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A Tabu Method to Find the Pareto Solutions
of Multiobjective Optimal Design Problems in

Electromagnetics
S. L. Ho, Shiyou Yang, Guangzheng Ni, and H. C. Wong

Abstract—A tabu search algorithm is proposed for finding the
Pareto solutions of multiobjective optimal design problems. In this
paper, the contact theorem is used to evaluate the Pareto solutions.
The ranking selecting approach and the fitness sharing function
are also introduced to identify new current points to begin every it-
eration cycle. Detailed numerical results are reported in this paper
to demonstrate the power of the proposed algorithm in ensuring
uniform sampling and obtaining the Pareto optimal front of the
multiobjective design problems. The most efficient method of im-
plementing the proposed algorithm is also discussed.

Index Terms—Fitness sharing, multiobjective optimization,
ranking, tabu search, vector optimization.

I. INTRODUCTION

T HANKS to the advent in both computer sciences and nu-
merical techniques, researchers in electrical engineering

can now give increasing attentions to design optimization prob-
lems that could not be solved hitherto. However, almost all engi-
neering design problems involve simultaneous optimizations of
multiple and often conflicting objectives. Although the optimal
methods for solving single objective problems are well devel-
oped, there are very few “truly” suitable algorithms applicable
for multiobjective optimizations. Consequently, a common ap-
proach for dealing with this kind of problems in electrical engi-
neering is to convert the problem into a scalar one, i.e., to com-
bine multiobjective functions into a single one by adding dif-
ferent weighting factors to different objectives and then solving
the weighted objective function. Alternatively, one can select
the most dominant one as the objective function and take the
others as constraints. However, the designer must give a priority
or preference order to each objective function. This means that
the optimal results would depend largely on the rules of thumb
of the designer, and some important aspects that were unknown
prior to the optimization study could well be excluded. Further-
more, the weighting values might also be chosen inaccurately.
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Thus, a more desirable and natural approach for multiobjective
optimizations is to identify a set of solutions known as the Pareto
optima from which a single optimal solution corresponding to
a particular tradeoff of different objectives is to be chosen by
the decision maker. In this paper, a tabu search algorithm for
finding the Pareto solutions of multiobjective functions is pro-
posed. The algorithm is validated using numerical examples.

II. TERMINOLOGY

Although the multiobjective optimization and the corre-
sponding terminologies were frequently quoted, the interpre-
tations are sometimes dependent on the context. Hence, the
following concepts/terminologies are first defined in order to
ensure an easy understanding of the proposed algorithm.

Multiobjective Optimization Problem:In general, a multiob-
jective optimization problem, which is also called a vector op-
timization problem, is to optimize a vector function subject to
some constrained conditions. Consider a minimization problem
that can be written in a shortened form as

(1)

(2)

where

Pareto Optimal: A solution is a Pareto optimal if no ob-
jective function can be improved without worsening at least one
other objective functions. Mathematically, a solution is a
Pareto optimal of (1) if and only if for all

(3)

Negative Core:The negative core in is the set

(4)

Contact Theorem:A vector is a Pareto optimal solution
for a multiobjective optimization problem if and only if

(5)
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Dominated and Nondominated Solutions:Suppose and
are two different feasible points.

1) is said to be dominated by (or inferior to) [which
is denoted by ] if is partially larger

than , i.e.,

(6)

2) is said to be nondominated if there is no among
the specified points.

III. T ABU METHOD FORPARETO OPTIMAL

The inherent solution process of tabu search methods, i.e., the
involvement of a number of neighborhood solutions simultane-
ously in the process, lends itself very conveniently to dealing
with multiple objective functions. In general, an efficient solver
for multiobjective optimization problems should have the fol-
lowing features: 1) The solutions obtained are Pareto optimal,
and 2) the solutions are uniformly sampled from the Pareto op-
timal set [1]. To achieve these two goals, different improvements
are proposed on an improved tabu search method of single ob-
jective functions, as reported in [2] and discussed below.

A. Generation of Neighborhoods

A common approach [3] in tabu methods for neighborhood
generations is to construct the co-center hyperballs with dif-
ferent radii around the current point and then generate a random
point in each hyperball. However, this will result in an inhomo-
geneous exploration of the variable spaces around the current
points. Hence, the concentric “hypercrowns” approach, as re-
ported in [4], is extended and employed in the proposed method
for the generation of neighborhood solutions. In this paper, the
radii of the hypercrowns are determined on the basis of all the
hyperballs having the same volume.

B. Introduction of Pareto Optimal Archive

In order to report the searched Pareto optimal and design the
diversity algorithms, a Pareto optimal archive is introduced in
the proposed method. The quantities of the archive are dynam-
ically updated and used in the optimization process. The length
of this archive is finite.

C. Ranking of New States

It is well known that in the selection of new current points
for a tabu search, it is necessary to obtain the objective function
values of their neighborhood solutions. As the objective func-
tion in a multiobjective optimization problem is a vector, some
scalarization techniques must be used. Thus, the ranking method
[5] is extended and used for evaluating the “fitness” of a solu-
tion of the proposed algorithm. Hence, it is proposed that for a
neighborhood solution , as shown in Fig. 1, its rank can be
given by

(7)

Fig. 1. Ranks for neighborhood solutions for minimizingf andf .

Fig. 2. Searched Pareto optimal of the proposed algorithm for Case 1.

where is the number of solutions in both the neighborhood
and the Pareto optimal archive that dominate the point.

Contrary to the originally ranking method of [5], the
quantities in the Pareto optimal archive are also involved in
determining the rank of a neighborhood solution to make the
searched Pareto optimal to have uniform distributions in the
objective function space.

The rank of a solution, together with its fitness-sharing func-
tion value, is then used to decide its “fitness” value as the new
current point.

D. Fitness Sharing Function

In order to ensure the searched Pareto optimal to have uniform
distributions in the objective space, it is important to maintain
the diversity of the algorithm. Besides using the new genera-
tion scheme of the neighborhood solutions and to incorporate
the quantities of the Pareto optimal archive into the rank com-
putation of a solution, the fitness sharing concept of the evo-
lutionary methods is improved and used in the proposed algo-
rithm. To take into account the density of the searched Pareto
optimal around a new point, the following fitness sharing func-
tion is proposed. For example, for the neighborhood solution

, its fitness sharing function is defined by

(8)

where is the density of the Pareto optimal obtained
around the specified solution point , and is the number
of the total neighborhood solutions of .

To compute the density of the Pareto optimal for a specified
point, a hyperball with the point as the center is constructed, and
the number of the Pareto optimal points that lie in this ball are
used as a measure for its fitness sharing function. The fitness
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Fig. 3. Computed Pareto optimal of the proposed algorithm for Case 2.

value of a neighborhood solution is the sum of the inverse
of its rank and its fitness sharing function value, i.e.,

(9)

All other things being equal, it can be seen that the sparser
the points around the specified point, the more likely it is to be
selected as the new current point. This characteristic enables the
proposed algorithm to work well to yield an uniform sampling
of the Pareto optimal front in a simple way. Moreover, since
uniformly sampling the Pareto front is as important as finding
them, there are no weighting factors in (9) for ranking the fit-
ness-sharing values.

In addition, there would be some rare situations where more
than one neighborhood solutions are sharing the highest fitness
value. Under such circumstances, the new current point is se-
lected randomly among those with the highest fitness value.

E. Evaluation and Reporting of Pareto Solutions

In the optimization process, the Pareto optimal archive is au-
tomatically updated. To test if a solution is a Pareto optimal, the
contact theorem is used [6]. To simplify the description, let
be a new solution to be considered. In the set of the Pareto op-
timal archive, if there is a solution such that

1) if , then is substituted
by ;

2) if , then is dis-
carded;

3) if none in the Pareto optimal archive satisfies (1) or (2),
then becomes a new Pareto solution, and in this case

i) if the Pareto optimal archive is not full, add to
it;

ii) if the Pareto solution is full and is in a sparser
region than some members of the Pareto optimal
archive, replace the solution with the highest point
density by ;

iii) if neither of i) or ii) is satisfied, then discard .
Since the proposed method is developed for real-value prob-

lems, the likelihood of finding identical solutions is extremely
small, and hence, a proximity criterion was proposed in order
for the procedure to work [7]. Such a criterion relaxes the strict

comparison of the new solution to those stored in the Pareto
solution archive, thereby tending to give rise to uniformly dis-
tributed Pareto optimal solutions in the feasible variable spaces.

F. Stop Criterion

The proposed algorithm has two termination criteria to deter-
mine when to stop the iterative process.

Criterion One: Once the number of iterations exceeds a pre-
scribed threshold value, the algorithm will stop the iterative
process.

Criterion Two: Once the Pareto optimal archive is full and
the point density for every member exceeds a threshold value,
the algorithm will also stop the iterative process.

The analysis and numerical experiences indicate that the
second criterion is more robust in producing an uniform Pareto
optimal, but it is computationally rather inefficient.

IV. NUMERICAL EXAMPLES

The performances of the proposed algorithm have been in-
vestigated extensively on the multiobjective optimization of a
practical engineering design problem for determining the op-
timal geometry parameters of the multisectional pole arc of large
hydro-generators with the following goals:

s.t

(10)

where is the amplitude of the fundamental component of
the flux density in the air gap, is the distortion factor of a
sinusoidal voltage of the machine on no-load condition, THF
is the telephone harmonic factor, is the direct axis transient
reactance of the motor, and SCR is the short circuit ratio.

The details about this problem are referred to [8]. In order
to explore the performance of the proposed method, it can be
studied in the following four different cases.

Case 1: The fitness-sharing function is excluded from the
computation of the fitness values of the new points, and termi-
nation criterion one is used to decide when to stop the iterative
process of the algorithm.

Case 2: The fitness-sharing function is incorporated into the
evaluation of the fitness value of a newly generated point, and
termination criterion two is used to stop the iterative procedure.

Case 3: The only difference of this case from Case 2 is that
criterion one is used.

Case 4: The only difference from Case 2 is that the threshold
value of the point densities is set to half of that of Case 2.
Figs. 2–5, respectively, show the computed Pareto optimal front
of the proposed algorithm under the aforementioned four dif-
ferent running conditions for a 300-MW, 20-pole hydrogener-
ator. The corresponding performance comparisons are given in
Table I. For each case, the iteration number given in this table
is the average value of five runs from different starting points.
From these results, it can be seen that with the fitness-sharing
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Fig. 4. Searched Pareto optimal of the proposed algorithm for Case 3.

Fig. 5. Computed Pareto optimal of the proposed algorithm for Case 4.

function being excluded from the decision of the fitness value of
a solution and a simple termination criterion is being used, the
algorithm produces “deceptive” Pareto optimal fronts as shown
in Fig. 2. We also see that although the fitness function is incor-
porated in the computation of the fitness value of a new solution,
the use of a simple terminative criterion makes the algorithm un-
able to find some parts of the Pareto optimal front, as shown in
Fig. 4. Moreover, even if the Pareto optimal front is found, the
point densities are denser in some sections and sparser in others.
Hence, a simple termination criterion cannot guarantee to yield
the total Pareto optimal front or even parts of it in a uniform
manner. In addition, the algorithm using a simple termination
criterion (criterion one) is generally computationally efficient,
as can be seen by the iterative number of Case 1 in Table I. We
also find that once the fitness-sharing function is included and
a delicate termination criterion is used as in Case 2, the pro-
posed algorithm produces nearly perfect results for the Pareto

TABLE I
PERFORMANCECOMPARISON OF THEPROPOSEDALGORITHM UNDER

FOUR DIFFERENTRUNNING CONDITIONS

optimal front of the test problem. Moreover, when one halves
the threshold value of the point density as in Case 4, the algo-
rithm can still produce uniform distributions of the exact Pareto
optimal front. In addition, the iteration number used in Case 4
is significantly smaller than that in Case 3. Finally, the iterative
numbers, ranging from 5841 to 8946 in the proposed algorithm
under all cases, are acceptable for the complex multiobjective
optimal design problems being studied.

V. CONCLUSION

By introducing the ranking concept and incorporating the
fitness sharing function into the neighborhood selection of tabu
search methods and by proposing the new termination criteria
as well as making other novel improvements as discussed, this
paper presents a vector optimal design technique (the tabu
search algorithm) for finding the Pareto solutions of multiob-
jective optimal design problems. The detailed numerical results
fully demonstrate the robustness of the proposed algorithm in
obtaining and ensuring uniform sampling of the Pareto optimal
front of the multiobjective design problems. Moreover, the nu-
merical results also suggest that if one hasa priori knowledge
about the distributions of the objective functions, one can use a
simple termination criterion in the proposed algorithm in order
to be more computationally efficient.
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