

Multi-Objective, Probabalistic
Selection Evolutionary Algorithms

(MOPSEA)

Department of Aerospace, Power & Sensors

Report No. DAPS/EJH/56/2000

Dr Evan J. Hughes

September 2000

Royal Military College of Science

Shrivenham

Abstract

Real engineering optimisation problems are often subject to parameters whose values

are uncertain or have noisy objective functions. Techniques such as adding small

amounts of noise in order to identify robust solutions are also used. The process

used in evolutionary algorithms to decide which solutions are better than others

do not account for these uncertainties and rely on the inherent robustness of the

evolutionary approach in order to �nd solutions.

In this paper, the processes needed to provide probabilities of selection are re-

formulated to begin to account for the uncertainties and noise present in the system

being optimised. Single and multi-objective systems are considered along with pa-

rameter constraints and objective limits for both rank-based and tournament selec-

tion.

The formulations are straightforward to programme and reasonably e�cient to

process. The techniques are ideally suited to interactive,constrained, uncertain,

noisy, multi-objective design and can be e�ective in reducing the disturbances to

the evolutionary algorithm caused by noise in the objective function.

Keywords

Evolutionary Algorithm, Ranking, Multi Objective, Noise, Uncertainty, Robust-

ness

Contents

1 Introduction 1

2 Problem De�nition 3

3 Comparing two uncertain �tness measurements 4

3.1 Introduction . 4

3.2 Analysis . 4

3.2.1 Distributions with known mean 4

3.2.2 Distributions with unknown mean 6

3.3 Numerical approximation of probability 8

3.4 Multi-objective �tness functions and noisy domination 11

4 Probabilistic Ranking and Selection 15

4.1 Introduction . 15

4.2 Single objective ranking . 15

4.3 Multi-objective ranking . 17

5 Designer Preference & Constraints 20

5.1 Introduction . 20

5.2 Parameter Constraints and Objective Limits 20

5.3 Preferred solutions and Priority . 21

6 Fitness Sharing and Restrictive Breeding 24

6.1 Introduction . 24

6.2 Fitness sharing . 24

6.3 Restrictive breeding . 27

6.4 Steady state evolutionary algorithms 27

7 Probabilistic Tournament Selection 28

7.1 Introduction . 28

7.2 Tournament selection algorithm . 28

8 Experiment Results 31

8.1 Introduction . 31

8.2 Test Objectives . 31

8.3 Results . 31

8.3.1 Rank Positions . 31

8.3.2 Limits, Priority, and Constraints 41

8.3.3 Objective Limits . 42

8.4 Objective Preference . 47

i

8.5 Chromosome Constraints . 47

9 Conclusions 49

9.1 Acknowlegements . 49

References 50

Appendices 52

A Matlab Mex-File 52

ii

1. Introduction

The use of evolutionary algorithms (EA's) in engineering is now becoming acceptable

and widespread. As the use of the algorithms matures and migrates from academia

into industry, often the scale and characteristics of the problems being solved are

changing. The objective function is often no longer a well de�ned analytical function

but a complex, nonlinear and often uncertain model of a plant or system. Many

model coe�cients are derived by experiment and are therefore subject to experimen-

tal errors and the coe�cients are often implemented in the models by approximating

their behaviour with a polynomial function that best �ts the measured data. In sys-

tems such as surfaces subject to aerodynamic forces, the aerodynamic coe�cients

are often measured in a wind tunnel, giving approximate data for only a limited

operating envelope. In real systems, the true coe�cients will not be the same as

measured and are often time dependent or correlated with platform motion.

These errors in the modelling are unavoidable and inevitably propagate into the

outputs of the objective functions, the results of which are used to classify the quality

of the individual solutions to the problem. All optimisation algorithms attempt to

�nd the problem solution that gives the most favourable output from the objective

functions. With complex systems, evolutionary algorithms are a useful tool in that

they can tolerate highly nonlinear and noisy system models and objective functions

and still provide reasonable suggested solutions [1].

This robustness to errors has also been exploited by arti�cially adding noise

to the objectives in an attempt to identify solutions that are robust to noise and

uncertainty in the real system [2, 3, 4]. Noise is also often present when trying to

optimise hardware systems such as in robotics. Noise or uncertainty in the objectives

tend to slow evolution and reduce solution quality.

Attempts to reduce noise by repeating objective calculations and then averaging

or combining results have been tried [5], but often with many realistic problems, the

time to re-evaluate is prohibitive and often the number of samples used to average

must be very small and therefore subject to considerable error. Most evolutionary

algorithms to date have accepted these problems as the robustness of the algorithms

allows small errors to be tolerated.

Therefore we may form two categories of problem:

1. Noisy: Two successive evaluations of the same chromosome information re-

turn two di�erent sets of objectives.

2. Uncertain: When comparing two di�erent chromosomes, errors in the mod-

elling or noise in the data set under investigation may cause the objective

values returned to classify the wrong solution as being superior.

This paper takes a fresh look at the problems of uncertain and noisy systems,

both with single and multiple objectives, in order to provide a selection process

1

Evan J. Hughes: Multi-Objective Probabilistic Selection Evolutionary Algorithm 2

that is aware of the uncertainties and noise. The techniques discussed form a small

step towards creating algorithms that can address the problems associated with the

di�erent categories of noisy or uncertain problems.

2. Problem Definition

As most engineering problems have multiple objectives that must be satis�ed, the

work concentrates on multi-objective evolutionary algorithms (MOEA). Carlos Coello

Coello maintains an excellent database of publications relating to multi-objective op-

timisation [6]. Many of the publications tackling engineering problems (e.g. [7]) use

techniques such as MOGA [8] and NSGA [9]. These methods use ranking techniques

to address the problems of non-domination, then use sharing to spread the solutions

across the objective surface. The use of ranking is widespread in EA's to prevent

good solutions taking over the population in the early generations of the algorithm.

Van Veldhuizen and Lamont [10] has studied the bene�ts / disadvantages of a num-

ber of techniques, including MOGA and NSGA, and begun to de�ne metrics for

assessing MOEA performance. These have been developed in the context of noise-

free and certain problems and similar work is needed to address noisy and uncertain

problems but is beyond the scope of this paper.

In all evolutionary algorithms, the key medium to evolution is being able to take

two potential solutions to a problem, test them in the problem domain against some

performance metrics, then given some values relating to the performance of each,

decide which solution is better than the other. With noisy or uncertain problems, we

�nd that given the results of the performance metrics, unless they are very di�erent,

we cannot say for certain which solution is better. Thus we must now refer to the

probability that one solution is better than the other. This paper aims to review

the processes needed in order to assign a probability of selection for each solution,

given that we can no longer make a crisp decision about solution superiority.

The process of ranking both single and multiple objectives, parameter con-

straints, objective limits, and �tness sharing are re-formulated to account for the

uncertainty in the optimisation problems. The paper also takes a brief look at pos-

sible ways of augmenting tournament selection to account for noise and uncertainty

with constraints, limits, and multiple objectives.

3

3. Comparing two uncertain fitness

measurements

3.1. Introduction

In a noise free situation, if we have two �tness values, A and B, and are trying

to minimise, the lower value is always superior. However, if we know the �tness

values are subject to noise, even if the measured �tness A is less than the measured

�tness B, the mean of the distribution from which A is drawn may be greater than

the mean of the distribution from which B is drawn. Therefore we would make the

wrong decision. In the presence of noise, if we choose the simple case of take the

best measured objective, we need to quantify the probability that we have made the

wrong decision.

3.2. Analysis

3.2.1. Distributions with known mean

Figure 3.1 shows two known distributions with means �A and �B respectively, and

a point of interest, x, generated at random from distribution A. If we generate a

sample y from distribution B and it lies in the shaded area of B to the left of x,

when we compare x and y, y will be less than x and therefore superior. We will

therefore make the wrong decision. The probability of making a wrong decision

given sample x may be found by integrating the shaded area and multiplying by the

probability of x occurring. Therefore, for all possible values of x, the probability of

the comparison of two samples giving the wrong decision is shown in (3.1), where

pdfA(x) is the probability density function of �tness value A and cdfB(X <= x) is

the cumulative distribution function for �tness value B.

P (wrong decision) =

Z 1

�1
pdfA(x) � cdfB(X <= x)dx (3.1)

In many real engineering problems, measurement noise is often Gaussian. The

following derivations will be for Gaussian noise, although the analysis can be per-

formed for any two distributions (e.g. a Gaussian and a Rayleigh). Equation 3.2

shows (3.1) expressed for two Gaussian distributions.

P (wrong) =

Z 1

�1

1

�a

p
2�

e
� (x��a)

2

2�2a

Z x

�1

1

�b

p
2�

e
� (y��

b
)2

2�2
b dy

!
dx (3.2)

4

Evan J. Hughes: Multi-Objective Probabilistic Selection Evolutionary Algorithm 5

0 1 2 3 4 5 6 7 8 9 10 11
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

µ
A

µ
Bx

Objective

P
ro

ba
bi

lit
y

de
ns

ity

Figure 3.1: Probability that samples from distributions may be classi�ed wrongly

Evan J. Hughes: Multi-Objective Probabilistic Selection Evolutionary Algorithm 6

Equation 3.3 has the parameter axis shifted to make distribution B centred

around zero and then B is normalised, modifying distribution A accordingly. Equa-

tion 3.4 has been simpli�ed with the replacements m =
(�a��b)

�b
and s = �a=�b.

P (wrong) =

Z 1

�1

0
@ �b

�a

p
2�

e
�

(x�
(�a��b)

�
b

)2�2
b

2�2a

Z x

�1

1
p
2�

e
� y

2

2 dy

1
Adx (3.3)

P (wrong) =

Z 1

�1

�
1

s
p
2�

e
� (x�m)2

2s2

Z x

�1

1
p
2�

e
� y

2

2 dy

�
dx (3.4)

3.2.2. Distributions with unknown mean

If we have a pair of samples from distributions with known characteristics and

spread, but unknown means, we need to be able to calculate the probability that

although sample A is less than sample B say, the mean of distribution B is less than

the mean of distribution A. This will give us a probability of making the wrong

decision. Figure 3.2 shows a scenario with two Gaussian distributions.

0 1 2 3 4 5 6 7 8 9 10 11
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

A Bµ

Objective

P
ro

ba
bi

lit
y

de
ns

ity

Figure 3.2: Choice between two noisy values

Here A and B are the measurements that were observed, and � is an arbitrary

point. The observed value A was less than B and is therefore superior. If the mean

Evan J. Hughes: Multi-Objective Probabilistic Selection Evolutionary Algorithm 7

of A was actually at point �, the mean of B would have to be in any position to the

left of � for us to make the wrong decision. We can calculate the probability of the

distributions being in this location as the probability of value A occurring, given �a,

multiplied by the probability that �b is less than �a, shown as the shaded region on

�gure 3.2. This may be described mathematically as

P (wrong decision) =

Z 1

�1
pdfA(A� �) � cdfB((X � �) > (B � �))d� (3.5)

With Gaussian distributions, we may write this as

P (wrong) =

Z 1

�1

1

�a

p
2�

e
� (A��)2

2�2a

Z 1

(B��)

1

�b

p
2�

e
� y

2

2�2
b dy

!
dx (3.6)

Equation 3.7 has the limits on the inner integration adjusted, as the Gaussian

distribution is symmetrical pdf(a) = pdf(�a) and cdf(a;1) = cdf(�1;�a). The

axis is shifted to make sample point B = 0 then distribution B is normalised,

modifying distribution A accordingly. Equation 3.8 has been simpli�ed with the

replacements m =
(A�B)
�b

and s = �a=�b.

P (wrong) =

Z 1

�1

�b

�a

p
2�

e
�

(��A�B

�
b

)2�2
b

2�2a

Z �

�1

1
p
2�

e
� y

2

2 dy

!
d� (3.7)

P (wrong) =

Z 1

�1

�
1

s
p
2�

e
� (��m)2

2s2

Z �

�1

1
p
2�

e
� y

2

2 dy

�
d� (3.8)

It is clear that (3.8) is now in the same form as (3.4) and that the subsequent

analysis is equivalent, with x = �. This is only true as the Gaussian distribution is

symmetrical. With other distributions, the probabilities when the mean is known

may be di�erent to when the mean is not known. We may now use the error function

erf (x) =
2
p
�

Z x

0

e
t2
dt (3.9)

to give

P (wrong) =

Z 1

�1

1

s
p
2�

e
� (x�m)2

2s2

1 + erf (xp
2
)

2

!
dx

=
1

2
+

1

2s
p
2�

Z 1

�1
e
� (x�m)2

2s2 erf (
x
p
2
) dx (3.10)

Unfortunately (3.10) is di�cult to integrate directly. An alternative approach is

to recognise that the di�erence between two Gaussian distributions is also Gaussian

but with a mean value that is the di�erence between the means of the two distri-

butions and a variance which is a sum of the two variances (Cramer's Theorem),

i.e.,

N(�a; �
2
a)�N(�b; �

2
b) = N(�a � �b; �

2
a + �

2
b) (3.11)

Evan J. Hughes: Multi-Objective Probabilistic Selection Evolutionary Algorithm 8

If A dominates B in a minimisation sense, then the area under the resulting curve

from zero to in�nity will give the probability that the decision that A dominates B

is wrong. If we normalise B to give

N(
�a � �b

�b
;
�
2
a

�2b

)�N(0; 1) = N(
�a � �b

�b
;
�
2
a

�2b

+ 1) (3.12)

= N(m; s
2 + 1) (3.13)

Then the probability of being wrong is

P (wrong) =
1p

2� (s2 + 1)

Z 1

0

e
� (x�m)2

2(s2+1)dx (3.14)

=
1

2
+

1

2
erf

mp

(2 + 2s2)

!
(3.15)

Equation 3.15 can be shown to be equal to (3.10) by numerical integration.

3.3. Numerical approximation of probability

Figure 3.3 shows a plot of (3.10) with probability of error plotted with respect to m

for di�erent values of s. If A = B, the probability returned will be P = 0:5. As the

ratio s increases, the curve attens out. It must be remembered that the parameter

m is normalised with respect to �b and therefore unless �b = 1, m will not represent

the absolute di�erence between samples A and B.

We can use the above derivation in an evolutionary algorithm in a number of

ways. If the objective function is very quick to calculate, we can evaluate each

chromosome a number of times and estimate the mean and standard deviation of

the objective value. We can then compare the objectives based on the estimates

of their statistics using the equations in section 3.2.1. If we cannot a�ord to do

multiple evaluations for each chromosome (often the case), we can choose a random

chromosome before running the EA and perform multiple evaluations to estimate

the noise standard deviation (and possibly noise distribution). This estimate may

be used subsequently for all the comparisons of individual samples using the equa-

tions in section 3.2.2. If the noise statistics are known to be nonlinear, it may be

advantageous to either re-estimate the statistics every few generations from an av-

erage chromosome, or even from the current population. When the same standard

deviation is used for comparing two objective values, �n = �a = �b therefore s = 1.

Thus the probability is only determined by the value of m.

As the case of s = 1 is likely to be the most commonly used, we can tailor the

equations speci�cally. The equations are calculated as the probability of being wrong

in minimisation, this is the same as the probability of acceptance in maximisation.

Thus the probability of sample A dominating sample B in maximisation (P (A > B))

is

P (A > B) =
1

2
+

1

2
erf (

m

2
)

=
1

2
+

1

2
erf (

A�B

2�n
) (3.16)

Evan J. Hughes: Multi-Objective Probabilistic Selection Evolutionary Algorithm 9

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

m

P
ro

ba
bi

lit
y(

w
ro

ng
 d

ec
is

io
n)

, σ
b =

 1

s=2

s=1

s=0.5

Figure 3.3: Probability of wrong decision against parameterm for di�erent standard

deviation ratios

Evan J. Hughes: Multi-Objective Probabilistic Selection Evolutionary Algorithm 10

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

m

P
(A

>
B

),
 σ

b =
 1

s=2

s=1

s=0.5

Figure 3.4: Approximation of P (A > B) against m

Evan J. Hughes: Multi-Objective Probabilistic Selection Evolutionary Algorithm 11

Therefore if A = 0, B = 5 and �n = 1, P (A > B) = 0 as expected.

Unfortunately, the error function erf (x) is not easy to calculate quickly. It

can be approximated using Chebyshev �tting [11, Section 6.2] but even this is not

very quick. Recognising that the curves in �gure 3.3 are sigmoidal in shape, other

standard sigmoidal curves have been �tted to give a good approximation to the

curve, but allow the probability to be calculated quickly. Figure 3.4 shows the curve

approximation (dashed curve is (3.15)) and (3.17) & (3.18) show the approximations.

The results of the two di�erent approximations are so similar to each other, they

appear as a single line on the graph.

P (A > B) �
1

2
(1 + tanh

m

0:8
p
2 + 2s2

) (3.17)

P (A > B) �
1

1 + e
� 2:5mp

2+2s2

(3.18)

In the ranking process detailed in section 4, the calculation of the probabilities is

O(n2) with respect to the number of objectives ranked n. Using (3.19) & (3.20) be-

low, if s = 1 we can split the calculation of m allowing tanh(x=(1:6�n)) or e
�1:25x=�n

to be calculated for each of the objectives to be ranked. This process is O(n). The

O(n2) comparison process where the probability is calculated only needs to perform

very fast multiply and add instructions, drastically reducing the processing time for

large n. Unfortunately, (3.19) & (3.20) assume that tanh(x) and ex can be calculated

to in�nite precision. In practice, if jx=(1:6�n)j > 17 (for tanh) or j1:25x=�nj > 15

(for exponential) then (3.17) & (3.18) must be used. The exact limits though are

dependent on the machine precision.

tanh(a+ b) =
tanh(a)� tanh(b)

1� tanh(a) tanh(b)
(3.19)

e
(a�b) = e

a
=e

b (3.20)

3.4. Multi-objective �tness functions and noisy domination

With multiple objectives, we no longer have only two possible outcomes from com-

paring two objectives A and B. We now have the possibility of the two objectives

being non-dominated. We therefore can have P (A < B), P (A > B), and P (A � B).

Figure 3.5 shows the e�ect graphically, with the point A in the centre of the �gure

([0:5; 0:5]) representing one sample of the �tness. The shaded regions correspond

to regions in which there is information to drive the evolutionary process. In the

non-dominated regions, we have no way of deciding between the functions.

If we have two, two objective, independent �tness measurements with corre-

sponding objective values A1, A2, B1, and B2, the probabilities P (A < B), P (A >

B), and P (A � B) are simply

P (A > B) = P (A1 > B1) � P (A2 > B2)

P (A < B) = P (A1 < B1) � P (A2 < B2)

P (A � B) = 1� P (A < B)� P (A > B) (3.21)

Evan J. Hughes: Multi-Objective Probabilistic Selection Evolutionary Algorithm 12

Therefore in general with k objectives

P (A > B) =

kY
j=1

P (Aj > Bj)

P (A < B) =

kY
j=1

P (Aj < Bj)

=

kY
j=1

(1� P (Aj > Bj))

P (A � B) = 1� P (A < B)� P (A > B) (3.22)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Objective 1

O
bj

ec
tiv

e
2

A

P(x<A)

P(x>A)Non−Dominated

Non−Dominated

Figure 3.5: Noise free non-domination map

If all our �tness values lie within a bounded region, which is often the case, we

may calculate the probability of being in a situation where one value dominates the

other. Equation 3.23 shows the integral of the area (with reference to �gure 3.5),

this is relatively simple to evaluate by hand, and as expected gives a probability of

P = 0:5 for a two dimensional objective.

P (x < A) + P (x > A) =

Z 1

0

Z 1

0

x1x2 + (1� x1)(1� x2) dx1dx2 =
1

2
(3.23)

Evan J. Hughes: Multi-Objective Probabilistic Selection Evolutionary Algorithm 13

Repeating the analysis for a 3 dimensional problem reveals that the probability that

a point x will dominate, or be dominated by another point in the bounded area is

P = 0:25. In general for k objectives

P (domination) =
1

2(k�1)
(3.24)

If we have a noisy function, the equivalent domination map of �gure 3.5, in

relation to point [0:5; 0:5], is shown in �gure 3.6. Here the change in probability is

not distinct and we have to display a surface (�n = 1=8, s = 1).

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

Objective 1

Objective 2

P
(A

<
[0

.5
 0

.5
])

+
P

(A
>

[0
.5

 0
.5

])

Figure 3.6: Uncertain non-domination map

We can however still approximate the mean probability of getting a dominated

solution as shown in (3.25) (for 2D case, integrated using Mathematica). Integrating

the three dimensional case is not as straight forward so it was veri�ed numerically

that (3.24) still holds, where h1 and h2 are the factors relating to the approximation

constant 1:6�1 and 1:6�2 respectively and [i; j] and [x1; x2] are the coordinates of

the two points of comparison.

Evan J. Hughes: Multi-Objective Probabilistic Selection Evolutionary Algorithm 14

P =

Z 1

0

Z 1

0

Z 1

0

Z 1

0

(1 + tanh((x1 � i)=h1))(1 + tanh((x2 � j)=h2))

4

+

�
1�

1 + tanh((x1�i)=h1)
2

�
�
�
1�

1 + tanh((x2�j)=h2)
2

�
didjdx1dx2

=
1

2
(3.25)

This shows that the regions where we can distinguish between good and bad

solutions shrinks rapidly as we increase the number of objectives in the optimisation

process. The larger the number of objectives, the larger the non-dominated region

and therefore more solutions will be required to cover the Pareto surface.

4. Probabilistic Ranking and Selection

4.1. Introduction

Ranking is often employed to prevent a superior solution dominating the early pop-

ulations in the evolutionary process. The conventional ranking process, however,

does not take the uncertainty in the measured �tness values into account. The fol-

lowing sections provide a fresh view of the ranking process and develop theory for

multi-objective ranking of uncertain �tness measurements.

4.2. Single objective ranking

A C/D E F GB

4 5 62 71 3
x

Figure 4.1: Fitness values to be ranked

Figure 4.1 shows seven �tness values to be ranked. If we are minimising, the

best �tness value is the lowest. In the case shown, value A will get rank 0, and value

G will be rank 6. Values C and D are equal and therefore should be assigned the

same rank. We can assign rank values as shown in table 4.1

If we did not have a tie between C &D , we could use the linear selection equation,

(4.1) to calculate probabilities of selection, based on the ranked �tness, where n is

the number of �tness values and Ri is the rank of individual i. The sum of the rank

values on the denominator will sum to n(n � 1)=2 = 21 which is the sum of the

arithmetic series zero to six, therefore the best individual will get a probability of

selection of 2=n and the worst a probability of zero.

P (selecti) =
(n� 1)� RiPn

j=1Rj

=
2((n� 1)� Ri)

n(n� 1)
(4.1)

15

Evan J. Hughes: Multi-Objective Probabilistic Selection Evolutionary Algorithm 16

Table 4.1: Ranks of example �tness values
Value Rank

A 0

B 1

C 2

D 2

E 4

F 5

G 6

If we use the rank values in table 4.1 with both the tied �tness values being given

the best `untied' rank, we �nd that the sum of the ranks is no longer consistent, and

in this case,
Pn

j=1Rj = 20. Alternatively, as C & D are tied, it may be better to

penalise them both a little and therefore take an average of the rank positions they

could have shared, i.e., give them both a rank of 2:5. This would return the overall

sum to be 21 and would be consistent, no matter how many �tness values share a

rank. This is method most used for ranking a vector of data.

We can view the ranking process as counting the number of �tnesses that dom-

inate the �tness of interest [8]. If a �tness equal to the current one is encountered,

then it is half dominating, and half dominated by the current �tness. Therefore we

can create the rank position numbers by this simple counting process. For example,

E is dominated by A, B, C & D and therefore has a rank of 4. Value C is dominated

by A & B but is tied with D and so gets a rank of 2:5.

Alternatively, we could consider the dominating / not dominating decision as

being the probability that each �tness value dominates the value of interest. For

example, if we consider �tness C , the probability that A dominates C is one. The

probability that G dominates C is zero. The probability that D dominates C , from

(3.10) with m = 0, is P = 0:5. Thus we can represent the rank position as the sum

of probabilities of domination as shown in (4.2), where P (Fj > Fi) is the probability

that �tness value j dominates �tness value i.

Ri =

nX
j=1

P (Fj > Fi)

�����
i6=j

(4.2)

In (4.2), we have to be sure not to compare �tness Fi with itself. If we did, we

would get an extra probability of 0:5 added to the sum. We can therefore include

Fi in the sum, but subtract the e�ect of comparing the �tness with itself. This is

shown in (4.3).

Ri =

nX
j=1

P (Fj > Fi)� 0:5 (4.3)

As (4.3) is based on probability, if the �tness values are uncertain, we can use

(3.10) or the approximation (3.17) & (3.18) to calculate the probability of domina-

tion. For example, if �tness values A to G have a standard deviation of �n = 1, the

rank positions (using (3.17)) compared to the no noise case are shown in table 4.2.

Evan J. Hughes: Multi-Objective Probabilistic Selection Evolutionary Algorithm 17

Table 4.2: Ranks and probabilities with uncertainty of �n = 0 and �n = 1
Value Rank (�n = 0) Rank (�n = 1)

A 0 0.38

B 1 1.27

C 2.5 2.31

D 2.5 2.31

E 4 4.17

F 5 5.07

G 6 5.49

With �n = 0, we have conventional ranking and the probabilities will range from

2=n to zero. If �n = 1, all of the �tness values will be assigned the same rank,

and will have a probability of selection of 1=n. Thus the standard deviation of

the uncertainty has a similar e�ect to selective pressure in conventional selection

processes [12].

4.3. Multi-objective ranking

With multiple objectives, we now have three possible outcomes from comparing

the two �tness values: A dominates B , A is dominated by B , and A and B are

non-dominated. If we apply the single objective ranking equation, we �nd that the

total of the rank positions is no longer n(n � 1)=2 as we now have to account for

the non-domination. If we have no noise, for two �tness values where A dominates

B , P (A > B) = 1, P (A < B) = 0, and P (A � B) = 0 Therefore when we

sum the probabilities of domination, the contribution from this pair will be 1. If the

�tness values are non-dominated, the corresponding probabilities are P (A > B) = 0,

P (A < B) = 0, and P (A � B) = 1. We have now lost the value 1 from the

probability of domination calculations, therefore reducing the sum of ranks total.

This state will be the same when we compare A to B and also when we compare B

to A, therefore if we sum the total probability of non-domination, this will give us

twice what was lost from the probability of domination calculations.

If we consider the ranking case for a single dimension, if A and B are identical,

we cannot choose between them and so add in 0.5 to the sum. With non-domination,

we also have the situation where we cannot choose between objectives and should

therefore add 0.5 to the sum as required. In the case of uncertain measurements, we

can multiply the value of 0:5 by the probability of non-domination, and still subtract

o� 0:5 to allow for comparing the individual with itself, thereby maintaining the sum

of the rank positions as n(n� 1)=2. Thus we can add the non-domination term into

(4.3). The rank calculation for multi-objective ranking is shown in (4.4), where n is

the number of �tness measurements.

Ri =

nX
j=1

P (Fj > Fi) +
1

2

nX
j=1

P (Fj � Fi)� 0:5 (4.4)

Evan J. Hughes: Multi-Objective Probabilistic Selection Evolutionary Algorithm 18

Objective 1

A

B

C

E

F

D

O
bj

ec
tiv

e
2

Figure 4.2: Multiple �tness values to be ranked

Evan J. Hughes: Multi-Objective Probabilistic Selection Evolutionary Algorithm 19

Table 4.3: Ranks, Probabilities and Non-domination counts with uncertainty of

�n = 0 and �n = 1
Value R (�n = 0) R (�n = 1)

A 2 2.27

B 1.75 1.65

C 1.5 1.42

D 1.5 1.92

E 3.25 3.22

F 5.0 4.53

This probabilistic ranking equation allows chromosomes to be selected based

on uncertain multi-objective �tness measurements. For the objectives shown in

�gure 4.2, we can calculate the rankings in order to minimise the �tness values.

Table 4.3 shows ranks (R) for 1 standard deviation noise, and no noise.

In the example, we see that A is non-dominated with B, C, D, & E and therefore

gets a rank of 2. Fitness B is non-dominated with A, C, & D but shares an objective

value with E , thus being half dominating and half non-dominated with E , the rank

of B is 1:5 from the three non-dominated points and 0:25 from E , giving a total

of 1:75. We also see that each of the columns of table 4.3 sums to 15 (= n(n �
1)=2) as expected. The ranking process is O(n2), as are many of the other ranking

methods [8, 9].

In the general noisy scenario, we see that the proximity of other �tness values,

even if only close on one objective, can inuence how the rank is assigned. Measure-

ments such as C which are relatively well spaced out on all objectives are ranked

more highly than other �tness values that are uncertain. With no noise, the ba-

sic ranking by just counting how many points dominate each �tness measurement

described by Fonseca and Flemming [8] is very similar, but does not allow for the

non-dominated cases. The sum of the rank values will not be consistent if non-

dominated solutions are present, causing a bias towards non-dominated solutions

over other solutions. The ranking used by Srinivnas and Deb [9] is based on `lay-

ers' of non-dominated solutions and has no consistency with regards to how many

layers, or ranks, are produced, therefore making calculating selection probabilities

awkward.

It is interesting to note that if we require an objective to be maximised, setting

�n negative will cause the probabilities to be calculated for maximisation, setting

�n negative has the same e�ect as negating the �tness values (the conventional way

of converting from minimisation to maximisation). Therefore both minimisation

and maximisation objectives may be handled easily by just setting the sign of the

corresponding value of �n appropriately.

5. Designer Preference & Constraints

5.1. Introduction

For optimising real systems, allowing the designer to have interactive control over

the evolutionary process is paramount. The designer will often want to con�ne the

region of evolution in order to investigate an interesting region in detail and may

also want to mark some objectives as being a higher priority. A simple approach

to de�ning regions of interest is to allow the designer to specify a limit on each

objective. Solutions with a corresponding value worse than the limit would be

penalised. Problem parameters are also often constrained. With a single objective

it is straight forward to add a penalty function that adds to the objective value if the

parameters are out of bounds. In a multiple objective case, as the relative scalings

between the objectives is not known, applying a penalty is less straight forward.

The designer may also want to focus attention on certain solutions, in the case of

a noisy function, the objective values will be time dependent. For a discussion of

other Pareto preference techniques see [13].

5.2. Parameter Constraints and Objective Limits

The parameters de�ning potential problem solutions often have regions within which

they must be constrained. Deb [14] provides a discussion on the di�erent methods

used to apply constraints in EA's. If possible, the constraints should be handled

by the genotypic / phenotypic description to help prevent the production of fatal

solutions. To describe the constraint, we can de�ne a function G(�i) as being unity

if the chromosome �i is wholly within a constrained region (assuming no noise or

uncertainty) and zero if a constraint is violated. If the individual constraints are

formulated as gj(�i) � 0, we can de�ne an error metric as �ji = gj(�i) and use (3.16)

with the constraint noise standard deviation �c to give

Gj(�i) =
1

2
+

1

2
erf (

��ji
2�c

) : (5.1)

Multiple constraints may be combined either by forming the product (5.2) of the

u constraints, or by taking the geometrical mean (5.3). It is prudent not to constrain

the problem too highly in the early generations if possible to allow the evolutionary

process to work with the greatest number of feasible solutions possible.

G =

uY
j=1

Gj (5.2)

G = u

p
G1G2 � � � Gu (5.3)

20

Evan J. Hughes: Multi-Objective Probabilistic Selection Evolutionary Algorithm 21

Table 5.1: Required probabilities when constrained
C(A) C(B) Pc(A > B) Pc(A < B) Pc(A � B)

0 0 0 0 1

0 1 0 1 0

1 0 1 0 0

1 1 P (A > B) P (A < B) P (A � B)

Limits on the objectives may be applied by treating the k limits as forming a

point Z in the k dimensional objective space. The probability of each individual

dominating this point can be calculated (P (Fi > Z)) and this probability can then

be multiplied with the parameter constraint value G(�i) to give C(�i).

We can apply the constraint easily to the previously developed ranking process

by applying the logic of: if both chromosomes meet all constraints, the dominance

probabilities are unchanged; If both violate the constraints, they are classed as being

non-dominated; if one violates constraints and the other does not, the violating

chromosome is classed as being dominated. Table 5.1 gives an alternative view of

the logic.

Equation 5.4 shows the logic expressed in a form suitable for noisy systems.

Pc(A > B) = P (A > B)C(A)C(B) + C(A)(1� C(B))

Pc(A < B) = P (A < B)C(A)C(B) + (1� C(A))C(B)

Pc(A � B) = 1� Pc(A > B)� Pc(A < B) (5.4)

The probabilities after the constraints have been applied may be used directly in

the ranking calculation shown in (4.4).

With this method of applying the constraints, the sum of the ranks is preserved,

compared to an alternative technique where the reversed rank of individual i is

multiplied by C(�i) to give C(�x)((n � 1) � Ri), i.e., the constraints are applied

to the ranked values. Thus a solution with good objective values that violates

constraints will get a low probability of selection. With this alternative approach

the sum of the ranks may not be n(n � 1)=2 anymore. With either technique, by

modifying the rank position, objective scaling di�erences are no longer a problem.

This approach allows the designer to specify limits on the evolution interactively as

the population evolves. Sharing may also be applied and the niche count used to

reduce C(�i) accordingly, i.e. Cs(�i) = C(�i)=s, where s is the niche count for the

individual. This is detailed in [15].

5.3. Preferred solutions and Priority

As the population evolves, the designer may see solutions that may be viable. If

the individual in question is marked as a preferred solution, a form of elitism may

be used to guarantee that all marked solutions survive and are copied into the next

generation. Thus solutions that may have died o� can be preserved, passing on

a proportion of their genetic material. The marking process has no e�ect on the

rank or probability of selection and if poor individuals are marked early in the

Evan J. Hughes: Multi-Objective Probabilistic Selection Evolutionary Algorithm 22

evolution, it is up to the designer to remove the mark as appropriate. In a noisy

environment, solutions may move position and once marked, should be re-evaluated

every generation, allowing the deviations of the objective values due to noise to be

observed.

The noise standard deviation, �n, may be set di�erently for each objective. Any

objective with �n =1 will have an e�ective selection pressure of zero in the ranking

process. This will prevent a decision being made regarding the objective and will

make the rankings more non-dominated. If �n = 0, any di�erence in the two ob-

jectives being compared will lead to a domination decision. In the ranking process

therefore, objectives with lower �n will have a higher e�ective selective pressure and

therefore �n could be used to express objective priority.

Unfortunately, the use of �n to control selective pressure and priority is not

convenient as the values of �n needed are dependent on the scaling of each objective.

A better way is to include selective pressure and priority explicitly within the ranking

process. Equation 5.5 shows alternative methods of calculating the domination

probabilities, with �j being the selective pressure for objective j and lying in the

range [0,1] with 1 being maximum selective pressure and zero being no selection.

The selective pressure of each objective can be controlled separately, when they

are all set to zero, all the solutions have the same probability of selection. If one

objective has a selective pressure of zero, it still has an e�ect on the ranking process,

forcing the ranks to be more non-dominated.

Ps(A > B) =

kY
j=1

�
Pc(Aj > Bj)�j +

1

2
(1� �j)

�

Ps(A < B) =

kY
j=1

�
Pc(Aj < Bj)�j +

1

2
(1� �j)

�

=

kY
j=1

�
(1� Pc(Aj > Bj))�j +

1

2
(1� �j)

�

Ps(A � B) = 1� Ps(A < B)� Ps(A > B) (5.5)

For priority, we can use a similar technique to selective pressure, but here, if we

have one objective with a priority of zero, it should play no part whatsoever in the

ranking process. Equation 5.6 shows equations to allow the priorities �j for each

objective j to be integrated into the ranking process. The priorities �j lie in the

interval [0,1] with 1 being the highest priority and zero making the objective play no

part in the ranking. In (5.6), the factor h will be zero if all of the priorities are zero.

This will force all solutions to be non-dominated and so have an equal probability

of selection.

Evan J. Hughes: Multi-Objective Probabilistic Selection Evolutionary Algorithm 23

h=

1�

kY
j=1

(1� �j)

!

Pp(A > B)=h

kY
j=1

(Pc(Aj > Bj)�j + (1� �j))

Pp(A < B)=h

kY
j=1

(Pc(Aj < Bj)�j + (1� �j)) (5.6)

Equation 5.7 shows the �nal form with both selective pressure and priority taken

into account. As both processes are performed as part of the ranking process, the

consistency in the sum of the ranks is maintained.

Pps(A > B) = h

kY
j=1

��
Pc(Aj > Bj)�j +

1

2
(1� �j)

�
�j + (1� �j)

�

Pps(A < B) = h

kY
j=1

��
Pc(Aj < Bj)�j +

1

2
(1� �j)

�
�j + (1� �j)

�

Pps(A � B) = 1� Pps(A < B)� Pps(A > B) (5.7)

As the priority calculation is performed as part of the Pareto ranking process,

the consistency in the sum of the ranks is maintained. Equation 5.6 can be used in

place of (3.22) in calculating the domination probabilities. This elegant integrated

approach to priority and constraint gives full control to the designer.

6. Fitness Sharing and Restrictive

Breeding

6.1. Introduction

Due to the very nature of evolutionary algorithms, after many generations, the

imbalances in the selection process leads to genetic drift and clusters of very simi-

lar individuals forming. Sharing allows multiple stable populations to form spread

across the objective region. MOGA [8] and NSGA [9] both use sharing to help

spread individuals across the Pareto front. In NSGA and some versions of MOGA,

individuals are shared within each rank only.

In the case of uncertain objective measurements, the individual rank layers are

no longer apparent and therefore the sharing needs to be applied irrespective of

rank, therefore based on the whole population. Solutions from opposite sides of

the Pareto front, once mated, can produce fatal solutions, therefore some restrictive

breeding process can be bene�cial.

6.2. Fitness sharing

The aim of sharing is to spread out the objectives to cover the non-dominated front

evenly. Ideally we should apply the sharing to the objectives, but often the objectives

are subject to unknown scaling parameters. The most often used scaling methods

rely on measuring the Euclidean distance between two solutions. The scaling may

have dramatic e�ects on the sharing process with parameters having a large scaling

value having a disproportionate e�ect on the distance measured. Often the sharing

is applied to the chromosomes rather than the objectives as the scaling parameters

are easier to determine.

In this report, the sharing will be applied to the objective values rather than the

chromosome in order to get an even spread of solutions in the objective space. To

help remove the e�ect of scaling, a di�erent share distance is set interactively by the

designer for each objective. A share value is calculated for each pair of individuals,

i and j, and each objective. The share value is unity if the individuals are identical

and have zero uncertainty. Therefore with k objectives, there will be k share values.

These are combined into a single value by taking the geometrical mean as shown in

(6.1).

v(i; j) = k
p
v1v2 : : : vk (6.1)

For one objective, we can use (3.11) to generate the distribution of the di�erence

between a pair of individuals on one objective. A Gaussian shaped share function

can be used to quantify the share value. In other methods such as MOGA and NSGA

24

Evan J. Hughes: Multi-Objective Probabilistic Selection Evolutionary Algorithm 25

linear sharing functions have been used but in the case of uncertain measurements,

a Gaussian shape is simpler mathematically. The share function is de�ned as having

a maximum of unity, regardless of the spread, i.e.

F (Share) = e
�x

2

2�s (6.2)

Figure 6.1 shows the result of sharing measurements A = 1 and B = 2 with both

measurements having an uncertainty of �n = 0:1 with a share function with a spread

of �s = 1. The �gure shows the spread of the functions normalised with respect to

the error di�erence function.

−30 −25 −20 −15 −10 −5 0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Share function

Normalised distance

Normalised share distance

P
ro

ba
bi

lit
y

D
en

si
ty

Figure 6.1: Sharing uncertain �tness values

The share value v is de�ned as the area under the product of the two curves.

After spread normalisation, the sharing function retains a peak value of unity.

v =

Z 1

�1
e
� x

2

2�2s
1

p
2��d

e
� (x��

d
)2

2�2
d (6.3)

Where �2d = �
2
nA + �

2
nB and �d = A�B. We can normalise the Gaussian describing

the di�erence between the two objective values to be zero mean and unity variance

Evan J. Hughes: Multi-Objective Probabilistic Selection Evolutionary Algorithm 26

to give

v =
1

p
2�

Z 1

�1
e
�

(x+
�
d

�
d
)2�2

d

2�2s e
�x

2

2 (6.4)

v =
1

p
2�

Z 1

�1
e
� (x+d)2

2h2 e
�x

2

2 (6.5)

=
hdp
1 + hd

e
� d

2

2(1+h2
d
) (6.6)

Where d = �d=�d and hd = �s=�d. If the noise spread of A and B is the same,

�d =
p
2�n therefore for this common case, we can use the previous de�nition of

m = (A�B)=�n and de�ne hn = �s=�n to give

v =
hnp
2 + hn

e
� m

2

2(2+h2n) (6.7)

When the share values, v, for each objective are combined using the geometrical

mean, computational savings can be made by noting that the equation for v is an

exponential form and therefore the multiplication of the individual share values is

equivalent to summing the exponents. The n
th
root may be taken by dividing the

sum of the exponents by n.

The e�ects of sharing are applied by sharing each solution with every other

solution, except for itself, and then summing the share values to give a share count.

The share count has unity added to it to allow for the individual sharing perfectly

with itself. As in the calculation of rankings, if we sum over all individuals, including

the one of interest, we need to subtract o� the share value that occurs at m = 0 to

account for self sharing. We can therefore de�ne the share count for individual i as

si =

nX
j=1

v(i; j)�
hnp
2 + h2n

+ 1 (6.8)

We can then use the share count in (6.8) to derate the constraint values C(�i) to

give a shared constraint of Cs(�i) as shown in (6.9). The shared constraint values

may be used in (5.4) to produce the constrained and shared rank values.

Cs(�i) =
C(�i)

si
(6.9)

In low noise applications, as the sharing is applied to the whole population,

solutions which are dominated by a point of interest will also have an e�ect on

that points share count. This can be reduced by utilising the probability of non-

domination to inuence the e�ect of individual comparisons. Increments only need

to be made to the share count by points that are non-dominated. A modi�cation to

the share count calculation that accounts for non-domination is shown in (6.10).

si =

nX
j=1

P (i � j)v(i; j)�
�
1�

1

2k�1

�
hnp
2 + h2n

+ 1 (6.10)

Evan J. Hughes: Multi-Objective Probabilistic Selection Evolutionary Algorithm 27

6.3. Restrictive breeding

It has been established [8] that with certain problems, the objective surface is such

that if the genetic material from distant regions of the Pareto surface are mated,

often fatal solutions are created that perform far worse than either of the parents.

The share distance v may be used as a basis for reproduction, with preference

being given to mates with a higher v, therefore similar objective values. A similar

measure may be applied to the chromosomes to identify solutions that are close in

the genotypic domain.

6.4. Steady state evolutionary algorithms

With steady state EA's, only a few individuals are evaluated at a time and then re-

inserted into the population. With a large population, it is expensive to re-evaluate

the whole of the Pareto ranking calculations each time. Using the ranking methods

derived previously, if the probability of domination data is stored in an array, to

remove an individual, only the appropriate row and column needs to be deleted

from the array. To insert an individual, an extra row and column must be added,

comparing the new individual to every other. The sums of the rows (or columns as

appropriate) can then be calculated to yield the rank positions. This approach only

requires the �nal sum to be re-evaluated for the whole array each time.

7. Probabilistic Tournament Selection

7.1. Introduction

Evolutionary techniques such as Di�erential Evolution [16] use tournament selection

to drive the evolutionary process. An o�spring is created and compared to a parent

in the population. If the o�spring is better, it replaces the parent, otherwise it

is discarded. With multiple objectives and no noise, comparing two individuals

will give one of three results: A < B, A > B or non-domination (A � B). If

the individuals are non-dominated, they are equivalent and therefore there is no

evolutionary drive to select one over the other. It is not clear which individual

should be retained or how the non-domination should be managed. In a noisy

scenario, if the individuals are well spaced on each objective, then they will be truly

non-dominated. However, if they are `close' on at least one objective, it may be

uncertain whether the individuals are truly non-dominated, or if one may sometimes

dominate the other. This allows us to quantify how much better one close, but non-

dominated, individual is to another. Figure 7.1 shows two individuals that are close

on one objective but well separated on the other.

7.2. Tournament selection algorithm

For a single objective we only have two possible domination outcomes, therefore

P (A < B) + (A > B) = 1. We can also apply the constraint details developed in

section 5.2. To select an individual:

1. Generate probability that A dominates B, P (A > B), and probability that

B dominates A, P (A < B) using (3.17) or (3.18). Also generate constraint

parameters C(A) and C(B).

2. Generate random number, R, and accept A if R <
P (A>B)C(A)

P (A>B)C(A)+P (A<B)C(B)
, else

take B.

For multiple objectives, we also have the case of non-domination, therefore P (A >

B) + P (A < B) + P (A � B) = 1, and so P (A � B) = 1� P (A < B) � (A > B) .

To select an individual we can use:

1. Generate probability that A dominates B, P (A > B), and probability that

B dominates A, P (A < B) using (3.17) or (3.18) and (3.22). Also generate

constraint parameters C(A) and C(B).

2. Generate random number, R, and accept A if R <
P (A>B)C(A)

P (A>B)C(A)+P (A<B)C(B)
, else

take B.

28

Evan J. Hughes: Multi-Objective Probabilistic Selection Evolutionary Algorithm 29

0 5 10 15 20 25
0

5

10

15

20

25

 Objective 1

 O
bj

ec
tiv

e
2

A

B

Figure 7.1: Tournament selection in uncertain case

Evan J. Hughes: Multi-Objective Probabilistic Selection Evolutionary Algorithm 30

3. Generate a second random number R2 and classify solutions as non-dominated

if R2 < (1 � P (A > B) � P (A < B)). If solutions are non-dominated, add

them both to a `history reservoir'. At the end of the generation, if the history

reservoir is too full, rank all the solutions using (4.4) and select the best to give

the required reservoir size. The constraints for the non-dominated solutions

are then handled in the ranking process by (4.4).

Care needs to be taken to prevent the denominator of the selection equations

in step 2 of each algorithm from becoming zero. If the denominator is zero, the

probability of selecting A or B should be 0:5.

This approach allows decisions to be made with some account for noise or un-

certainty. The algorithm suggested for multiple objectives is only one possible way

of maintaining the non-dominated solutions. In this algorithm, the history reservoir

is not used in the selection of individuals for the population and is only used to

maintain a record of the non-dominated surface found. Elements such as restrictive

breeding or re-combination with members of the history population may help with

certain problems and the algorithms can be adjusted accordingly.

8. Experiment Results

8.1. Introduction

Noise and uncertainty can be split into two broad categories relating to noise that

occurs within the process (Type A) and measurement noise (Type B):

1. Type A Noise: Noise is applied to the chromosome before the objective

function is calculated, i.e. O = F (�+N).

2. Type B Noise: Noise is applied to the objective function after calculation,

i.e. O = F (�) +N .

Both types of noise are of interest and often the observed noise will be a combination

of type A and B. Experiments have been devised to assess each of the main sections

of the work developed in this paper in the presence of noise: ranking, tournament

selection, sharing, and constraints.

8.2. Test Objectives

A range of test objectives were developed for the trials. Table 8.1 lists the objective

functions used, with either type A or type B noise as appropriate.

8.3. Results

8.3.1. Rank Positions

Trials have been performed to assess how the noise e�ects the assigned rank positions

within a population of chromosomes. For the following results, 100 two-parameter

chromosomes were generated uniformly distributed in the range [0,1] for assessing

the rank performance.

Scaled versions of the objective functions MOP1, MOP2, and MOP3, de�ned by

Van Veldhuizen and Lamont [10] and given in (8.1, 8.2, & 8.3), were used to provide

input data to the ranking processes, with either type A or B noise applied as appro-

priate. The data were ranked and the assigned rank postion for each chromosome

recorded. The process was repeated 1000 times with di�erent values chosen for the

applied noise each time. For each chromosome, the standard deviation of the rank

position was calculated. The mean standard deviation of the 100 chromosome rank

positions was then generated and plotted.

The ranking algorithms from NSGA and MOGA were generated for compar-

ison with the new multi-objective probabilistic selection evolutionary algorithm

(MOPSEA) ranking process developed in this paper. With a di�erent set of 100

31

Evan J. Hughes: Multi-Objective Probabilistic Selection Evolutionary Algorithm 32

Table 8.1: Objective Functions

Objective De�nition Input

MOP1 [10]
O1 =

x
2 + y

2

5000

O2 =
(x� 2)2 + (y � 2)2

5408
(8.1)

x = 100�(1)� 50

y = 100�(2)� 50

MOP2 [10]
O1 = 1� exp

�

nX
i=1

�
xi �

1
p
n

�2
!

O2 = 1� exp

�

nX
i=1

�
xi +

1
p
n

�2
!

(8.2)

xi = 4�(i)� 2

MOP3 [10]
O1 =

(x2+y2)
2

+ sin(x2 + y
2)

8:249

O2 =

(3x�2y+4)2
8

+
(x�y+1)2

27

46:940

O3 =

1
x2+y2+1

� 1:1e�x
2�y2 + 0:1

0:296
(8.3)

x = 6�(1)� 3

y = 6�(2)� 3

CON1 O1 = 1:0

O2 = 1:0

0:01 � (x� 0:5)2 + (y � 0:5)2 (8.4)

x = �(1)

y = �(2)

CON2 [10] O1 = x

O2 = y

0 � �(x)2 �(y)2 + 1 + 0:1 cos

�
16 arctan

�
x

y

��
0:5 � (x� 0:5)2 + (y � 0:5)2 (8.5)

x = � �(1)

y = � �(2)

EJH1

a = 3� 4

vuut 1

n

nX
i=1

x2i (8.6)

b = 3� 4

vuut 1

n

nX
i=1

(1� xi)2 (8.7)

O1 = 1� 4

s����sin(a)a

����
O2 = 1� 4

s����sin(b)b

���� (8.8)

xi = �(i)

Evan J. Hughes: Multi-Objective Probabilistic Selection Evolutionary Algorithm 33

initial chromosomes, a slightly di�erent set of graphs will result. The di�erences

have been found to be small however.

For example, in (8.3), �(1) and �(2) are the two parameters of the input chro-

mosome in the range [0,1]. The parameters x and y are scaled to lie within [-3,3]

as de�ned by Van Veldhuizen and Lamont. The three objective functions are then

calculated and scaled to give each of the objectives in the range [0,1]. Noise was

then applied either to the input chromosome � for type A noise, or to the output

objectives O for type B noise. The applied noise was Gaussian with a standard

deviation of �.

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

2

4

6

8

10

12

14

16

18

Noise, σ

M
ea

n
st

an
da

rd
 d

ev
ia

tio
n

of
 r

an
k

va
lu

es

MOPSEA, σ
n
=0.3

MOGA

NSGA

MOPSEA, σ
n
=0.0

Figure 8.1: Applied noise with respect to mean standard deviation of rank position

for MOP1, type A noise. Performance of MOGA and NSGA ranking compared to

MOPSEA with �n = 0 & �n = 0:3

From �gures 8.1 to 8.8, it is clear that both MOGA and MOPSEA outperform

the NSGA ranking process in the presence of noise for this objective function. As

the uncertainty parameter �n is increased, it is clear that MOPSEA can out perform

both alternative algorithms. The speci�c performance of each algorithm is depen-

dent on the objective function though, and each set of 100 points to be ranked.

Evan J. Hughes: Multi-Objective Probabilistic Selection Evolutionary Algorithm 34

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

1

2

3

4

5

6

7

8

9

10

11

Noise, σ

M
ea

n
st

an
da

rd
 d

ev
ia

tio
n

of
 r

an
k

va
lu

es

MOPSEA, σ
n
=0.3

MOGA

NSGA

MOPSEA, σ
n
=0.0

Figure 8.2: Applied noise with respect to mean standard deviation of rank position

for MOP1, type B noise. Performance of MOGA and NSGA ranking compared to

MOPSEA with �n = 0 & �n = 0:3

Evan J. Hughes: Multi-Objective Probabilistic Selection Evolutionary Algorithm 35

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

2

4

6

8

10

12

14

16

Noise, σ

M
ea

n
st

an
da

rd
 d

ev
ia

tio
n

of
 r

an
k

va
lu

es

MOPSEA, σ
n
=0.3

MOGA

NSGA

MOPSEA, σ
n
=0.0

Figure 8.3: Applied noise with respect to mean standard deviation of rank position

for MOP2, type A noise. Performance of MOGA and NSGA ranking compared to

MOPSEA with �n = 0 & �n = 0:3

Evan J. Hughes: Multi-Objective Probabilistic Selection Evolutionary Algorithm 36

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

2

4

6

8

10

12

14

Noise, σ

M
ea

n
st

an
da

rd
 d

ev
ia

tio
n

of
 r

an
k

va
lu

es

MOPSEA, σ
n
=0.3

MOGA

NSGA

MOPSEA, σ
n
=0.0

Figure 8.4: Applied noise with respect to mean standard deviation of rank position

for MOP2, type B noise. Performance of MOGA and NSGA ranking compared to

MOPSEA with �n = 0 & �n = 0:3

Evan J. Hughes: Multi-Objective Probabilistic Selection Evolutionary Algorithm 37

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

2

4

6

8

10

12

14

16

18

20

Noise, σ

M
ea

n
st

an
da

rd
 d

ev
ia

tio
n

of
 r

an
k

va
lu

es

MOPSEA, σ
n
=0

MOPSEA, σ
n
=0.3

MOGA

NSGA

Figure 8.5: Applied noise with respect to mean standard deviation of rank position

for MOP3, type A noise. Performance of MOGA and NSGA ranking compared to

MOPSEA with �n = 0 & �n = 0:3

Evan J. Hughes: Multi-Objective Probabilistic Selection Evolutionary Algorithm 38

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

2

4

6

8

10

12

14

16

18

20

22

Noise, σ

M
ea

n
st

an
da

rd
 d

ev
ia

tio
n

of
 r

an
k

va
lu

es

MOPSEA, σ
n
=0

MOPSEA, σ
n
=0.3

MOGA

NSGA

Figure 8.6: Applied noise with respect to mean standard deviation of rank position

for MOP3, type B noise. Performance of MOGA and NSGA ranking compared to

MOPSEA with �n = 0 & �n = 0:3

Evan J. Hughes: Multi-Objective Probabilistic Selection Evolutionary Algorithm 39

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

2

4

6

8

10

12

14

16

18

20

22

Noise, σ

M
ea

n
st

an
da

rd
 d

ev
ia

tio
n

of
 r

an
k

va
lu

es

MOPSEA, σ
n
=0.3

MOGA

NSGA

MOPSEA, σ
n
=0.0

Figure 8.7: Applied noise with respect to mean standard deviation of rank position

for EJH1, type A noise. Performance of MOGA and NSGA ranking compared to

MOPSEA with �n = 0 & �n = 0:3

Evan J. Hughes: Multi-Objective Probabilistic Selection Evolutionary Algorithm 40

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

2

4

6

8

10

12

14

16

18

20

22

Noise, σ

M
ea

n
st

an
da

rd
 d

ev
ia

tio
n

of
 r

an
k

va
lu

es

MOPSEA, σ
n
=0.3

MOGA

NSGA

MOPSEA, σ
n
=0.0

Figure 8.8: Applied noise with respect to mean standard deviation of rank position

for EJH1, type B noise. Performance of MOGA and NSGA ranking compared to

MOPSEA with �n = 0 & �n = 0:3

Evan J. Hughes: Multi-Objective Probabilistic Selection Evolutionary Algorithm 41

8.3.2. Limits, Priority, and Constraints

The following graphs demonstrate the e�ectiveness of the ranking equations under

the conditions of:

1. Limits on objectives.

2. Objective priority.

3. Parameter constraints.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Objective, f
1

O
bj

ec
tiv

e,
 f 2

Figure 8.9: MOP2 objective space. No noise, No limits, No prefe rence

Both types of noise are of interest and often the observed noise will be a com-

bination of type A and B. A range of test objectives were developed for the trials.

Table 8.1 lists the objective functions used, with either type A or type B noise as

appropriate.

The evolutionary algorithm used was a simple structure with selection, crossover,

and mutation. A population of 100 individuals was used with chromosomes consist-

ing of two real-valued genes with values lying in the range [0,1]. Stochastic universal

sampling was used to select individuals for breeding and then intermediate crossover

at a rate of 70% and uniformly distributed mutation at a rate of 10% were applied

to generate new individuals. The best 70% were inserted back into the population.

The plots shown were all taken after 50 generations.

Evan J. Hughes: Multi-Objective Probabilistic Selection Evolutionary Algorithm 42

8.3.3. Objective Limits

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Objective, f
1

O
bj

ec
tiv

e,
 f 2

Figure 8.10: MOP2 objective space. Noise � = 0:1, Type A, �n = 0:1, Limits [0.7

0.9], No preference

Figure 8.9 shows the objective MOP2 without noise, constraints, preferences,

or sharing applied. Figure 8.12 shows the e�ect of applying the limits [0.7 0.9] to

objectives f1 and f2 respectively with �n = 0 used to give a rapid transition from

constrained to unconstrained.

Figure 8.10 shows how the ranking process copes with signi�cant type A noise.

The chromosome values have been perturbed, leading to a smaller region in the

chromosome space being responsible for the spread of objective values seen. Despite

the noise, the search is still focussed in the required region.

Figure 8.11 shows the e�ect of type B noise. Here the objective value itself

has been perturbed. Again the chromosomes occupy a smaller region, with the

perturbed objective values still being focussed. By focusing the objectives, the

spread of chromosomes is also reduced. With noisy objectives, if the objectives are

constrained too much, there may be no single chromosome that will always have

a perturbed solution within the constrained region. This can cause problems with

genetic drift and loss of diversity within the population.

Evan J. Hughes: Multi-Objective Probabilistic Selection Evolutionary Algorithm 43

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Objective, f
1

O
bj

ec
tiv

e,
 f 2

Figure 8.11: MOP2 objective space. Noise � = 0:1, Type B, �n = 0:1, Limits [0.7

0.9], No preference

Evan J. Hughes: Multi-Objective Probabilistic Selection Evolutionary Algorithm 44

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Objective, f
1

O
bj

ec
tiv

e,
 f 2

Figure 8.12: MOP2 objective space. No noise, Limits [0.7 0.9], No preference

Evan J. Hughes: Multi-Objective Probabilistic Selection Evolutionary Algorithm 45

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Objective, f
1

O
bj

ec
tiv

e,
 f 2

Figure 8.13: MOP2 objective space. No noise, No limits, Preference [0.9 1.0], Sharing

0.005 on objectives

Evan J. Hughes: Multi-Objective Probabilistic Selection Evolutionary Algorithm 46

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Objective, f
1

O
bj

ec
tiv

e,
 f 2

Figure 8.14: MOP2 objective space. No noise, No limits, Preference [0.5 1.0], Sharing

0.005 on objectives

Evan J. Hughes: Multi-Objective Probabilistic Selection Evolutionary Algorithm 47

8.4. Objective Preference

Often with multiple objectives, not all the objectives are of equal interest to the

designer. For example, in a cost / performance tradeo�, if very high volumes are to

be manufactured, the cost is often paramount.

Figure 8.13 shows the function MOP2 without noise or objective limits but with

the priorities [0.9 1.0] speci�ed for objectives f1 and f2 respectively. As the objectives

are minimised, preferred solutions are better on f2 and therefore will be worse on

f1 and so will tend to lie towards the bottom right of the plot. A small amount of

sharing has been applied to reduce genetic drift. It is clear that f2 is dominating

the resul ts.

Figure 8.14 shows the e�ect of a preference vector [0.5 1.0]. Here f1 is penalised

further. If the vector [0 1.0] was used, only f2 would have any inuence on the

ranking process.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Gene, χ
1

G
en

e,
 χ

2

Figure 8.15: CONS1 chromosome space

8.5. Chromosome Constraints

Figure 8.15 shows the chromosome locations for the problem CONS1, along with

the boundary of the constrained region. Both objective values always equal unity

Evan J. Hughes: Multi-Objective Probabilistic Selection Evolutionary Algorithm 48

and therefore only the constraints have any e�ect. It is clear that the algorithm

quickly converges to the constrained region. In problems of this type, it would be

advisable to use sharing on the chromosome positions to try to reduce the e�ects of

genetic drift.

Figure 8.16 shows the non-dominated boundary of the CONS2 function. The

discontinuous objective surface can be seen clearly. The handling of the constraints

as part of the ranking process treats solutions that do not satisfy constraints as

non-dominated, and so share rank positions. This reduces the rank value and ef-

fective selective pressure of the individuals, allowing the solutions that satisfy the

constraints to dominate.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Objective, f
1

O
bj

ec
tiv

e,
 f 2

Figure 8.16: CONS2 Objective space

9. Conclusions

The results have shown that the modi�ed ranking process can reduce the distur-

bances in the rank positions caused by noisy objectives. Unlike conventional rank-

ing processes, the rank values and therefore the corresponding selection probabilities

take some account of the noise and uncertainty in the system. The theory developed

in this paper forms an important �rst step towards addressing directly noise and

uncertainty in multi-objective problems. The simplicity of the ranking and selection

equations may also provide a route to further theoretical research into the operation

and performance of evolutionary algorithms.

The integrated ranking, constraint, and priority equations that have been devel-

oped form a �rst step towards evolutionary algorithms that can address the problems

of noisy objective functions directly. By integrating the constraints and priorities

into the ranking, the rank values maintain their consistency and allow selection

probabilities to be calculated easily.

The new ranking, constraint, and preference equations are simple functions, un-

like many existing ranking processes that are based on logical decisions and are

di�cult to manipulate mathematically. This may help in the analysis of algorithm

operation in the future. By reducing the e�ects of the noise on the rank positions,

the evolutionary process is more stable and with the inclusion of constraints and

preferences, allows the designer full interactive control over the evolutionary pro-

cess.

9.1. Acknowlegements

The author would like to acknowledge the use of the Department of Aerospace,

Power, and Sensors DEC Alpha Beowulf cluster for the production of the results.

49

Bibliography

[1] T. W. Then and Edwin K. Chong. Genetic algorithms in noisy environment. In

IEEE International Symposium on Intelligent Control, pages 225{230, Colum-

bus, Ohio, 16-18 August 1994.

[2] Adrian Thompson. Evolutionary techniques for fault tolerance. In Control

'96, UKACC International Conference on, volume 1, pages 693{698. IEE, 2-5

September 1996. Conf. Publ. No. 427.

[3] T. B�ack and U. Hammel. Evolution strategies applied to perturbed objective

functions. In IEEE World Congress on Computational Intelligence, volume 1,

pages 40{45. IEEE, 1994.

[4] Shigeyoshi Tsutsui and Ashish Ghosh. Genetic algorithms with a robust search-

ing scheme. IEEE Transactions on Evolutionary Computation, 1(3):201{8,

September 1997.

[5] Kumar Chellapilla and David B. Fogel. Anaconda defeats hoyle 6-0: A case

study competing an evolved checkers program against commercially available

software. In Congress on Evolution Computation - CEC2000, volume 1, pages

857{863, San Diego, CA, 16-19 July 2000. IEEE.

[6] Carlos A. Coello Coello. List of references on evolutionary multiobjective op-

timization. http://www.lania.mx/�ccoello/EMOO/EMOObib.html. Last ac-

cessed 3 July 2000.

[7] Anna L. Blumel, Evan J. Hughes, and Brian A. White. Fuzzy autopilot design

using a multiobjective evolutionary algorithm. In Congress on Evolution Com-

putation - CEC2000, volume 1, pages 54{61, San Diego, CA, 16-19 July 2000.

IEEE.

[8] Carlos M. Fonseca and Peter J. Flemming. Multiobjective genetic algorithms

made easy: Selection, sharing and mating restriction. In GALESIA 95, pages

45{52, 12-14 September 1995. IEE Conf. Pub. No. 414.

[9] N. Srinivas and Kalyanmoy Deb. Multiobjective optimization using nondomi-

nated sorting in genetic algorithms. Evolutionary Computation, 2(3):221{248,

1995.

[10] David A. Van Veldhuizen and Gary B. Lamont. Multiobjective evolutionary

algorithm research: A history and analysis. Technical Report TR-98-03, Air

Force Institute of Technology, 1 Dec 1998.

50

Evan J. Hughes: Multi-Objective Probabilistic Selection Evolutionary Algorithm 51

[11] William H. Press, Brian P. Flannery, Saul A. Teukolsky, and William T. Vetter-

ling. NUMERICAL RECIPES in C. The Art Of Scienti�c Computing. Cam-

bridge University Press, second edition, 1993.

[12] J. E. Baker. Adaptive selection methods for genetic algorithms. In Proc. 1st

Int. conf. on Genetic Algorithms, pages 101{111, 1985.

[13] Dragan Cvetkovi�c and Ian C. Parmee. Genetic algorithm-based multi-objective

optimisation and conceptual engineering design. In Congress on Evolutionary

Computation - CEC99, volume 1, pages 29{36, Washington D.C., USA, July

1999. IEEE.

[14] Kalyanmoy Deb. An e�cient constraint handling method for genetic algo-

rithms. Computer Methods in Applied Mechanics and Engineering, 186(2-

4):311{338, June 2000.

[15] Evan J. Hughes. Multi-objective probabilistic selection evolutionary algorithm.

Technical Report DAPS/EJH/56/2000, Dept. Aerospace, Power, & Sensors,

Cran�eld University, RMCS, Shrivenham, UK, SN6 8LA, September 2000.

[16] Rainer Storn and Kenneth Price. Di�erential evolution - a simple and e�cient

adaptive scheme for global optimization over continuous spaces. Technical Re-

port TR-95-012, ICSI, Berkeley, March 1995. ftp.icsi.berkeley.edu.

A. Matlab Mex-File

/*

noisy non-dominated ranking

Matlab Mex-file. Compiled on Sun Ultra 10, Matlab 5.3

[prob(select), rank, sharecnt, q] = NoisyNondom(obj, sigmaobj,

sigmashare, objlimits, constraints,

priority, selective_pressure)

input:

obj - p x k : objective values to minimise

sigmaobj - 1 x k : standard dev. of objective noise

sigmashare - 1 x k : share distance for objectives

objlimits - 1 x k : objective constraint vector

constraints - p x 1 : constraint vector - noise processing done externally

priority - 1 x k : [1 1 .. 1] gives all same pri.

sel_press - 1 x k : [1 1 .. 1] for maximum selective pressure

p is population size, k is number of objectives.

output:

prob(select) will sum to unity, best has largest probability.

rank is 'rank fitness', smallest the best, minimising all objectives

for maximisation, use negative std dev in sigmaobj.

sharecnt is the share count for each individual.

q is the final constraint value, after objective constraints,

parameter constraints and sharing.

time is O(n^2) for tanh operations

E.J.Hughes 28 July 2000

*/

52

Evan J. Hughes: Multi-Objective Probabilistic Selection Evolutionary Algorithm 53

#include "mex.h"

#include <math.h>

#include <stdlib.h>

#ifndef PI

#define PI 3.141592653589793

#endif

#define SQ2 0.7071067811865475

#define obj(i,j) obji[(i)+(popsize*(j))]

#define t(i,j) tmp[(i)+(popsize*(j))]

void NoisyNondom(double *err, double *nerr, double *qerr, double *errx,

double *obji, double *st, double *shr, double *q,

double *c, double *pr, double *sp, int popsize, int nobj)

{

double *tmp, *tmpn, *tmpq, *pq, *stmp, *prtmp, *prtmpb, *sptmp, *sptmpb;

double tt,st1,st2,tn,sumq,numdiv,tx, shfact, prtot;

int i,j,k;

tmp = (double *)mxCalloc(popsize*nobj,sizeof(double));

tmpn = (double *)mxCalloc(popsize,sizeof(double));

pq = (double *)mxCalloc(popsize,sizeof(double));

tmpq = (double *)mxCalloc(nobj,sizeof(double));

stmp = (double *)mxCalloc(nobj,sizeof(double));

prtmp = (double *)mxCalloc(nobj,sizeof(double));

prtmpb = (double *)mxCalloc(nobj,sizeof(double));

sptmp = (double *)mxCalloc(nobj,sizeof(double));

sptmpb = (double *)mxCalloc(nobj,sizeof(double));

/* precalc sharing factors */

shfact=0;

for(k=0;k<nobj;++k)

{

st1=shr[k]/(st[k]+1.0e-10)/sqrt(2.0);

shfact+=log(st1)-log(st1*st1+1)/2.0;/* log[s/sqrt(s^2+1)] */

stmp[k]=1.0/4.0/(st1*st1+1); /* Gaussian sharing */

}

/* precalc effects of sigma

- beware sigma == 0, not trapped properly*/

/* process fitness values */

Evan J. Hughes: Multi-Objective Probabilistic Selection Evolutionary Algorithm 54

for (i=0;i<popsize;++i)

for (k=0;k<nobj;++k)

t(i,k)=obj(i,k)/(st[k]+1.0e-10);

if(q)

/* process restriction point values */

for (k=0;k<nobj;++k)

tmpq[k]=q[k]/(st[k]+1.0e-10)/1.6;

/* zero elements */

for (i=0;i<popsize;++i)

tmpn[i]=pq[i]=err[i]=0.0;

if(q)

/* calc probability of dominating the restriction point Q */

for (i=0;i<popsize;++i)

{

st1=1.0;

for (k=0;k<nobj;++k)

st1*=(1.0+tanh(tmpq[k]-t(i,k)/1.6))/2.0; /* probability */

pq[i]=st1;

}

else

for (i=0;i<popsize;++i)

pq[i]=1.0;

if(c)

for (i=0;i<popsize;++i) /* apply constraints */

pq[i]*=c[i];

if(pr)

for (i=0;i<nobj;++i) /* set priority */

prtmp[i]=pr[i];

else

for (i=0;i<nobj;++i) /* set default priority */

prtmp[i]=1.0;

prtot=1.0;

for (i=0;i<nobj;++i) /* pre-calc for priority */

{

prtmpb[i]=1.0-prtmp[i];

prtot*=prtmpb[i];

}

prtot = 1.0-prtot;

Evan J. Hughes: Multi-Objective Probabilistic Selection Evolutionary Algorithm 55

if(sp)

for (i=0;i<nobj;++i) /* set selective pressure */

sptmp[i]=sp[i];

else

for (i=0;i<nobj;++i) /* set default SP */

sptmp[i]=1.0;

for (i=0;i<nobj;++i) /* pre-calc for SP */

sptmpb[i]=(1.0-sptmp[i])/2.0;

/* Calculate share count */

for (i=0;i<(popsize-1);++i)

for (j=i+1;j<popsize;++j)

{

tn=shfact;

for (k=0;k<nobj;++k)

{

tx=t(i,k)-t(j,k); /* calculated k */

tn-=tx*tx*stmp[k]; /* sharing */

}

tn=exp(tn/(double)nobj);

tmpn[i]+=tn; /* share info */

tmpn[j]+=tn;

}

for (i=0;i<popsize;++i)

pq[i]/=(tmpn[i]+1); /* add 1 to account for self, and apply sharing */

/* calc probability table */

/* sum probability so if on Pareto, will calc how many we dominate */

/* do not count self comparison */

for (i=0;i<(popsize-1);++i)

for (j=i+1;j<popsize;++j)

{

st1=prtot; /* for priority */

st2=prtot; /* for priority */

for (k=0;k<nobj;++k)

{

tt=(1.0+tanh((t(i,k)-t(j,k))/1.6))/2.0; /* probability A_i>B_i*/

/* st1*=tt;

st2*=1.0-tt; */

/* do priority & SP */

st1*=(tt*sptmp[k]+sptmpb[k])*prtmp[k]+prtmpb[k];

st2*=((1.0-tt)*sptmp[k]+sptmpb[k])*prtmp[k]+prtmpb[k];

Evan J. Hughes: Multi-Objective Probabilistic Selection Evolutionary Algorithm 56

}

st1=st1*pq[i]*pq[j]+pq[j]*(1-pq[i]); /* apply constraints */

st2=st2*pq[i]*pq[j]+(1-pq[j])*pq[i];

tx=(1-st1-st2)/2.0; /* non-domination */

err[i]+=st1+tx;

err[j]+=st2+tx;

}

for (i=0;i<popsize;++i)

++tmpn[i]; /* add 1 to account for self */

if(errx) /* save raw info */

for (i=0;i<popsize;++i)

errx[i]=err[i];

if(nerr) /* save raw info */

for (i=0;i<popsize;++i)

nerr[i]=tmpn[i];

if(qerr) /* save raw info */

for (i=0;i<popsize;++i)

qerr[i]=pq[i];

/* correct to make probabilities that sum to unity */

tt=(double)(popsize-1);

sumq=2.0/(double)(popsize*(popsize-1));

for (i=0;i<popsize;++i)

err[i]=(tt-err[i])*sumq; /*normalise into prob of selection*/

mxFree(sptmpb);

mxFree(sptmp);

mxFree(prtmpb);

mxFree(prtmp);

mxFree(stmp);

mxFree(tmpq);

mxFree(pq);

mxFree(tmpn);

mxFree(tmp);

}

/* gateway function */

Evan J. Hughes: Multi-Objective Probabilistic Selection Evolutionary Algorithm 57

void mexFunction(int nlhs,mxArray *plhs[], int nrhs, const mxArray *prhs[])

{

double *errx, *nerr, *qerr, *c, *q, *pr, *sp;

double freq,ap;

int m,n,popsize,nobj;

if (nrhs > 7 || nrhs <3) {

mexErrMsgTxt("NoisyNondom requires three to seven input arguments.");

}

if (nlhs >4) {

mexErrMsgTxt("NoisyNondom requires one to four output arguments.");

}

m = mxGetM(prhs[0]);

n = mxGetN(prhs[0]);

if ((m<2)||(n <1))

mexErrMsgTxt("NoisyNondom requires that obj be a pop x nobj matrix");

popsize = m;

nobj=n;

m = mxGetM(prhs[1]);

n = mxGetN(prhs[1]);

if ((m!=1)||(n !=nobj))

mexErrMsgTxt("NoisyNondom requires that sigma be 1 x nobj");

m = mxGetM(prhs[2]);

n = mxGetN(prhs[2]);

if ((m!=1)||(n !=nobj))

mexErrMsgTxt("NoisyNondom requires that sigma share be 1 x nobj");

if(nrhs>=4)

{

m = mxGetM(prhs[3]);

n = mxGetN(prhs[3]);

if ((m!=1)||(n !=nobj))

mexErrMsgTxt("NoisyNondom requires that Q be 1 x nobj");

q=mxGetPr(prhs[3]);

}

else

Evan J. Hughes: Multi-Objective Probabilistic Selection Evolutionary Algorithm 58

q=NULL;

if(nrhs>=5)

{

m = mxGetM(prhs[4]);

n = mxGetN(prhs[4]);

if ((m!=popsize)||(n !=1))

mexErrMsgTxt("NoisyNondom requires that C be npop x 1");

c=mxGetPr(prhs[4]);

}

else

c=NULL;

if(nrhs>=6)

{

m = mxGetM(prhs[5]);

n = mxGetN(prhs[5]);

if ((m!=1)||(n !=nobj))

mexErrMsgTxt("NoisyNondom requires that priority be 1 x nobj");

pr=mxGetPr(prhs[5]);

}

else

pr=NULL;

if(nrhs>=7)

{

m = mxGetM(prhs[6]);

n = mxGetN(prhs[6]);

if ((m!=1)||(n !=nobj))

mexErrMsgTxt("NoisyNondom requires that SP be 1 x nobj");

sp=mxGetPr(prhs[6]);

}

else

sp=NULL;

plhs[0] = mxCreateDoubleMatrix(popsize,1,mxREAL);

errx=NULL;

nerr=NULL;

qerr=NULL;

if(nlhs>=2)

Evan J. Hughes: Multi-Objective Probabilistic Selection Evolutionary Algorithm 59

{

plhs[1] = mxCreateDoubleMatrix(popsize,1,mxREAL);

errx=mxGetPr(plhs[1]);

}

if(nlhs>=3)

{

plhs[2] = mxCreateDoubleMatrix(popsize,1,mxREAL);

nerr=mxGetPr(plhs[2]);

}

if(nlhs==4)

{

plhs[3] = mxCreateDoubleMatrix(popsize,1,mxREAL);

qerr=mxGetPr(plhs[3]);

}

NoisyNondom(mxGetPr(plhs[0]), nerr, qerr, errx, mxGetPr(prhs[0]),

mxGetPr(prhs[1]), mxGetPr(prhs[2]), q, c, pr, sp, popsize, nobj);

} /* mexFunction */

