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Abstract- Evolutionary algorithms have been applied
with great success to the difficult field of multi-objective
optimisation. Nevertheless, the need for improvements
in this field is still strong. We present a new evolutionary
algorithm, ESP (the Evolution Strategy with Probabilis-
tic mutation). ESP extends traditional evolution strate-
gies in two principal ways: it applies mutation proba-
bilistically in a GA-like fashion, and it uses a new hyper-
volume based, parameterless, scaling independent mea-
sure for resolving ties during the selection process. ESP
outperforms the state-of-the-art algorithms on a suite of
benchmark multi-objective test functions using a range
of popular metrics.


1 Introduction


Evolutionary Algorithms (EAs) have been successfully ap-
plied to the complex domain of multi-objective optimisa-
tion problems in a variety of applications, for example in
optimising the combustion process of stationary gas tur-
bines [5] and optimising the design of rock crushers [4]. The
population-based nature of EAs lends itself well to multi-
objective optimisation, where the aim is to discover a range
of solutions offering a variety of trade-offs between the var-
ious objectives.


Recent papers have described a variety of EAs for multi-
objective optimisation, particularly using the techniques of
Genetic Algorithms (GAs) [22, 17] and Evolution Strategies
(ESs) [11, 12, 6]. GAs differ from ESs primarily in that GAs
focus on genetic operations on individual solutions, whereas
ESs focus more on generational trends in the population. In
addition, a range of “standard” test problems, metrics, and
methodologies [21, 17] have been described for comparing
the performance of these algorithms. Several of the algo-
rithms described have achieved good performance on the
standard test problems.


In this paper, we present a high performance extension of
the standard (µ + λ)-ES, an Evolution Strategy with Proba-
bilistic mutation (ESP). The principal enhancement in ESP
is the use of a GA-style mutation probability setting — ESP
does not rely solely on self-adaptive mutation rates as do
traditional ESs. ESP also employs a new hyper-volume-
based, scaling independent, parameterless measure for the
truncation of “overfull” populations.


In order to demonstrate the effectiveness of ESP, we con-
ducted tests on the benchmark multi-objective problems de-
signed by Zitzler, Deb, and Thiele [21] (the “ZDT” prob-


lems). We follow the robust evolutionary multi-objective in-
quiry framework advocated by Purshouse and Fleming [17]
for comparing algorithms. Results demonstrate the efficacy
of ESP when compared to existing state-of-the-art multi-
objective EAs that have already been shown to be effective
on the ZDT problems. The effect of having incorporated
probabilistic mutation into ESP is also empirically studied
using the same framework and test problems.


Section 2 defines the key concepts of evolutionary multi-
objective optimisation. Section 3 reviews existing multi-
objective EAs, and Section 4 describes the test functions
and methodology employed. Section 5 explains the details
of ESP, and Section 6 presents and discusses our experimen-
tal results. Section 7 concludes the paper.


2 Definitions


With multi-objective optimisation, we aim to find the set
of optimal trade-off solutions known as the Pareto optimal
set. Without loss of generality, consider a multi-objective
minimisation problem consisting of m decision variables
(x1, . . . , xm) ∈ X , and n objectives (f1, . . . , fn) ∈ Y .


Given two decision vectors a and b, a dominates b iff a
is at least as good as b in all objectives, and better in at least
one. A vector a is non-dominated with respect to a set of
vectors X ′ iff there is no vector in X ′ that dominates a. X ′


is a non-dominated set iff all vectors from X ′ are mutually
non-dominating. The set of corresponding objective vectors
is a non-dominated front.


A vector a is Pareto optimal iff a is non-dominated with
respect to the set of all possible vectors X . Pareto optimal
vectors are characterised by the fact that improvement in
any one objective means worsening at least one other objec-
tive. The Pareto optimal set is the set of all possible Pareto
optimal vectors. The goal of a multi-objective algorithm is
to find the Pareto optimal set, although for continuous prob-
lems a representative subset will usually suffice.


Since EAs are population based, the partial order im-
posed on the search space imposes the need for an appro-
priate ranking scheme. Two schemes are commonly em-
ployed. Both schemes employ the concept of domination to
rank individuals: a lower rank implies a superior candidate.
In Goldberg [10], non-dominated vectors have the rank 0,
and the rank of a vector a in a population X ′ is equal to the
rank of the highest-ranked vector from X ′ that dominates a,
plus one. In Fonseca and Fleming [8], the rank of a is equal
to the number of vectors in X ′ that dominate a.







3 Previous Algorithms


Recent papers have described a variety of EAs for multi-
objective optimisation, particularly using the techniques of
GAs and ESs.


3.1 GA-based Approaches


Most published multi-objective optimisation algorithms are
variants of the standard GA. The most promising are
the Nondominated Sorting Genetic Algorithm II (NSGA-
II) [7], the Strength Pareto Evolutionary Algorithm 2
(SPEA2) [22], and Purshouse and Fleming’s modular
Multi-Objective Genetic Algorithm (PF-MOGA) [17]. The
Self-adaptive Pareto Differential Evolution (SPDE) algo-
rithm [1] combines properties from both ESs and GAs. All
four algorithms have given good results on the ZDT prob-
lems (see Section 4).


NSGA-II is a highly elitist GA that retains the best in-
dividuals from generation to generation, as drawn from a
combined pool of parents and children in an ES-like man-
ner, whereas SPEA2 and PF-MOGA are GAs that maintain
elite archives of solutions. All three algorithms employ ef-
fective intra-ranking schemes that improve the granularity
of the ranking scheme employed. Classifying SPDE is less
straight forward. SPDE’s random selection scheme of par-
ents, irrespective of any potential intra-ranking based fitness
assignment, is reminiscent of an ES, whereas its probabilis-
tic application of crossover and mutation resembles a GA.


The only direct comparison between any of these four
algorithms was conducted by Zitzler, Deb, and Thiele [22],
who drew a variety of test functions from the literature on
which several algorithms were compared, including SPEA2
and NSGA-II. They concluded that SPEA2 and NSGA-II
seem comparable in performance, but SPEA2 holds the ad-
vantage in higher dimensional objective spaces.


Deb et al. [7] have compared the performance of NSGA-
II against several other algorithms, including SPEA2’s pre-
decessor SPEA [21], on five of the six ZDT problems. Two
versions of NSGA-II were implemented, binary and real
coded respectively. The results presented generally show
NSGA-II to be superior to the other algorithms.


Two versions of SPDE, with and without mutation, were
compared by Abbass [1] on four of the ZDT problems
against 13 other algorithms, including SPEA. The results
obtained by Abbass clearly show the general superiority
held by SPDE over the other algorithms. As to the two
versions of SPDE implemented, Abbass concluded that the
version without mutation was generally better. It is against
this version that we compare ESP.


The performance of PF-MOGA (with elitism and rank-
based fitness sharing) has not been directly compared
against any other algorithm. Nevertheless, a visual analy-
sis of the results presented by Purshouse and Fleming [17]
on the ZDT problems shows that the elitist PF-MOGA out-
performs a non-elitist version, which is already known to
outperform a number of other algorithms [15], including
SPEA.


3.2 ES-based Approaches


Several multi-objective ESs have also been developed,
notably the Multiobjective Elitist Evolution Strategy
(MEES) [6] and the Memetic Pareto Archived Evolution
Strategy (M-PAES) [12].


MEES extends traditional ESs by incorporating a num-
ber of features, most notably the use of a secondary popula-
tion that acts as an elite archive of solutions. M-PAES also
departs significantly from standard ES practices, employing
multiples instances of the (1 + 1)-PAES algorithm [11] to
update individual solutions, coupled with mechanisms for
handling a global and many local archives of solutions.


Neither MEES nor M-PAES has been directly compared
to any of the other algorithms listed in this section. MEES
has been compared to SPEA, and several other algorithms,
with good results being reported on the ZDT problems. M-
PAES was similarly compared against several other algo-
rithms, including SPEA. Again, good results were reported
for M-PAES, although this time on a set of benchmark 0/1
knapsack problems [23].


Although it is not possible to say so conclusively without
a direct and thorough comparison, from the reported results
(using comparisons against SPEA as a common reference)
it is our belief that MEES and M-PAES do not exceed the
collective performance of the other algorithms identified in
this section. For this reason, and for the sake of brevity, we
do not compare ESP to MEES or M-PAES in this study.


4 Test Functions and Methodology


In this study we employ the robust evolutionary multi-
objective inquiry framework advocated by Purshouse and
Fleming [17]. The description of this framework is pre-
sented in several parts: test problems, experimental setup,
performance metrics, and metrics comparison.


4.1 Test Problems


We chose five of the six benchmark multi-objective optimi-
sation problems described by Zitzler, Deb, and Thiele [21]
as the test functions for this study. The omitted test func-
tion, ZDT5, is a problem based on binary strings, and does
not naturally map to the ES methodology. Moreover, ZDT5
has often been omitted from other analyses, including stud-
ies of NSGA-II [7] and SPDE [1].


The ZDT test functions are two-objective minimisation
problems, all of which are formulated as shown in Figure 1.
The specifics of each function are presented in Table 1.


Note that care is required in solving these problems with
real-coded representations. The optimal solutions are found
where g = 1, i.e. where ∀i > 1 : xi = 0. For ZDT1–3 and
ZDT6, 0 is at one end of the domain for each variable, thus
any mutation scheme that truncates negative values to 0 will
have a bias towards producing the optimal solutions.


4.2 Experimental Setup


In order to generate a rich set of data to analyse, each con-
figuration of ESP is run 35 times on each of the test prob-







Minimize y = f(x) = (f1(x1), f2(x))
subject to f2(x) = g(x2, . . . , xm)h(f1(x1), g(x2, . . . , xm))
where x = (x1, . . . , xm)


Figure 1: The general formulation of the ZDT test functions.


Pareto
Objective Variable Optimal


Problem Functions Settings Front Comments
ZDT1 f1 = x1 m = 30 g = 1 convex


g = 1 + 9
∑


m


i=2
xi/(m − 1) xi ∈ [0, 1]


h(f1, g) = 1 −
√


f1/g


ZDT2 f1 = x1 m = 30 g = 1 non-convex
g = 1 + 9


∑


m


i=2
xi/(m − 1) xi ∈ [0, 1]


h(f1, g) = 1 − (f1/g)2


ZDT3 f1 = x1 m = 30 g = 1 convex,
g = 1 + 9


∑


m


i=2
xi/(m − 1) xi ∈ [0, 1] noncontiguous


h(f1, g) = 1 −
√


f1/g − (f1/g)sin(10πf1)


ZDT4 f1 = x1 m = 10 g = 1 convex,
g = 1 + 10(m − 1) +


∑


m


i=2
(x2


i − 10cos(4πxi)) x1 ∈ [0, 1] multi-modal
h(f1, g) = 1 −


√


f1/g xi ∈ [−5, 5]
i = 2, . . . , m


ZDT6 f1 = 1 − exp(−4x1)sin
6(6πx1) m = 10 g = 1 non-convex,


g = 1 + 9((
∑


m


i=2
xi)/(m − 1))0.25 xi ∈ [0, 1] non-uniformly


h(f1, g) = 1 − (f1/g)2 distributed


Table 1: The specific settings for each of the ZDT test functions used in this study, and comments on their Pareto optimal
fronts. All objective functions are to be minimised.


lems. At the end of each run, three distinct sets of non-
dominated solutions can be identified: the final population,
the on-line archive, and the off-line archive. We follow Pur-
shouse and Fleming in analysing the set of non-dominated
solutions represented by the final population.


4.3 Performance Metrics


This study employs four metrics to measure the perfor-
mance of a set of non-dominated solutions.


• Generational distance: the average of the nor-
malised Euclidean distance between each obtained
solution and the nearest point on the Pareto optimal
front in objective space [19]. This metric is practi-
cally the same as Deb et al.’s [7] distance metric.


• Diversity: the sum of the differences between near-
est neighbour Euclidean distances (in normalised ob-
jective space) and the average of all such distances,
coupled with a measure to account for the length of
the obtained front [7]. For the latter measure, we fol-
low Purshouse and Fleming [16] in using the sum of
the Euclidean distance from the extreme points in the
obtained front to the extreme points in the Pareto op-
timal front, for each objective.


• Hyper-volume: also known as the S metric [20], this
is the ratio of the hyper-volume dominated by the ob-
tained front to the hyper-volume dominated by the
Pareto optimal front. The hyper-volumes are taken
with reference to the hypercube formed by the ideal
and anti-ideal vectors [18]. These vectors should be


located such that no objective is favoured.


• Attainment surface: the boundary in objective space
formed by the obtained front, which separates the re-
gion dominated by the obtained solutions from the re-
gion that is not dominated [9]. Multiple attainment
surfaces can be superimposed and interpreted prob-
abilistically. For example, the 50% attainment sur-
face identifies the region of objective space that is
dominated by half of the given attainment surfaces,
whereas the 100% attainment surface identifies the
region dominated by every given attainment surface.


Whereas generational distance and diversity complement
one another, the hyper-volume metric represents a com-
bined value that rewards both closeness to the Pareto op-
timal front, and the extent of the obtained non-dominated
front. Importantly, the hyper-volume metric is more robust
than either of the former two metrics [13, 2].


In order to calculate these metrics, we sample the Pareto
optimal front 500 times, evenly spread with respect to the
first objective. Smaller generational distance and diversity
values, and larger hyper-volume values, indicate better per-
formance.


4.4 Metrics Comparison


Since attainment surfaces operate in objective space, they
are more robust than numerical metrics (which attempt to
reduce complex multi-dimensional data down to single nu-
merical values). Figure 3 shows some 50% attainment sur-
faces, where curves closer to the origin indicate better per-
formance for the minimisation problems considered.







ESP Aspect Strategy/Setting
Population size (µ) 100.
Child population size (λ) 100.
Total generations 250.
Child population creation Since µ = λ, the child population is created by cloning the


parent population and then applying the genetic operators.
Encoding Direct concatenation of real numbers.
Recombination Uniform crossover variant. Unique pairs of individuals randomly swap their


decision variables and average their step-sizes.
Ranking scheme Goldberg’s non-dominated ranking procedure [10].
Mutation Mutation probability p = 1/m, with self adaptive mutation rates using


initial step size = 0.1, τ ′ = 0.5/
√


2m, τ = 0.5/
√


2
√


m.
Mutations producing infeasible values are re-tried in the same direction.


Truncation SPEA2 truncation, using the hyper-volume based truncation measure.


Table 2: The settings used by the implementation of ESP in this study, except where noted otherwise.


However, the other metrics are better suited to numeri-
cal analysis techniques. In this study the mean difference
between two unary metric distributions is taken as the test
statistic. The significance of this observed difference is
tested using randomisation testing [14] — if the observed
result has arisen by chance, then it will not appear unusual in
a distribution of results obtained via the random relabelling
of samples. For this study, the randomisation test proceeds
in the manner used by Purshouse and Fleming.


Randomisation test results are easy to visualise and inter-
pret, as shown in Figure 4(a). The histogram shows the dis-
tribution constructed by the 5000 randomised differences,
and the solid black circle shows the observed difference.
The five rows of results correspond to the five test prob-
lems, and the three columns correspond to the three metrics,
generational distance, diversity, and hyper-volume respec-
tively. To demonstrate that ESP is better than the algorithm
to which it is compared, the observed result should appear
to the left of the distribution for the first two metrics, and to
the right of the distribution for hyper-volume.


5 The ESP Algorithm


ESP is a generalised form of the traditional (µ + λ)-ES,
its principal distinguishing feature being the use of a mu-
tation probability setting. ESP also employs a new hyper-
volume based, parameterless and scaling-independent trun-
cation measure to resolve ties during truncation. Table 2
gives the settings used by ESP in this study.


5.1 Mutation


As already indicated, a key factor that distinguishes ESP
from other ESs, and allows it to perform so well, is the fact
that individuals are mutated based on a probability p. The
mutation operator acts as follows:


• Self adapt the strategy parameters.


• Using the strategy parameters, mutate each decision
variable with probability p per variable.


When p = 1, this corresponds to the mutation scheme nor-
mally used in ESs. Although we have yet to optimise it, we
have obtained excellent results with p = 1/m.


Although more complicated schemes exist, the self adap-
tion scheme employed in this study is one described by
Bäck, Hammel, and Schwefel [3].


5.2 Truncation


The truncation procedure used is based on the trunca-
tion mechanism used by SPEA2. The main difference is
that instead of employing a Euclidean distance-based near-
est neighbour measure, we employ a new parameterless
and scaling independent hyper-volume based intra-ranking
mechanism. (Although there is an obvious connection, the
hyper-volume based intra-ranking mechanism should not be
confused with the hyper-volume performance metric.)


Given a non-dominated front of individuals, the hyper-
volume value for an individual i, ωi, is equal to the product
of the one-dimensional lengths to the next worse objective
function value in the front for each objective, with the ex-
ception being for individuals with non-unique fitness vec-
tors, each of which are assigned the worst possible hyper-
volume of zero. That is, in general the value for i is the
hyper-volume of the region dominated with respect to the
hypercube formed by the next worse individuals in each di-
mension. This is illustrated in Figure 2 for a two-objective
minimisation problem. The extreme solutions ω0 and ω3 are
assigned the value infinity.


When selection is required between equally-ranked in-
dividuals from a population, the hyper-volume for each in-
dividual is calculated, and the individual with the smallest
hyper-volume is discarded. This process is repeated until
the desired population size is achieved, with hyper-volume
values re-calculated in each iteration. Ties in hyper-volume
values are resolved randomly.


No normalisation or scaling is required for this measure,
and we have found it both elegant to implement, and com-
parable in performance to nearest neighbour Euclidean dis-
tance based truncation.


6 Experiments and Results


ESP was compared to a variety of other algorithms, in-
cluding a version of ESP that has a mutation probability of
100% (ESP-1, simulating a more traditional ES), Purshouse







Figure 2: Calculation of the hyper-volume value for four individuals on a two-dimensional minimisation problem.


and Fleming’s elitist, rank-based fitness sharing PF-MOGA,
and SPDE (with no mutation). ESP was also compared to
SPEA2 and NSGA-II, although results are limited since test
data was only available for ZDT6 with increased dimension-
ality (m = 100), and using 100000 function evaluations.
To make the comparison against SPEA2 and NSGA-II fair,
we likewise increased the dimensionality of ZDT6 (denoted
ZDT6-100), and allowed ESP to run for 1000 generations.


Note that the test data available for each of the other al-
gorithms on each problem does not always represent 35 dis-
tinct runs. This does not significantly influence the analysis.


Figure 3 shows the 50% attainment surface achieved by
each algorithm. We make the following observations:


• The median performance of ESP is optimal or near
optimal for all problems.


• The median performance of ESP-1, in which decision
variables are always mutated, is consistently poorer
than that of ESP.


• The median performance of ESP is clearly better than
that of PF-MOGA on ZDT4, and somewhat better on
ZDT1, ZDT2, and ZDT6.


• The median performance of ESP is clearly better than
that of SPDE on all problems.


• The median performance of ESP is better than that of
both NSGA-II and SPEA2 on ZDT6-100.


Although the attainment surfaces show that ESP performs
very well, it is important to consider the randomisation
tests, wherein the statistical significance of the ESP’s per-
formance can be empirically determined.


The results of the randomisation tests are presented in
Figure 4. We make the following observations:


• For all problems and all metrics (barring diversity on
ZDT3), the significance of incorporating probabilistic
mutation into ESP (by comparison to ESP-1) is clear.


• ESP outperforms PF-MOGA on all problems, except
for diversity on ZDT3 (in addition to a small number
of inconclusive comparisons).


• ESP outperforms SPDE on all problems and all met-
rics.


• ESP outperforms NSGA-II and SPEA2 on ZDT6-100


on all metrics.
Some further comparison can be made against NSGA-II, in
so far as Deb et al. [7] have presented the raw, averaged dis-
tance metric values for ZDT1–ZDT4, and ZDT6. Despite
being a limited comparison, our tests indicate that the aver-
age generational distance values obtained by ESP are con-
sistently equal to or (more often) better than those reported
by Deb et al. (Note that the exact means by which Deb
et al. calculate their distance metric, and in particular how
the Pareto optimal front is sampled, is unclear, although
any difference between metric implementations should be
marginal.) By inference, we would expect a similar com-
parison to be upheld against SPEA2, given SPEA2 is reput-
edly comparable to NSGA-II. Nevertheless, without a direct
comparison of the data, we cannot be conclusive on this.


It is interesting to note that ESP has the most difficulty
with ZDT4, although it still outperforms the other algo-
rithms. To determine if further function evaluations would
overcome any difficulty experienced by ESP on ZDT4, we
ran it for 500 generations, with impressive results. On all
35 runs, ESP converged to the Pareto optimal front.


7 Conclusions


Multi-objective optimisation is an important and difficult
subject. To date the most success in this area has been seen
with novel variations of GAs. However, we have demon-
strated that the performance of an ES approach with proba-
bilistic mutation exceeds that of state-of-the-art algorithms
on a range of test problems under a variety of metrics.


ESP’s most distinctive departure from conventional prac-
tice is the incorporation of mutation probability. Although
it might be argued that self-adaptive mutation rates should
override the need for mutation probabilities, the strength of
our results suggests that this is not always the case.


We plan to enhance ESP by incorporating mechanisms
such as self adaptive mutation probabilities (not to be con-
fused with mutation rates). We also plan to explore its per-
formance on single-objective problems and on more diffi-
cult test problems, both constructed and real world ones.


The test data employed in this paper is available for
download from http://wfg.csse.uwa.edu.au/.
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Figure 3: 50% attainment surfaces for ESP, ESP-1 (mutation probability 100%), PF-MOGA, SPDE, and SPEA2 and
NSGA-II (100000 function evaluations, ZDT6 only, with m = 100). The latter two, SPEA2 and NSGA-II, are presented
separately with ESP in the lower right plot on the graph labelled ZDT6-100. Extrema which lie outside the ranges of the
axes have been omitted from the graphs.
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(a) ESP versus ESP-1 (traditional mutation probability of
100%).
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(b) ESP versus elitist, parameterless rank-based fitness sharing
PF-MOGA.
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(c) ESP versus SPDE (with no mutation).
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(d) ESP versus NSGA-II (top) and SPEA2 (bottom), using
100000 fitness evaluations on ZDT6-100 (m = 100).


Figure 4: Randomisation tests comparing ESP to (a) ESP-1, (b) PF-MOGA, (c) SPDE, and (d) NSGA-II and SPEA2.
The columns, from left to right, show the histograms and observed results for generational distance, diversity, and hyper-
volume. ESP performs well when the observed result is to the left for the first two metrics, and to the right for the final
metric. The unusual shapes of some histograms are caused by outlying results.
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