrictions on automobile engines are
becoming increasingly severe every year. To satisfy these
restrictions, it is necessary to develop a design method that
is both quick and efficient. Therefore, the traditional trial
and error design process is now shifting towards a process
using computer simulations. Thus, construction of a system
by computer simulation is very useful to design diesel en-
gines that decrease amounts of NOx and Soot exhaust with-
out adversely affecting the output or fuel economy.

When defining design parameters by computer simula-
tion, optimization methods can be used. However, in real-
world problems, such as the design of diesel engines, it is
usually necessary to consider multiple items. In many cases,
there are trade-off relationships between these items, and
thus it is difficult to minimize or maximize these items si-
multaneously. Such processes cannot be handled by meth-
ods that optimize only one objective function. Thus, a
multi-objective optimization method that can handle mul-
tiple objects is required.

Although many multi-objective optimization methods
exist, evolutionary multi-objective optimization (EMO),
which applies evolutionary computation to multi-objective
optimization, has attracted a great deal of attention
recently[1, 2, 3, 4]. There are many varieties of multi-
objective genetic algorithms (MOGA), but the best studied
is the application of genetic algorithms (GA) to the multi-
objective optimization problem. In multi-objective opti-
mization, a common goal is to obtain a Pareto-optimal set
that indicates a trade-off relationship. Such studies are com-
mon because one characteristic of GAs is the multipoint
search, and multiple Pareto-optimal sets can be obtained by
a single search. Many MOGA have been proposed. How-
ever, SPEA2[3] proposed by Zitzler and NSGA-II[4] pro-
posed by Deb provide excellent results as compared with
other multi-objective genetic algorithms proposed. Here,
we have proposed SPEA2+[5], an enhancement of SPEA2.
In addition to the mechanism used by SPEA2 to efficiently
search for a solution, mechanisms to obtain more accurate
solutions, such as neighborhood crossover, and archives to
obtain diverse solutions even in the design variable space,
have been added to SPEA2+.

In this study, SPEA2+ was applied to the fuel emis-
sion scheduling problem in the diesel engine, and the re-
sults were compared with those obtained by SPEA2 and
NSGA-II. The target objective functions were amounts of
Specific fuel consumption (SFC), NOx and Soot. The de-
sign variables were parameters that can be controlled elec-
tronically, such as injection shape of the crank angle, and the
start angle. The results indicated that SPEA2+ is suitable
for fuel emission scheduling optimization of diesel engines,
and multi-objective optimization is also a very effective tool
suitable for designing diesel engines.



2 Multi-objective Genetic Algorithm

2.1 Multi-objective optimization problem

The multi-objective optimization problem is a problem of
minimization or maximization of multiple evaluation crite-
ria that conflict with each other. It is difficult to say that the
solution that is an optimum for one criterion is the optimal
solution for multi-objective optimization, because the mul-
tiple criteria have trade-off relationships with each other.
Therefore, in multi-objective optimization, the concept of
a Pareto-optimal solution is used in the search. In a Pareto-
optimal solution, there are multiple, or sometimes an infi-
nite number of solutions. In multi-objective optimization, as
it is mentioned, getting a Pareto-optimal solution is one of
the goals and an approach to obtain a wide range of Pareto-
optimal solutions at equal intervals is required.

2.2 SPEA2+

Currently, there is a great deal of active research regard-
ing algorithms and their applications in a variety of multi-
objective problems. Among the multi-objective Genetic Al-
gorithms reported to date, NSGA-II proposed by Deb and
SPEA2 proposed by Zitzler show excellent results. These
algorithms include important search mechanisms, such as
preservation of good solutions discovered in the search and
appropriate reduction of the possible Pareto-optimal solu-
tions.

However, the crossover method, which is one of the GA
operators, has not been discussed in these algorithms. In ad-
dition, mechanisms to maintain diversity in the design vari-
able space have not been considered.

SPEA2+ is a new model of a multi-objective genetic al-
gorithm that improves the search performance of SPEA2 by
considering these problems. SPEA2+ is SPEA2 with the
addition of the following mechanisms:

1. Neighborhood crossover to allow crossing over indi-
viduals located close to each other in objective space

2. Mating selection that reflects all good solutions pre-
served in the archive

3. Application of two archives to maintain diverse so-
lutions in the objective space and the design variable
space

Neighborhood Crossover
Neighborhood crossover crosses over individuals located

close to each other in objective space. In the multi-objective
genetic algorithm that performs a global search, because it
is possible that parental individuals that are not close to each
other in the objective space may cross over, there are prob-
lems in the search efficiency. Therefore, by crossing over
individuals for which the search direction is the same, off-
spring individuals are generated close to the parental indi-
viduals.

Watanabe showed that the neighborhood crossover is
very effective in the multi-objective genetic algorithm[6].
The mechanism of neighborhood crossover is shown below.

Step 1 Create an empty population (Qt) . i=0, k=0.

Step 2 From search population (Pt) , search for individual
x0 which has either a maximum or a minimum value
of the objective function, and add the individualx0 to
the population (Qt) . Remove individualx0 from the
search population (Pt) .

Step 3 Search for individualxi+1 close to individualxi in
the objective space from the search population (Pt) ,
and add individualxi+1 to the population (Qt) . Re-
move individualxi+1 from search population (Pt) .

Step 4 i=i+1. Repeat Step 3 until the search population
(Pt) is empty and resume to Step 5 once empty.

Step 5 In the neighborhood crossover, two neighborhood
individuals are paired. However, against population
(Qt) , perform a neighborhood shuffle with intervals
of less than 10% of the total number of individuals in
the population.

Two individuals are selected randomly within the ar-
bitrary range. Then, they are replaced for crossover
pair.

Step 6 Against the shuffled population (Qt) , select indi-
viduals individualxk andxk+1.

Step 7 Perform a crossover between the two selected indi-
viduals.

Step 8 k=k+2, and once all population (Qt) has been re-
newed, resume to Step 9; if not, return to Step 6.

Step 9 Copy population (Qt) to empty search population
(Pt) and end search.

In this study, the interval of the neighborhood shuffle was
4.5%.

Mating selection
Selection of the next generation’s search population

from the archive population is called mating selection. In
SPEA2, two individuals are selected using binary tourna-
ment selection[7], and the individual with higher fitness is
added to the next generation’s search population.

However, in SPEA2, as the good solutions discovered
during the search are preserved in the archive, in the lat-
ter half of the search, all the individuals preserved in the
archive often form a non-dominated solution. Therefore,
overlapping individuals may be selected as a search pop-
ulation when binary tournament selection is used, and the
search becomes inefficient.

All of the good solutions preserved in the archive are
copied in SPEA2+ to reflect the excellent solution preserved
in the archive, and used as the next generation’s search pop-
ulation.

Archives for good solutions in objective and design
variable space

Mechanisms to maintain diversity in the design variable
space are not considered in many multi-objective genetic
algorithms. However, when the decision maker selects a
solution from the obtained solution set, both the objective



function value and the design variable value are important.
If comparable objective function values can be generated
using a different design variable value, diversity of non-
dominated solutions in the design variable space becomes
very useful for the decision maker.

In SPEA2+, a new archive (design variable archive) is
used to preserve good solutions in the design variable space
in addition to the archive (objective archive) that preserves
various good solutions in the objective space. Environmen-
tal selection[3] of SPEA2 is used to renew the design vari-
able archive. However, when the number of non-dominated
solutions exceeds the archive size of the design variable
archive, the proximity of the individuals is obtained using
the Euclidean distance based on the value of the design vari-
able. Then, the archive truncation method[3] based on prox-
imity is executed in SPEA2, and the number of individuals
is reduced.

The algorithm of SEPA2+ is shown below:

Step 1 Generate initial individual (P0) . Generation is
t=0. Evaluate each individual, and assign fitness us-
ing SPEA2’s fitness assignment method[3]. Copy
this initial population to the objective archive popu-
lation (OA0) , and design variable archive population
(V A0) .

Step 2 t=t+1. If the archive truncation method was used
in Step 5, copy design variable archive population
(V At−1) to the search population (Pt) . If not, copy
objective archive population (OAt−1) to the search
population (Pt).

Step 3 If the objective archive population (OAt−1) was
copied to the search population (Pt), perform neigh-
borhood crossover, mutation, and evaluation on the
search population (Pt). If the design variable archive
population (V At−1) was copied to the search popula-
tion (Pt), perform neighborhood crossover based on
the value of the design variable, mutation, and eval-
uation on the search population (Pt) . Neighborhood
crossover based on the value of the design variable
perform on the base of the design variable space in-
stead of the objective space.As a result, the search
population (Pt) is renewed.

Step 4 Assign fitness to the search population (Pt) using
the fitness assignment method of SPEA2.

Step 5 The search population (Pt), objective archive popu-
lation (OAt−1), and design variable archive popula-
tion (V At) are joined, and the objective archive pop-
ulation (OAt) and design variable archive population
(V At) are renewed. At this time, an environmental
selection of SPEA2 is used as a method of renewing
the objective archive.

Step6 Judge whether the end condition is met. If the end
condition is fulfilled, end search; if not, return to Step
2.

A design variable archive exists in SPEA2+, but is not
directly related to genetic operation. However, in this study,

SPEA2+ is the design variable archive was added to genetic
manipulation. When the number of non-dominated solu-
tions exceeds the size of the archive, the design variable
archive is copied to the next generation’s search population.
Conversely, when the number of non-dominated solutions is
smaller than the archive size, the objective archive is copied
to the next generation’s search population. By reflecting the
design variable archive in the search, more diverse solutions
have possibilities of obtaining in the design variable space.

3 Diesel engine fuel emission scheduling prob-
lem

3.1 Outline of the diesel engine fuel emission scheduling
problem

In this study, a diesel engine was designed to minimize the
amounts of SFC, NOx and Soot. SFC is an index that when
minimized the fuel economy is maximized. There are many
design parameters for the diesel engine. In this study, we
didn’t target shape parameters, such as bore diameter and
stroke length, we targeted parameters that can be controlled
electronically, such as EGR, swirl rate, and fuel injection
ratio. Target shape parameter was related to physical size
are pre-determined by the specification, and the degree of
design freedom is low. On the other hand, the parameters
that can be controlled electronically are controllable or are
new technologies that are becoming controllable, and will
be used for engines in the near future. By targeting param-
eters that can be controlled electronically, the designed en-
gine will not have one fixed solution but will have a dynamic
design that can be adapted according to requirements. This
is a so-called, flexible system, and will also be one of the
forms of future engine design.

3.2 HIDECS

The simulation of diesel engine is very complicated. There-
fore many researchers have proposed many models of
diesel engine combustions. These models are classified
into two categories: phenomenological model and detailed
multi-dimensional model. In the past 30 years, the most
sophisticated phenomenological spray-combustion model,
HIDECS, has shown great potential as a predictive tool
for both performance and emissions in a wide range of di-
rect injection diesel engines. It was developed originally
at the University of Hiroshima and was named eHIDECSf
only recently. A detailed discussion of this model and
examples of its successful application are given in the
references[8, 9, 10, 11, 12, 13, 14]. In this study, HIDECS
was used as an analyzer to determine the target function val-
ues in optimization.

In HIDECS, the required calculation load is very light.
KIVA code of a detailed multi-dimensional model is a well-
known diesel engine combustion analyzer; however, this
model requires a very large calculation load for analysis
for one trial. The genetic algorithm used in the present
study exhibits high optimum solution search ability. The
downside is that the calculations must be repeated many



times. However, HIDECS allows use of the genetic algo-
rithm within a practicable time frame.

3.3 Performance Metrics of Pareto solution

Evaluation of the solution set obtained is essential to evalu-
ate the performance of the applied optimization method. Es-
pecially, in multi-objective optimization, the solution can-
not be evaluated uniquely. In general, from the obtained so-
lution set, we expect proximity to the Pareto-optimal front
(accuracy), breadth against the entire Pareto-optimal front,
and the equal distribution within the Pareto-optimal front.

In this study, the ratio of non-dominated individuals
(RNI) was used to evaluate the accuracy of the obtained so-
lution set. In addition, the cover rate was used to evaluate
the breadth and to what extent the obtained solution has an
even distribution.

To compare the accuracies of the two methods, their ac-
curacies were evaluated based on the ratio of non-dominated
individuals by obtaining the number of solutions that were
inferior to the other. Let union of the solution setsS1 and
S2 obtained by the two methods beSU . FromSU , select
non-dominated solutions, and let the selected solution set
beSP . Calculate ratio of each solution set againstSP . The
closer this ratio is to 100%, the more superior it is compared
to other methods. That is, it will obtain a solution close to
the Pareto-optimal front.

The cover rate is the ratio of the number of divided ar-
eas, where each area is the area between the maximum and
minimum values divided into arbitrary sizes, that has the
obtained solution set, to the total number of divided areas.
From the cover rate, we can evaluate the breadth of the area
covered by the solution and how evenly distributed the so-
lutions is against the Pareto-optimal front. The cover ratio
Icoverk

against an objective functionfk can be obtained us-
ing equation 1.N is the number of divisions, andNk is the
number of divided areas covered by the solution set.

Icoverk
=

Nk

N
(1)

Cover ratioIcover can be obtained by calculating the av-
erage of the cover ratio (equation 2 ). LetM be the number
of objective functions.

Icover =
1
M

M∑

k=1

Icoverk
(2)

The maximum cover rate is 1 and the minimum value is
0. The closer the value is to the maximum value of 1, the
solution set covers a greater area and is more evenly dis-
tributed. As the Pareto-optimal front was unknown in this
study, the maximum and minimum values in each objec-
tive function were used values from experience. In addition,
the number of divisions was defined as the number of indi-
viduals (Population Size)/2, and as the objective function
is expressed by the logarithm, the area was divided by the
logarithm (log10) .

In this study, the diversity of the solutions should be dis-
cussed. Generally, the distribution of the solutions can be
evaluated with generalized co-variance value. However, co-
variance is not suitable for the solutions that have multiple
peaks. In such a case, though the co-variance value is high,
the diversity of the solutions is very low. This is the reason
why we use cover rate for evaluating the diversity instead
of co-variance. The cover rate of each design variable is
evaluated in this study. When the cover rate is derived, the
maximum and minimum values of design variable are used
for the range and the division number is determined using
the bit number of design variable for GA.

4 Numerical experiment

4.1 Target of Diesel engine

The Specification of targeting diesel engine is shown in Ta-
ble 1.

Table 1: Specification of the target diesel engine

Bore (m) 0.1329
Stroke (m) 0.0825
Connected Rod (m) 0.26
Compress Ratio 14.7
Nozzle Diameter (m) 0.00029
Nozzle Number 8
Engine Speed (rpm) 2200

4.2 Injection shape of fuel

In this study, the amounts of SFC, NOx, and Soot were used
as the objective function, and we tried to minimize them
simultaneously. As shown in Fig. 1, the injection shape of
the fuel is two-step injection where the fuel is injected in
two pulses. Moreover, the fuel injection duration angles of
the first and second pulses are the same, and the amount of
total fuel is constant.

Figure 1: Description of two-pulse injection shape

To achieve two-step injection in this study, the percent-
age of fuel in the first pulse, dwell between injections, and



duration angle are necessary. Therefore, two-step injec-
tion was achieved by handling these as design variables in
this study. Moreover, start angle, exhaust gas recirculation
(EGR), boost pressure, and swirl ratio are also handled as
design variables in addition to those described above. These
parameters can be controlled electronically. The constraint
conditions of each design variable are shown in Table 2.

Table 2: Range of design variables

Item Min Max bit for
GA

Percentage of first pulse 50 84 7
Dwell between
injections (CA) 3.0 15.0 7
Start Angle (ATDC) -10.0 10.0 8
Duration Angle (CA) 25.0 40.0 5
Boost Pressure (kg/cm2) 3.45 3.65 5
EGR rate 0.0 0.30 5
Swirl Ratio 0.0 6.0 5

The GA parameters used in this experiment are shown in
Table 3.

Table 3: GA Parameter

Population Size 200
Terminal Generation 100
Crossover Rate 1.0
Mutation Rate 1/42
Runs 5

5 Results

5.1 Comparison between SPEA2+, SPEA2 and NSGA-II

Figures 2∼ 5 show the solution sets obtained by SPEA2+,
SPEA2, and NSGA-II. Fig. 6 shows the results of eval-
uation of the obtained solution set using the ratio of non-
dominated individuals (RNI) . Fig. 7 shows the results of
evaluation of the obtained solution set using the cover rate.

Figure 2: Pareto-optimal Solutions (SFC, NOx, Soot)

Figure 3: Pareto-optimal Solutions (SFC, NOx)

Figure 4: Pareto-optimal Solutions (SFC, Soot)

Figure 5: Pareto-optimal Solutions (NOx, Soot)

As shown Fig. 6, the accuracy of the solution set ob-
tained by SPEA2+ was slightly higher than those of SPEA2
and NSGA-II. In addition, it was that the accuracies of the
solution sets obtained by SPEA2 and NSGA-II were almost
equivalent. From Fig. 7, it is evident that range covered
and closeness of the interval of the solution set obtained



Figure 6: Comparison of SPEA2+, SPEA2, and NSGA-II
by RNI

Figure 7: Comparison of SPEA2+, SPEA2, and NSGA-II
by cover rate

with NSGA-II was slightly inferior to those of SPEA2 and
SPEA2+. In addition, SPEA2+ and SPEA2 showed almost
equivalent proximity and breadth of the obtained solution
sets.

Figures 8 and 9 show the relations between NOx and
start and duration angles from the solution sets obtained by
SPEA2+, SPEA2, and NSGA-II.

Figure 8: Relation of NOx and Duration Angle

Figure 9: Relation of NOx and Start Angle

As shown Fig. 8 and Fig. 9, the design variable archive
of SPEA2+ was the most diverse design variable values.

In Fig. 10, the cover rates of each design variable are
shown for evaluating the diversity of the derived solutions
in design variable space. The results of Fig. 10 are shown
with along to the GA generation. These results of SPEA2+
are in the design variable archive.

From Fig. 10, it is confirmed that the solutions of

SPEA2+, besides of the results of the swirl ratio, have the
higher diversity compared to the results of the other meth-
ods. Therefore, it is concluded that SPEA2+ can derive the
solutions that have the diversity in the design variable space.
On the other hand, the results of NSGA-II do not have the
diversity compared to the other methods. In the results of
start angle, the cover rates of the all results are low. 8 bit is
used for this design variable. Therefore, there are 256 divi-
sions for this design variable instead of the total population
is 200.

Figure 10: Cover rate of SPEA2+, SPEA2, and NSGA-II

The results of the experiment indicated that SPEA2+
showed slightly superior solution search ability as compared
to SPEA2 and NSGA-II. In addition, by using two archives,
SPEA2+ was able to obtain a more diverse solution set
in the design variable space as compared to SPEA2 and
NSGA-II. Therefore, we concluded that SPEA2+ is a very
effective method for addressing the fuel emission schedul-
ing problem of diesel engines.

The injection shape of solution A in Fig. 5 is shown in
Fig. 11. While the minimum NOx value was obtained at
this point, a very high SFC value of 0.245 (g/k Wh) was
seen, and therefore this is not a realistic solution. On the
other hand, when an alternative solution of about 0.06 (g/k
Wh) is desired, the decision maker may obtain solution B,
by referring to the shape of the Pareto front of Fig. 5. The
injection shape of solution B is shown in Fig. 12. As dis-



cussed above, because many alternative solutions can be ob-
tained as the Pareto solution set in multi-objective GA, it is
very effective for diesel engine design.

Another advantage of using SPEA2+ is the diversity
of the solution in the design variable space. In Fig. 8,
when considering the Pareto solution obtained by SPEA2,
a Pareto solution of duration angle around 30 cannot be se-
lected. The same thing may be happened when NCGA-II is
used. On the other hand, as the diversity of the design vari-
able is considered in SPEA2+, a duration angle of around
30 can also be selected. This increases the possible choices,
and becomes a great advantage for the decision maker.

Figure 11: Injection Shape in Solution A

Figure 12: Injection Shape in Solution B

6 Conclusions

In this study, the effectiveness of SPEA2+ in the diesel en-
gine fuel emission scheduling problem was compared with
those of SPEA2, and NSGA-II. The results of the experi-
ment indicated that SPEA2+ showed slightly superior solu-
tion search ability as compared to SPEA2 and NSGA-II. In
addition, by using two archives, SPEA2+ was able to ob-
tain a more diverse solution set in the design variable space
as compared to SPEA2 and NSGA-II. Therefore, we con-
cluded that SPEA2+ is a very effective method for address-
ing the fuel emission scheduling problem in diesel engine
design.
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