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Abstract
Background: Large databases of single nucleotide polymorphisms (SNPs) are available for use in
genomics studies. Typically, investigators must choose a subset of SNPs from these databases to
employ in their studies. The choice of subset is influenced by many factors, including estimated or
known reliability of the SNP, biochemical factors, intellectual property, cost, and effectiveness of
the subset for mapping genes or identifying disease loci. We present an evolutionary algorithm for
multiobjective SNP selection.


Results: We implemented a modified version of the Strength-Pareto Evolutionary Algorithm
(SPEA2) in Java. Our implementation, Multiobjective Analyzer for Genetic Marker Acquisition
(MAGMA), approximates the set of optimal trade-off solutions for large problems in minutes. This
set is very useful for the design of large studies, including those oriented towards disease
identification, genetic mapping, population studies, and haplotype-block elucidation.


Conclusion: Evolutionary algorithms are particularly suited for optimization problems that involve
multiple objectives and a complex search space on which exact methods such as exhaustive
enumeration cannot be applied. They provide flexibility with respect to the problem formulation if
a problem description evolves or changes. Results are produced as a trade-off front, allowing the
user to make informed decisions when prioritizing factors. MAGMA is open source and available
at http://snp-magma.sourceforge.net. Evolutionary algorithms are well suited for many other
applications in genomics.


Background
Geneticists are commonly faced with the task of selecting
a subset of genetic markers from a large database. Geneti-
cists then type these markers on a large number of individ-
uals in disease-linkage or genetic-mapping studies. In
general, the fewest number of markers necessary to
achieve a particular goal are desired. A typical goal is the
identification of a disease gene. Usually, the more markers
selected for typing, the higher the probability of project
success. However, selecting more markers entails addi-


tional cost. Therefore, a need exists for decision-support
systems that allow geneticists to choose a set of genetic
markers for a particular project that appropriately bal-
ances the need for project success with project cost.


Here, we present an evolutionary algorithm that supports
genetic marker selection. This algorithm has been imple-
mented in software, employed for large-scale single nucle-
otide polymorphism (SNP) selection projects, and is
publicly available. We refer to the problem as one of SNP
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selection for semantic convenience and to emphasize the
current popularity of SNPs [1–3]. However, our discus-
sion, algorithm, and software are equally applicable to
most other genetic markers.


Other algorithms and tools for SNP selection are availa-
ble. In general, these algorithms have specific constraints,
are proprietary, or are designed for special instances of
SNP selection [4,5]. For example, they may require (1) a
small SNP library, (2) a known or partially known set of
alleles, haplotypes, or haplotype blocks, or (3) a fixed cost
or probability of assay success for each SNP. None of the
available algorithms are multiobjective. Our algorithm,
Multiobjective Analyzer for Genetic Marker Acquisition
(MAGMA), provides simultaneous investigation of multi-
ple balancings of different selection criteria. Our algo-
rithm does not require any of the above constraints, but
can incorporate them in situations where they are known.


Genetic markers occur at discrete positions along a
genome, which is a collection of one or more linear chro-
mosomes. Our discussion focuses on selection of markers
across a single continuous linear span of the genome, or
"locus". In practice, a locus is typically fifty kilobases to
several megabases. Simple extensions permit our algo-
rithm to encompass collections of disjoint linear or circu-
lar segments.


The probability of detecting an association between a
marker and a disease phenotype decreases with distance
between the marker and the actual position of the linked
gene responsible for the phenotype. This probability can
be affected by haplotype blocks, which have been defined
as segments of a locus where this decrease is small or non-
existent [6,7]. The probability of detecting association is
also influenced by other factors, such as the mutation rate
of the marker.


If all markers are equivalent in value and cost, and if no
prior knowledge is known about linkage relationships,
then the optimal selection is to pick a subset of evenly
spaced SNPs from the library, if such a subset exists. In this
case, one can maximize the probability of detecting dis-
ease linkage by choosing markers as closely spaced as pos-
sible, using the project budget as a constraint on the
number of SNPs selected. If information, or even partial
information, on linkage relationships, such as the loca-
tion or size of haplotype blocks, is known, then one econ-
omize by aiming to choose no more than one marker
from each haplotype block. Even with perfect knowledge
of haplotype blocks, some project designs will include
more than one SNP per haplotype block to provide exper-
imental robustness as well as protect against prior errors
in haplotype-block determination.


In practice, all SNPs are not equivalent. SNPs in the data-
base, or "library", will have been previously characterized
to a lesser or greater extent. The library for a given project
is likely to be drawn from public databases, such as
dbSNP [8] and HGVbase [9], as well as in-house and com-
mercial databases. In any of these databases, a SNP may
be listed in error – in reality, there may be no SNP at that
position in the genome. A SNP may be present in some
genomes within a population of individuals, but so infre-
quently that it is of limited use for linkage studies. A SNP
may be biochemically difficult to assay. All of these fac-
tors, and possibly others, which are either known or can
be estimated, need to be considered during the selection
of a set of SNPs from the library. We consider these factors
weighted together as the "quality" of a SNP. Also, SNPs
may have different costs. They may be an alternative type
of genetic marker, be multiallelic, or require a different
typing technology. They may be intellectual property, and
have a licensing fee. We consider these factors weighted
together as the "cost" of a SNP.


Our algorithm seeks to balance two optimization criteria:
1) the total project cost, and 2) the probability of detect-
ing disease linkage. Modifications to the coding of our
algorithm permit these criteria to be tailored to the goals
of specific projects, including the possibility adding objec-
tive functions, substituting different objective functions,
or splitting our objective functions into components. Our
present discussion focuses on two objective functions,
which produce solutions that are more easily visualized
than solutions displayed in three or more dimensions.


The first objective, project cost, is the sum of the costs of
each selected SNP. The second objective, the probability
of detecting disease linkage, requires an arbitrary function
that computes this probability from a set of SNP locations
and qualities. This function can incorporate prior knowl-
edge about gene locations and linkage disequilibrium, but
such knowledge is not necessary. Use of this function
requires little computation time and generates solutions
that are useful in a variety of situations.


Evolutionary algorithms are suitable for exploring solu-
tion spaces of problems that are otherwise intractable;
such problems have too many solutions to exhaustively
enumerate, may be combinatorial in nature, and may be
NP-hard. Alternative approaches include general prob-
lem-solving strategies such as dynamic programming or
branch-and-bound as well as search algorithms such as
linear programming and gradient descent. The advantage
of these techniques is that they often guarantee generation
of optimal solutions. However, as the complexity of mod-
els increase, it becomes more and more difficult, or even
infeasible, to use them. Other general search techniques
to tackle hard optimization problems, such as tabu search
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and simulated annealing, are designed for scenarios with
a single optimization function. In contrast, evolutionary
algorithms are well suited to handle both (1) a large
search space, and (2) multiple objectives.


Evolutionary algorithms are excellent for exploring the set
of all possible solutions, or solution space, of many mul-
tiobjective problems. In order to apply a multiobjective
algorithm, solutions to a problem must be encodable as a
genome (Figure 1). There may be more than one way to
encode a solution; the choice of encodings can impact the
performance of the algorithm. We illustrate this in our
Results with an exploration of two possible encodings for
our SNP selection problem. The first encoding represents
solutions as a bit vector. The second encoding represents
solutions as a variable-length list.


An evolutionary algorithm is initialized with a seed popu-
lation of many random, or possibly non-random, solu-
tions. The algorithm then steps through a number of
iterations (Figure 2). During each iteration, the best solu-
tions from the previous iteration are allowed to mutate
and recombine. These new solutions then compete with
each other, and with the previous best solutions. Good
solutions are retained; poor solutions are rejected. Evolu-
tionary algorithms work well when the operators for
mutation and recombination are likely to efficiently
explore the solution space. If good solutions to a problem
are not reachable by mutation or recombination of other
solutions, then an evolutionary algorithm will not be able
to find these solutions. However, it is unlikely that any
algorithm short of exhaustive search would be able to find
such solutions.


Solutions to multiobjective problems are seldom unique.
For example, if the two objective functions relate respec-
tively to cost and performance, then the set of solutions
will contain solutions with increasing performance and
increasing cost. No solution, however, will have less per-
formance for more cost. This set of alternative, optimal
solutions, also known as the Pareto-optimal set, is thus a
trade-off front (Figure 3). Typically, the user of the algo-
rithm will examine the trade-off front produced by the
algorithm and subjectively choose a single solution. This
solution could be the best solution below a fixed cost, but
often is chosen at a point of diminishing returns. The abil-
ity to identify points of diminishing returns is a major
advantage to multiobjective optimization. Combining
multiple objectives into a single objective in order to sim-
plify a problem forces a decision to be made about the rel-
ative values of the different objectives before the trade-off
front may be known.


The Pareto-optimal set contains those solutions that are
not dominated by any other solution; we say a solution
dominates another solution if the former is not worse in
any objective and better in at least one objective. Accord-
ingly, members of the Pareto-optimal set are referred to as
non-dominated solutions or Pareto-optimal solutions. If
we consider the image of the Pareto-optimal set in the
space of objective function values, i.e., the set of the corre-
sponding vectors of objective values, then we use the term
Pareto-optimal front or trade-off front.


Evolutionary algorithms use a concept of "fitness" to
decide which individual solutions will survive for the next
generation. For single-objective evolutionary algorithms,
fitness is typically identical to the single objective func-
tion. The innovation that evolutionary algorithms pro-
vide to multiobjective problems is their ability to define a
real-valued fitness for each individual that is not only a
function of how well that solutions fulfils each of the
objective functions, but is also a function of all the other
individuals presently in the population. The dependence
on other individuals in the population is twofold: (1)
individuals are more fit if they are closer to the front of
best trade-offs within the population, and (2) individuals
are more fit if they are in a sparser region of the optimiza-
tion space. This innovation of population-dependency
makes evolutionary algorithms fundamentally different
from algorithms that operate merely by combining single
objective functions.


Another major advantage of evolutionary algorithms is
the ease of problem reformulation. In a rapidly changing
field, such as genomics, the future use of algorithms may
change unpredictably. Furthermore, subtle variations in
the specifics of one problem instantiation may make
inflexible algorithms less generally useful. In the example


Genome EncodingFigure 1
Genome Encoding. Alternative methods of encoding 
problem solutions as "genomes" include bit vectors (top) and 
arrays (bottom). In this cartoon, the solutions encoded by 
the two different methods are identical. For the problems we 
have studied, arrays are more compact and evolve more effi-
ciently than bit vectors.
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SPEA2Figure 2
SPEA2. A cartoon of the SPEA2 algorithm, operating on a population size of eight with an archive of four. The algorithm con-
tinues for a fixed number of generations, and then outputs non-dominated solutions. Details of each of the steps are described 
in the text.


Fittest solutions survive to the 
archive of the next generation


Fittest solutions survive to the 
archive of the next generation


Iterations continue...
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we focus on in this paper, the objective functions of "cost"
and "probability of disease detection" can both be repre-
sented in multiple different manners. For some of the
more simple representations, dynamic programming
would likely be competitive with our evolutionary algo-
rithm. However, as these objective functions become
more complex, perhaps including multiple interdepend-
encies of the effects of linked SNPs, other algorithms may
become untenable or require complete recoding of the
software. Modification of the evolutionary algorithm typ-
ically entails only altering the objective function subrou-
tine. Thus evolutionary algorithms are excellent choices
for problems that are in development or are themselves
evolving.


We provide an example of an evolutionary algorithm
below, with commentary on our approach to its design
and parameterization. We anticipate that this illustration
of an evolutionary algorithm will prove useful as a refer-
ence for the design of evolutionary algorithms for other
applications in genomics. Additionally, we describe the
specifics of our software implementation, MAGMA. This
software is open source and can be used directly for SNP
selection; readers who are primarily interested in SNP
selection may choose to skim our discussions of the
details of our algorithm.


Our Results and Discussion include several examples
from simulated data, as well as well as the application of
our software to SNP selection in the human MHC locus.


Problem Formulation
A Simple Model
Ideally, one would like to optimize an objective function
that directly represents the ultimate goal of a project, such
as the probability of locating a disease gene. However,
such objective functions may be subjective, difficult to
describe, or require excessive computation. Proxy objec-
tives may circumvent these difficulties. One simple and
reasonable proxy is to search for evenly spaced high-qual-
ity SNPs, with an average spacing of s. This proxy objective
would, in fact, be the truly desired objective if the target
locus were describable in terms of haplotype blocks of
constant length s, and if the locations of the haplotype
block boundaries were unknown. Initially, we assume
that all qualities are equal. An early version of this simple
model is discussed in Hubley et al. [10].


We formally state the resulting optimization problem. Let
n be the length of the locus under consideration and m be
the number SNPs in the available library where each SNP
i is described by two attributes:


pi = position (pi∈ N, 1 ≤ pi≤ n)


qi = quality (qi∈ R, qi > 0)


The attribute pi denotes the position of a SNP. We here
assume that the SNPs are ordered and unique according to
the position (i.e., p1 <p2 < . . . <pm). The assumption that
no two markers occur at the same position will be
dropped for our more complex models. The quality of a
SNP is represented by a positive real number qi; a larger
value stands for higher quality. Although it is not neces-
sary to restrict qi to the interval [0,1], it is often useful to
do so, and interpret qi as "the probability of a useful and
successful assay for SNP i".


A solution to the problem, a non-empty subset of the
available SNPs, can be expressed in terms of m decision


Pareto-Optimal FrontFigure 3
Pareto-Optimal Front. The two axes of the objectives 
form the objective space, which is two dimensional for the 
problems described in this paper. The positions of solutions 
on the Pareto-optimal front are shown in blue, connected by 
dashed pink. Each Pareto-optimal solution dominates all solu-
tions to its lower left; for example, point A dominates points 
B-E, as bounded by the dashed black lines. Non-dominated 
solutions are shown as turquoise circles; dominated solu-
tions are shown as olive circles. Strength is shown adjacent 
to each solution. Raw fitness is shown in parentheses. 
Because no raw fitnesses are identical, other than those on 
the front, density would have no impact on survival for this 
population as long as the archive size was at least five. Dia-
monds indicate positions in objective space of solutions not 
yet discovered by the algorithm, but that would be non-dom-
inated once discovered.
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variables xi∈ {0,1} with xi = 1 if and only if SNP i is in the
solution. For convenience, we introduce the variables x0
and xm+1 which are by definition set to 1 and refer to two
fictive SNPs that mark the left (position 0) and the right
end (position n + 1) of the locus. Now, consider the devi-
ation dij of the spacing between two adjacent SNPs from
the optimal spacing s:


If the SNPs i and j are immediate neighbors in the selected
SNP subset, then dij gives the number of base pairs
between them; otherwise, dij equals zero. We chose our
proxy goal for this simple model to minimize the mean
squared deviation from the ideal gap length s


while also maximizing the average quality


In some cases, such as to eliminate the possibility of large
gaps in solutions, it is useful to add additional constraints.
For this simple formulation, we add the constraint that all
gaps are less than or equal to s:


∀ 0 ≤ i ≤ m ∀ i <j ≤ m + 1: dij≤ s


For certain problems, it may not be possible to fulfill the
constraint. There might be a pair of SNPs i and j with dij >s
even if all m SNPs are selected. In this case, the problem
can be divided into subproblems that can be solved inde-
pendently. Alternatively, the algorithm can allow solu-
tions to have constraint violations as long as there are not
an excess of competing solutions without violations.


Our implementations permit problems to be subdivided
if large gaps are present that divide the locus into two or
more independent optimization problems. Solutions are
thus independent, with multiple trade-off fronts
produced. If a single trade-off front for the entire locus is
desired, then it may be more convenient not to subdivide
a locus with large gaps. This single trade-off front could
also be generated by combinatorially combining the
trade-off fronts form each independent solution. Such
combinatorial combinations may be superior at approxi-
mating the Pareto-optimal set, which is the set of solu-
tions that cannot be improved in any objective without
degradation in another.


Our initial implementation encoded solutions as bit-vec-
tors of length m. Bit i represented the presence or absence
of a SNP at position i of the locus. Allowed variations were
bit flip mutations and recombination. A typical bit-flip
frequency was 4% per bit position. A typical recombina-
tion frequency was 80%. Therefore, on average, each solu-
tion in the population is modified at one position.
Because the solutions we sought tended to be sparse
(most of the bits set to zero), our choice of encodings for
solution genomes created considerable overhead, both in
storage and in time exploring regions of the solution space
of little interest. In particular, because a bit flip was
equally likely at all positions regardless of their current
state, solutions were biased towards an equal number of
selected and unselected SNPs. This bias could have been
altered towards a more interesting equilibrium by separat-
ing the 0→1 mutation rate from the 1→0 mutation rate.
However, a superior solution is to change the encoding of
the genome, which we describe in the next section. We
draw attention to the choice of genome encodings
because such choices can considerably impact the per-
formance and success of an evolutionary algorithm.


The simple model is unsatisfying in a number of respects.
Notably, average quality does not discriminate between
different distributions of quality SNPs – solutions with
high quality SNPs evenly dispersed are different than solu-
tions where all the high-quality SNPs are clustered. Also,
solutions with a number very high quality SNPs and an
equivalent number of low quality SNPs may be different
than solutions with the same total number of SNPs of
intermediate quality. The two objective functions, corre-
sponding to "deviation from ideal gap length" and "aver-
age quality" are somewhat non-intuitive. The average
quality is effectively acting as a proxy for total cost – the
Pareto-optimal solutions with high average qualities will
tend to have few SNPs, and the solutions with low average
qualities will tend to have many SNPs. For this reasons,
the trade-off front produced is somewhat difficult to inter-
pret. However, in practice, although somewhat unsatisfy-
ing, the simple model does produce reasonable solutions
to real problems.


A Probabilistic Model
The simple model above is useful, but can be improved in
a number of manners. In particular, it sidesteps the true
objectives of a project with the proxy objective functions
of "spacing deviation" and "average quality". Objectives
that more realistically reflect an actual project's objectives
would reflect "cost" and "probability of project success".
The first objective function "cost" is straightforward to
model. We prefer to conceptualize the problem as a max-
imization, so we use a cost function inversely propor-
tional to the number of SNPs in a solution:
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where ci is the cost associated with SNP i. A number of dif-
ficulties arise if the costs are not independent. For exam-
ple, if experimental protocol dictates that SNPs be
processed in 96-well trays, the cost for typing ninety-six
SNPs may be the same as the cost of typing a single SNP,
but half the cost of typing ninety-seven SNPs. This partic-
ular complication can be addressed by post-processing the
trade-off front. For the remainder of this paper, we assume
the cost per SNP is constant and equal to one.


The second objective function we propose here makes a
number of compromises between computability, subjec-
tivity, and genetic reality. However, the exact form of the
function can be altered to meet other compromises. Our
modular software implementation facilitates such
alterations.


To motivate our model, we make a number of assump-
tions, while recognizing that the resulting model may be
quite useful as an approximation even if these assump-
tions are not met. We assume that a sought-after disease
gene exists in the locus in question, and that it can be
linked to a single base position. We consider the probabil-
ity of linking a trait to any given SNP to be a function only
of the quality of that SNP and of the distance of the gene
position from that SNP. We consider the gene will be
"identified" if it is detected to be linked to at least one
selected SNP. We assume the prior probability of the dis-
ease location is constant across all base pairs in the locus.


We treat the quality of a SNP as the probability the SNP
successfully detects linkage at its own location, and that
this probability decays linearly to a minimum of zero as a
function of distance from the SNP location. From a mod-
elling point of view, the quality is thus a heuristic combi-
nation of (1) allele frequency, which impacts statistical
inference of linkage, (2) database reliability, which relates
to the probability that a SNP may not actually exist, and
(3) biochemical suitability, which determines the proba-
bility of successful assay implementation. As discussed
above, these components could be separated into separate
objective functions, but such separation would require
departure from two dimensionality. The probability of
SNP i being successfully linked to a disease trait at base
pair position h is thus:


The assumption of linear probability decay with distance
is motivated largely by computational tractability. It is


also a reasonable assumption if little or no prior knowl-
edge about linkage relationships across the target locus
exist for the study population. The "probability of project
success" objective function is thus:


In practice, for computational speed, we approximate f2
by sampling values in the sum once every few hundred
base pairs. Because typical values of s are at least an order
of magnitude larger than the sampling distance, such an
approximation is more than adequate for purposes of the
evolutionary algorithm.


There are a number of possible extensions to f2, which
come with varying degrees of increased coding complexity
or computational overhead. A number of these extensions
arise by removing assumptions discussed above. For
example, the prior probability of the disease location may
not be constant, and may, for example, be influenced by
previous calculations of linkage-disequilibrium scores
across the region. These prior probabilities can be incor-
porated into the objective function, allowing for improve-
ments in the selected SNP set. Knowledge of specific
linkage relationships, particularly of known haplotype-
block locations, can also be included in the model.


In the algorithm implementation, we encode the solution
as an array of variable length. Each position a in each array
contains a location pa, with p1 <p2 < . . . <pA. This encoding
of the genome as an array uses less memory than a bit vec-
tor and produces mutations that more likely to improve
solutions. Allowed variations are insertions, deletions,
substitutions, and recombination. A typical mutation fre-
quency is 13% per array position per solution. If a muta-
tion occurs, the mutation operator is chosen with the
following frequencies: insertion – 40%, deletion – 10%,
or substitution – 50%. An insertion adds a position to the
solution array immediately before or after the mutated
array position a. The SNP position placed in the new array
position is picked uniformly from all unpicked SNPs
between pa-1 and pa+1. If there is no such SNP, then the
mutation has no effect. A deletion deletes array position a
if the resulting deletion does not create a constraint viola-
tion; otherwise it is ignored. A substitution replaces the
SNP position at array position a, with a SNP uniformly
drawn from the unpicked SNPs between pa-1 and pa+1; sub-
stitutions creating constraint violations are ignored. A typ-
ical recombination frequency is 70%. Recombination
takes place by choosing two SNP pair positions a and b
uniformly from a solution and exchanging the array posi-
tions with SNPs from another solution where a' >= a and
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b' <= b. Multipoint recombination is also allowed, as a
user option.


Results
Simple Model
The simple model was tested on a 90 kb segment of the
human major-histocompatibility locus. The library con-
tained 626 SNPs. The trade-off front generated by the evo-
lutionary algorithm after 200 generations is depicted in
Figure 4. The density of solutions increases as the first
objective increases. This illustrates the structure of the
solution space for this particular problem. The heuristic
solution represents a trade-off that neither dominates nor
is dominated by any MAGMA solution, and is located in
the middle of the front rather than on one of its extremes.
The best solution in the first objective contains only 35
SNPs with an average quality of 117. The other extreme
solution includes 85 SNPs and achieves an average quality
of 181; basically all high quality SNPs are chosen and the
large gaps are filled by SNPs of lower quality.


Although these solutions were deemed acceptable, we did
not do extensive further testing or comparisons of the sim-
ple model due to the drawbacks of the model and its
implementation, discussed in Problem Formulation.


Probabilistic Model
We tested MAGMA against several benchmarks, and
employed it for several real SNP selection problems. First,
we discuss performance against benchmarks. For the first
benchmark, we selected a region from the human MHC
locus, selected so that the SNP library was small enough
that all possible solutions could be evaluated with an
exhaustive enumeration. Therefore, the exact Pareto-opti-
mal set was known.


The first twenty SNPs from a much larger library of SNPs
derived from the MHC were chosen as a representative
library. We attempted exhaustive enumeration on larger
libraries but were foiled by the excessive time required for
computation. For this benchmark, serial enumeration
required seven hours and ten minutes; MAGMA finished
its computations in one minute and twenty-eight seconds
(Figure 5).


The disadvantage of this benchmark is that it illustrates
the performance of MAGMA on easy problems, which are
also adequately solved by other algorithms. A more
appropriate benchmark is one for much larger SNP librar-
ies. Unfortunately, exhaustive solutions from larger librar-
ies are not always tractable. Therefore, we carefully
constructed a large library with a vast number of SNPs but
with an analytically demonstrable optimal region of the
Pareto-optimal front. MAGMA has no particular reason to
seek out this portion of the front any faster than if it were


not intentionally designed into the library. Therefore, we
judge this constructed library to have been capable of pro-
viding an excellent benchmark for multiobjective
optimization.


In order to create a benchmark for MAGMA with an input
dataset similar in magnitude to those that we anticipate
for actual biological problems, we intentionally created a
dataset with 334 SNPs of quality 1.0 spaced evenly across
a 1 Mb locus, with one thousand additional SNPs of qual-
ity 0.01–0.05 with uniformly distributed positions across
the same locus. Although we cannot determine the entire
Pareto-optimal set for this library, we know that one point
on the front must consist of the set of high-quality SNPs.
Without heuristic seeding, MAGMA's algorithm should
not find this analytically discoverable solution any faster
than any other optimal solution. Thus, we judged this to
be a good benchmark. MAGMA discovered a front with
this solution in five hours and forty-one minutes, after
thirteen thousand generations. A solution with 344 SNPs
was present after only one thousand generations; a solu-
tion with 337 SNPs was present after 3500 generations. To
test the robustness of the algorithm to the random seed,
we fixed the number of generations at twenty thousand
and ran ten independent additional optimizations. The
seeded solution of 334 SNPs was recovered after each
optimization. The Pareto-optimal fronts outputted for
each of these optimizations were nearly indistinguishable
(data not shown).


The region of the human MHC locus illustrated in Figure
6 provides an example of a real SNP-selection problem.
The trade-off front produced by MAGMA is graphed in
Figure 7. The set of SNPs chosen for further study was
selected by visual evaluation of this graph. For the
development of biochemical assays, a solution from a
region of diminishing returns was selected that had a cost
compatible with available resources. The solution pro-
duced by the heuristic lies just behind the front produced
by MAGMA. The heuristic is prevented from identifying a
solution on the Pareto-optimal front largely because of its
reliance on binning quality values (see Methods). Never-
theless, the solution produced by the heuristic is quite
good.


Discussion
MAGMA is the first publicly available software for SNP
selection in the absence of haplotype information.
MAGMA is the first such software with a published algo-
rithm, and the first with open-source code. The majority
of SNP-selection tasks are done with no prior haplotype
information, so MAGMA should be useful for the major-
ity of SNP-selection tasks. As the first in its class, MAGMA
should provide a useful benchmark for future SNP selec-
tion software. Software is available for specialized cases of

Page 8 of 16
(page number not for citation purposes)







BMC Bioinformatics 2003, 4 http://www.biomedcentral.com/1471-2105/4/30

SNP selection, such as when "haplotype-tagging" SNPs are
desired [[11,12], and software by David Clayton at http:/
/www-gene.cimr.cam.ac.uk/clayton]. We believe that, in
the absence of very complete data on the population fre-
quencies and haplotypes of all SNPs in a region, flaws
could be introduced into a study design that relies on the
concept of haplotype blocks. Therefore we believe that


MAGMA will often be more useful than such specialty
software. Also, the algorithms in specialty software are
often limited to SNP libraries containing no more than
several dozen SNPs.


MAGMA also represents one of the first applications of a
genetic algorithm to a problem in genomics. Our


MAGMA OutputFigure 4
MAGMA Output. The trade-off front obtained from MAGMA after six hundred generations for the simple problem formu-
lation. In this case, the heuristic produces a solution that is neither dominated by nor dominates any of the solutions offered by 
MAGMA. Slight unevenness in the front is likely due both to the structure of the SNP library, resulting in limited choices for 
solutions, and to suboptimality in the trade-off front. The abscissa is reversed to place the Pareto-optimal front to the upper 
right for visual consistency with the other graphs in this paper (f1 in the simple problem formulation is minimized). The scales 
of the axes are arbitrary.
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applications of MAGMA demonstrate the particular use-
fulness of evolutionary algorithms in the presence of mul-
tiple optimization criteria. Firstly, an evolutionary-based
approach allows generation of a set of trade-off solutions
which provide additional information about the prob-
lem, such as the magnitude of the conflict between objec-
tives, whether there are many or few potential solutions,
and the structure of the search space. Knowing which
alternatives are available can strengthen the confidence in
the choice of a particular solution. Secondly, an evolu-
tionary algorithm provides flexibility. Additional objec-
tives and constraints can be incorporated with only little
programming effort. For instance, in the future we may
split our single quality objective into several.


We speculate that evolutionary algorithms may be useful
for other genomics applications, such as haplotype-block
partitioning [13]. They also have been used to aid struc-
ture prediction [14]. This utility makes intuitive sense, as
many problems in genomics have solutions that are easy
to encode as a virtual genome – particularly because many
of these solutions are actual representations of a real
genome. Likewise, the mutation operators that an evolu-
tionary algorithm employs on its solutions often parallel
the mutations that occurred naturally during the biologi-
cal evolution of the system being modelled. Our
speculation that genetic algorithms may have utility in
other genomics applications may not apply to all genom-
ics problems.


Enumeration BenchmarkFigure 5
Enumeration Benchmark. We exhaustively enumerated all solutions for SNP selection from a library of twenty SNPs. We 
then tested MAGMA's ability to identify the optimal front on this same set of SNPs. Prior to 130 generations, MAGMA discov-
ered the entire Pareto-optimal front. Enumeration required seven hours on a desktop machine; MAGMA computed the 130 
generations in ninety seconds. The two objective functions, f1 (inversely proportional to the number of SNPs in the solution) 
and f2 ("coverage"), are expressed in arbitrary units.
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Exact optimization algorithms can, with difficulty, be tai-
lored for specific sets of objective functions. Generally,
this requires that the objective functions be relatively sim-
ple. For example, it is difficult to design a dynamic algo-
rithm that can efficiently handle linkage dependencies
between non-adjacent SNPs (e.g. SNPs linearly arranged
A-B-C, with A linked to C but not to B). However, many
practical and reasonable implementations of SNP selec-
tion will not need or have available such complex linkage
information. We anticipate that exact optimization algo-
rithms could be designed for these cases. For the simple
models that we have described above, we anticipate that
dynamic algorithms that run in pseudo-polynomial time
could be constructed. Even these algorithms, however,
could be slow for certain problems, such as those with
exponentially many solutions in the Pareto-optimal set.


Deterministic heuristics tailored to the application at
hand often produce reasonably good results if sufficient
problem knowledge is available. However, the design of
these heuristics gets more difficult as more objectives are
involved, and the single solution produced does not pro-
vide information about alternative solutions. One way to


tackle complex multiobjective optimization problems is
to combine both approaches into a single algorithm, by
using the results of heuristics as seeds for an evolutionary
algorithm.


Genomes are not always well described by linear models.
For example, in the human genome, there may be hun-
dred-kilobase regions present in some individuals but not
in others. There are at least three solutions to this
difficulty. The first solution is to represent the genome as
a series of independent regions and treat these regions
independently for SNP selection. The second solution is
to concatenate these independent regions into a repre-
sentative genome that includes all possible segments that
might be found in any individual. The concatenation can
be done in a manner that tends to preserve adjacencies
found in the majority of genomes in the study population.
The third solution is to recode an optimization function
in a manner that does not assume a linear model. The pos-
sibilities for recoding are vast, but might incorporate, for
example, a knowledge of population frequencies of cer-
tain rare large-scale polymorphisms. An evolutionary


MHC locusFigure 6
MHC locus. Illustration of MAGMA on a non-contrived problem. The scale at the top is number in base pairs relative to an 
arbitrarily designated beginning of part of the human MHC region. This locus is flanked by large gaps without known SNPs, so 
is a natural span for input to MAGMA. The library consists of 382 SNPs of varying quality. SNPs are indicated by black vertical 
lines; quality is proportional to the length of the lines. The colors of the bars indicate departure from a user-defined SNP influ-
ence radius, in this case, 6000 bp; red areas have sparser coverage while blue areas are more densely covered. The number of 
solutions displayed (in this case, the best f1 and f2, and two others) can be set by the user. "Heur" indicates the solution seeded 
by the heuristic. Numbers to the right indicate the value of each objective function for the solution, as well as the number of 
SNPs in the solution.
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algorithm should work well even with such a complex
optimization function.


As the input becomes very large, MAGMA takes consider-
able time finding the best solutions, and may even bog
down. There are several approaches that can push this
problem-size boundary back. The first is to break the
problem up into subproblems. The second is to seed the
initial population with the results of heuristics – possibly
including concatenations of MAGMA outputs from sub-
sections. The third is to alter the mutation parameters. We
have discovered that increasing the crossover frequency
tends to speed convergence for large problems. However,
even with such struggles, problems can be made too large
even for MAGMA. This problem size for an average per-
sonal computer is currently about ten thousand SNPs in
the library. In our experience, if particular types of solu-
tions are sought by the end-user, such as sparse solutions,
altering parameters, such as increasing the deletion prob-


ability, can speed the algorithm in finding good solutions
in this region of the solution space by an order of magni-
tude or more. However, MAGMA runs so fast without this
speedup that we feel that it is seldom worth effort to seek
out optimal parameterizations; the robustness of the
genetic algorithm allows it to explore vast solution spaces
even with widely different parameterizations.


There may be other approaches that would help tame
larger problems, if such problems arrive on the genomics
scene. We have considered, but have not explored, the
possibility of adding "cataclysmic" events, possibly oper-
ating in the evolutionary algorithm in a manner similar to
what an asteroid might have done to the dinosaurs. By
destroying much of an archive, or by adding a new infu-
sion of very different genetic material, such events might
jar the algorithm out of local optima. The frequency of
these events could be set to diminish as the algorithm pro-
ceeded. More simply, mutation rates could be set very
high initially, and trailed off as the algorithm proceeded.
Also, very large problems can be subdivided, with each
subproblem treated independently. Even if no effort were
made to optimize the regions where the edges of solutions
met, if each solution consisted of thousands of selected
SNPs, then it would seem unlikely that any cost
inefficiency due to edge effects would exceed a fraction of
one percent.


The choice of quality and cost are decisions that must be
made by users of MAGMA. We have not explored non-
uniform costs, as all the SNPs we use have approximately
the same cost to implement. Even though we have not
explored non-uniform costs, we believe it would be
straightforward accounting to add these in, where such
costs are known or can be approximated. The choice of
quality in practice is likely to be subjective, unless the user
has access to unusually complete data relating to the
probability of assay success. We believe, based on the
problems we have examined, that MAGMA's solutions are
robust with respect to moderate differences in assigning
quality to SNPs. For SNPs from public databases, such as
dbSNP, our default qualities are derived from the
validation annotation associated with a SNP entry, such
that validated SNPs with frequency information receive a
quality of 0.95 and SNPs with no validation receive a
quality of 0.5. We alter these initially assigned qualities
slightly based on properties of the flanking sequence as
well as the presence of nearby polymorphisms. These
qualities are currently assigned by situational PERL
scripts.


Much current research focuses on protein-coding regions.
Researchers may be less interested in a uniform distribu-
tion of SNPs across a locus, and more interested in a
distribution with SNPs concentrated in protein-coding


MHC Trade-off FrontFigure 7
MHC Trade-off Front. Illustration of MAGMA on a non-
contrived problem, a portion of the human MHC region. The 
approximation to the Pareto-optimal front produced by 
MAGMA is likely to be exact (see the description of the 
benchmark tests in the text). The solution produced by the 
heuristic (position in optimization space displayed by a yellow 
square) was used as a seed. The coverage function is 
expressed in units proportional to the probability of linkage 
detection (equation 1). The production of a trade-off front, 
such as this one, is a major advantage of using a multiobjec-
tive algorithm.
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regions. The most natural solution is to define a prior
probability across the locus for the location the disease-
causing mutation. For example, one can assume that a dis-
ease is ten times more likely to fall on a particular protein-
coding base than on a particular non-coding base. These
prior probabilities can then be incorporated into equation
(1), requiring a small change to MAGMA's current hard
code. There are also three heuristic approaches to biasing
SNP selection to select regions. The first, which we use
most commonly in practice, is to boost the quality scores
of SNPs in protein coding-regions. This heuristic, in prac-
tice, often achieves the desired effect. For example, dou-
bling the quality scores of SNPs in protein-coding regions
produces concentration of SNPs in these regions in the
MAGMA output. The second approach for biasing SNP
selection is to separate the protein-coding regions from
the non-coding regions prior to running MAGMA, and
then to evaluate the output from each of these regions sep-
arately. This gives the researcher maximum control over
the choice of SNP density in each region, but at the cost of
more user intervention. The third approach to bias SNP
selection is not to use MAGMA at all for protein coding
regions, but only for non-coding regions. If, which is
rarely the case, all alleles of the protein are known, then it
no longer makes sense to choose a uniform distribution of
SNPs. Rather, it makes sense to choose a minimal set of
SNPs that discriminates between these alleles. For this
purpose, we use a suite of in-house software tools, collec-
tively dubbed "Haplotype Resolver". Haplotype Resolver
is currently in development.


Our implementation, MAGMA, could have applications
outside of genomics. It should be useful in many situa-
tions where a subset of linearly arranged objects is desired.
These situations could occur, for example, in gardening –
thinning a row of carrots, manufacturing – eliminating
items from an over-concentrated assembly line, and air
traffic control – choosing a subset of airborne planes to
enter or leave a landing queue.


Graphical representation of solutions is particularly
important for multiobjective optimization problems.
Multiobjective optimization produces a population of
solutions from which a user must subjectively choose a
final solution. MAGMA offers several output formats,
although others may be envisioned. Graphical representa-
tion is the major constraint limiting the number of differ-
ent objective functions that can conveniently be used.
Thus, if one has a practical three-dimensional graphical
visualization interface, one could easily produce and dis-
play Pareto-optimal fronts of three objective functions. If
the evolutionary algorithms are being used in a high-
throughput system, the subjective decision made by the
human may be automated without necessarily losing the
advantages of the multiobjective solution. For example,


the "solution choosing" algorithm might be trained to
select the best point of diminishing returns along the
trade-off front.


Conclusions
We have implemented an evolutionary algorithm,
MAGMA, that produces useful solutions to the problem of
selecting SNPs for use in genetic mapping studies. Evolu-
tionary algorithms are likely to have general utility for a
variety of problems in genomics. Due to the ease of recod-
ing objective functions, they are particularly useful in the
development phase of projects, when problem descrip-
tions may change frequently.


Methods
Strength-Pareto Evolutionary Algorithm
The original Strength-Pareto Evolutionary Algorithm
(SPEA) and an improvement, SPEA2 [15,16], were
described and implemented by Zitzler et al. This algo-
rithm was shown to provide excellent performance in
comparison to existing methods [17]. Luke [18,19] pro-
vided an implementation of SPEA2 in Java. We redesigned
an implementation in Java for MAGMA. Our designs are
based in part on a number of overviews of evolutionary
algorithms [17,20–25]. Effects of density, archiving, and
elitism are discussed in Laumanns et al. [26].


An outline of the algorithm follows, where "individual" is
used synonymously with "individual solution" (see also
Figure 2):


1. Set t = 0.


2. Generate the initial population, P0, and archive, A0.


3. While (t <T) {


a. Calculate fitness of all individuals in Pt and At.


b. Set At+1 = non-dominated individuals in Pt and At.


c. If At+1 >N, then reduce At+1, else fill At+1.


d. Fill mating pool by binary tournament selection
with replacement on At+1.


e. Apply variability operators to mating pool and place
results in Pt+1.


f. Set t = t+1.


}


4. Output the non-dominated set of At+1. A non-domi-
nated solution is at least as good in all objectives, and
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possibly better in at least one objective, than every other
solution.


We typically set the population size, N, to five hundred,
and the archive size to half the population size. T is a user-
defined integer specifying the number of generations. Fit-
ness is defined as raw fitness plus a density factor. In
SPEA2, a lower fitness value is better than a higher fitness
value. This is the opposite sign convention compared to
usual biological nomenclature. Raw fitness is the sum of
the strengths of all the dominators of an individual. The
strength of an individual is equal to the number of indi-
viduals that individual dominates (see Figure 3). The den-
sity factor increases in regions of the optimization space
that are dense [26]. The use of a density factor tends to
push the edges of the population of solutions towards
unexplored regions of the solution space. The density fac-
tor is small enough, with d ∈ [0,1), so that it only serves
to discriminate between individuals with identical raw fit-
ness. Since all non-dominated individuals have a raw fit-
ness of zero, they will never be eliminated due to
overcrowding unless the size of the archive is set to be
smaller than the size of the Pareto-optimal set. We there-
fore recommend that the archive size, which is a user-
defined constant, be set large enough to contain the entire
front, or the front with sufficient granularity to elucidate
trade-offs and points of diminishing returns. Also, the
density factor can be affected by arbitrary scaling of the
two objective functions with respect to each other. If the
absolute value of the differences of the two objective func-
tions of nearby solutions is large, then density may serve
primarily to eliminate solutions that are "dense" only in
the dimension of the dominant objective function. This
density bias can be avoided by scaling the objective func-
tions appropriately, but in practice this is not necessary, as
such scaling has little effect on the performance of the
algorithm.


Density is inversely related to the Euclidean distance in
the optimization space to the kth nearest neighbor, where
k is a user defined constant. A common choice of k is the
square root of the population size, but setting k = 1 greatly
speeds computation with no significant effect on the
performance of the algorithm. Therefore SPEA2 currently
uses k = 1. Density is recomputed after each elimination.


Binary tournament selection draws two individuals from
the archive, and takes the most-fit individual. This process
is repeated to produce a second individual. These two
individuals then undergo crossovers at zero or more sites,
with a probability of at least one crossover around eighty
percent. The two products of the crossovers then individ-
ually have a probability of mutating at every position. The
resulting two individuals are placed in the population of


the next generation. Tournament selection then continues
until the entire next population is formed.


MAGMA incorporates several details in implementation
that are absent in the original SPEA2 algorithm. Notably,
as long as there are unique solutions, MAGMA fills its
archive with unique solutions before placing any dupli-
cates in the archive. This may decrease the frequency at
which more fit regions of space are explored, and increase
the frequency at which less fit regions are explored. How-
ever, it also may provide a mechanism to escape local
optima. The issue of duplicate solutions tends to arise
only in relatively simple problems, many of which can be
solved by exhaustive enumeration.


The choice of which individuals to place in a seed popula-
tion tends to affect the number of generations required for
MAGMA to converge towards a near-optimal front, but
not to affect the quality of the front. There is a possibility
that placing individual solutions that are already nearly
optimal in the front might bias a large portion of the pop-
ulation towards a particular local optimum. To guard
against this possibility, the initial seed population should
consist of random individuals. However, since the algo-
rithm seems to converge more quickly without loss of
optimality on the SNP selections we have encountered to
date, we include in the original population a single indi-
vidual from the output of a heuristic algorithm, and fill
the remaining initial population randomly.


MAGMA includes the option to place constraints on solu-
tions, in addition to judging solutions based on the two
objective functions. For example, a researcher may not be
interested in any solution that contains more than one
hundred SNPs, but may be interested in exploring the
trade-off front of all solutions with fewer SNPs. One can
constrain MAGMA to reject solutions with more than one
hundred SNPs. This is implemented by allowing individ-
ual solutions in the population to violate any constraints.
However, individuals that do not violate any constraints
will always dominate individuals with constraint viola-
tions. Typically after a few generations, all individuals in
the archive will satisfy the constraints. Adding constraints
may impede the algorithm's ability to escape local
optima, or may slow convergence. We have explored the
performance of the algorithm with a single constraint. For
the SNP selection problems we have encountered, conver-
gence is much faster because the algorithm does not spend
time exploring regions of the solution space that are far
from the regions of our interest. Another advantage is that
the output of the algorithm is focused on solutions of
interest. This advantage of a more focused output could
also be obtained through post-processing, but at a cost of
reducing the number of proffered solutions.
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Our implementation, Multiobjective Analyzer for Genetic
Marker Acquisition (MAGMA), is available at SourceForge
http://snp-magma.sf.net.


Heuristic Algorithm
We designed a heuristic algorithm as a foil to MAGMA's
evolutionary algorithm. This heuristic algorithm produces
solutions that approach or equal Pareto-optimal solutions
found by MAGMA. However, the heuristic produces only
a single solution, not a trade-off front. The heuristic's
strategy is to find a set of evenly spaced markers of as high
a quality as possible. The algorithm first divides the qual-
ities into three (or optionally more) classes, and subse-
quently treats all SNPs of each quality class as having
equivalent qualities. The algorithm first focuses only on
the SNPs of the highest quality. It creates an initial path of
SNPs by walking in steps as close as possible but not
exceeding a user-defined optimal spacing s (e.g. three kilo-
bases). The algorithm then iteratively makes the best pos-
sible swap of each picked SNP with an adjacent unpicked
SNP until no further improvement in the quality-domi-
nated objective function can be made. If, after this first
phase of the algorithm, there are any gaps in coverage
grater than s, the algorithm attempts to fill these gaps with
SNPs from the second best quality class using the same
strategy. This process continues until there are no gaps
greater than s, or all quality classes have been examined.


If all of the qualities are identical then the heuristic will
produce the optimal solution for the fixed number of
SNPs dictated by s. In this special case, the entire exact
Pareto-optimal set can be generated by running the heu-
ristic successively for each possible number of selected
SNPs.


Exhaustive Enumeration Benchmark
The MAGMA parameters were: Version – Constrained
substitution/deletion operators; Population Size – 100
(50 as archive); Seed with heuristic – NO; SNP coverage
radius – 6000; init-low-genome-size – 2; init-high-
genome-size – 5; species.crossover-prob – 0.7; spe-
cies.mutation-prob – 0.13; species.substitution-prob –
0.7; species.insertion-prob – 0.08; species.deletion-prob –
0.22; coverage-score-sampling-dist – 1.


Analytically Seeded Benchmark
The MAGMA parameters were: Version – Constrained
substitution/deletion operators; Population Size – 500
(250 as archive); Seed with heuristic – NO; SNP coverage
radius – 3000; init-low-genome-size – 200; init-high-
genome-size – 1250; species.crossover-prob – 0.8; spe-
cies.mutation-prob – 0.13; species.substitution-prob –
0.5; species.insertion-prob – 0.1 species.deletion-prob –
0.4; coverage-score-sampling-dist – 500.


Hardware and Software
The software environment we employed was Java JRE:
Classic VM (build 1.4.0, J2RE 1.4.0 IBM build cxia32140-
20020917a (JIT enabled: jitc)). Our benchmark tests were
run on a dual 500 MHz Celeron with 512 MB of RAM.


Glossary
Fitness: A non-negative real number. Solutions with lower
fitness preferentially survive to the next generation. Fit-
ness is dependent not only on the solution, but also on
the current population of solutions.


Strength: The number of solutions dominated by a
solution.


Pareto-optimal front: The image of the Pareto-optimal set in
the objective space.


Optimization space: The space defined by the objective
functions.


Solution space: The set of all possible solutions to a
problem.


Genome: An encoding of a solution. There is a one-to-one
correspondence between genomes and solutions,
although some genomes and their associated solution
may violate constraints. This evolutionary-algorithm defi-
nition is somewhat analogous to the biological definition
of a genome.


Pareto optimality: The property of solution of having no
other solution which is at least equal in all objective func-
tions and greater in at least one objective function.


Pareto-optimal set: The set of all Pareto-optimal solutions.


Dominance: The property of being at least equal in all
objectives, and better in at least one objective.


Abbreviations
SNP: single-nucleotide polymorphism


MAGMA: Multiobjective Analyzer for Genetic Marker
Selection


SPEA: Strength-Pareto Evolutionary Algorithm


SPEA2: Strength-Pareto Evolutionary Algorithm 2
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