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Abstract

Real engineering optimisation problems are often subject to parameters whose values
are uncertain or have noisy objective functions. Techniques such as adding small
amounts of noise in order to identify robust solutions are also used. The process
used in evolutionary algorithms to decide which solutions are better than others
do not account for these uncertainties and rely on the inherent robustness of the
evolutionary approach in order to find solutions.

In this paper, the processes needed to provide probabilities of selection are re-
formulated to begin to account for the uncertainties and noise present in the system
being optimised. Single and multi-objective systems are considered along with pa-
rameter constraints and objective limits for both rank-based and tournament selec-
tion.

The formulations are straightforward to programme and reasonably efficient to
process. The techniques are ideally suited to interactive,constrained, uncertain,
noisy, multi-objective design and can be effective in reducing the disturbances to
the evolutionary algorithm caused by noise in the objective function.
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1. INTRODUCTION

The use of evolutionary algorithms (EA’s) in engineering is now becoming acceptable
and widespread. As the use of the algorithms matures and migrates from academia
into industry, often the scale and characteristics of the problems being solved are
changing. The objective function is often no longer a well defined analytical function
but a complex, nonlinear and often uncertain model of a plant or system. Many
model coefficients are derived by experiment and are therefore subject to experimen-
tal errors and the coefficients are often implemented in the models by approximating
their behaviour with a polynomial function that best fits the measured data. In sys-
tems such as surfaces subject to aerodynamic forces, the aerodynamic coefficients
are often measured in a wind tunnel, giving approximate data for only a limited
operating envelope. In real systems, the true coefficients will not be the same as
measured and are often time dependent or correlated with platform motion.

These errors in the modelling are unavoidable and inevitably propagate into the
outputs of the objective functions, the results of which are used to classify the quality
of the individual solutions to the problem. All optimisation algorithms attempt to
find the problem solution that gives the most favourable output from the objective
functions. With complex systems, evolutionary algorithms are a useful tool in that
they can tolerate highly nonlinear and noisy system models and objective functions
and still provide reasonable suggested solutions [1].

This robustness to errors has also been exploited by artificially adding noise
to the objectives in an attempt to identify solutions that are robust to noise and
uncertainty in the real system [2, 3, 4]. Noise is also often present when trying to
optimise hardware systems such as in robotics. Noise or uncertainty in the objectives
tend to slow evolution and reduce solution quality.

Attempts to reduce noise by repeating objective calculations and then averaging
or combining results have been tried [5], but often with many realistic problems, the
time to re-evaluate is prohibitive and often the number of samples used to average
must be very small and therefore subject to considerable error. Most evolutionary
algorithms to date have accepted these problems as the robustness of the algorithms
allows small errors to be tolerated.

Therefore we may form two categories of problem:

1. Noisy: Two successive evaluations of the same chromosome information re-
turn two different sets of objectives.

2. Uncertain: When comparing two different chromosomes, errors in the mod-
elling or noise in the data set under investigation may cause the objective
values returned to classify the wrong solution as being superior.

This paper takes a fresh look at the problems of uncertain and noisy systems,
both with single and multiple objectives, in order to provide a selection process
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that is aware of the uncertainties and noise. The techniques discussed form a small
step towards creating algorithms that can address the problems associated with the
different categories of noisy or uncertain problems.



2. PROBLEM DEFINITION

As most engineering problems have multiple objectives that must be satisfied, the
work concentrates on multi-objective evolutionary algorithms (MOEA). Carlos Coello
Coello maintains an excellent database of publications relating to multi-objective op-
timisation [6]. Many of the publications tackling engineering problems (e.g. [7]) use
techniques such as MOGA [8] and NSGA [9]. These methods use ranking techniques
to address the problems of non-domination, then use sharing to spread the solutions
across the objective surface. The use of ranking is widespread in EA’s to prevent
good solutions taking over the population in the early generations of the algorithm.
Van Veldhuizen and Lamont [10] has studied the benefits / disadvantages of a num-
ber of techniques, including MOGA and NSGA, and begun to define metrics for
assessing MOEA performance. These have been developed in the context of noise-
free and certain problems and similar work is needed to address noisy and uncertain
problems but is beyond the scope of this paper.

In all evolutionary algorithms, the key medium to evolution is being able to take
two potential solutions to a problem, test them in the problem domain against some
performance metrics, then given some values relating to the performance of each,
decide which solution is better than the other. With noisy or uncertain problems, we
find that given the results of the performance metrics, unless they are very different,
we cannot say for certain which solution is better. Thus we must now refer to the
probability that one solution is better than the other. This paper aims to review
the processes needed in order to assign a probability of selection for each solution,
given that we can no longer make a crisp decision about solution superiority.

The process of ranking both single and multiple objectives, parameter con-
straints, objective limits, and fitness sharing are re-formulated to account for the
uncertainty in the optimisation problems. The paper also takes a brief look at pos-
sible ways of augmenting tournament selection to account for noise and uncertainty
with constraints, limits, and multiple objectives.



3. COMPARING TWO UNCERTAIN FITNESS
MEASUREMENTS

3.1. Introduction

In a noise free situation, if we have two fitness values, A and B, and are trying
to minimise, the lower value is always superior. However, if we know the fitness
values are subject to noise, even if the measured fitness A is less than the measured
fitness B, the mean of the distribution from which A is drawn may be greater than
the mean of the distribution from which B is drawn. Therefore we would make the
wrong decision. In the presence of noise, if we choose the simple case of take the
best measured objective, we need to quantify the probability that we have made the
wrong decision.

3.2. Analysis

3.2.1. Distributions with known mean

Figure 3.1 shows two known distributions with means p4 and pp respectively, and
a point of interest, x, generated at random from distribution A. If we generate a
sample y from distribution B and it lies in the shaded area of B to the left of x,
when we compare x and y, y will be less than = and therefore superior. We will
therefore make the wrong decision. The probability of making a wrong decision
given sample z may be found by integrating the shaded area and multiplying by the
probability of x occurring. Therefore, for all possible values of x, the probability of
the comparison of two samples giving the wrong decision is shown in (3.1), where
pdf,(z) is the probability density function of fitness value A and cdfp(X <= z) is
the cumulative distribution function for fitness value B.
o

P(wrong decision) = / pdf,(z) - cdfp(X <= z)dx (3.1)

—0o0
In many real engineering problems, measurement noise is often Gaussian. The
following derivations will be for Gaussian noise, although the analysis can be per-

formed for any two distributions (e.g. a Gaussian and a Rayleigh). Equation 3.2
shows (3.1) expressed for two Gaussian distributions.

o0 1 _@-pe)? [T 1 _omp?
P(wrong) = e 23 / e b dy|dx 3.2
)= [ {75 o= v 32
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Figure 3.1: Probability that samples from distributions may be classified wrongly
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Equation 3.3 has the parameter axis shifted to make distribution B centred
around zero and then B is normalised, modifying distribution A accordingly. Equa-
tion 3.4 has been simplified with the replacements m = M and s = g,/0.

(z— Mb_ﬂgb

o0 2
P(wrong) = / af/b%e_ 203 / Jley dv  (3.3)

00 1 )2 x
P(wrong) = / (S > o / \/_ dy) dx (3.4)

3.2.2. Distributions with unknown mean

If we have a pair of samples from distributions with known characteristics and
spread, but unknown means, we need to be able to calculate the probability that
although sample A is less than sample B say, the mean of distribution B is less than
the mean of distribution A. This will give us a probability of making the wrong
decision. Figure 3.2 shows a scenario with two Gaussian distributions.
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Figure 3.2: Choice between two noisy values

Here A and B are the measurements that were observed, and y is an arbitrary
point. The observed value A was less than B and is therefore superior. If the mean
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of A was actually at point y, the mean of B would have to be in any position to the
left of p for us to make the wrong decision. We can calculate the probability of the
distributions being in this location as the probability of value A occurring, given ,,
multiplied by the probability that p, is less than p,, shown as the shaded region on
figure 3.2. This may be described mathematically as

o0

P(wrong decision) = / pdf (A — p) - cdfp((X — p) > (B — p))dp (3.5)

— 00
With Gaussian distributions, we may write this as

o 1 _ow? 1
P(wrong) = / e 23 / e v dy | do 3.6
( 8) —0 (aa\/27r (B—p) OpV 2T y) (3.6)

Equation 3.7 has the limits on the inner integration adjusted, as the Gaussian
distribution is symmetrical pdf(a) = pdf(—a) and cdf(a, 00) = cdf(—o0, —a). The
axis is shifted to make sample point B = 0 then distribution B is normalised,
modifying distribution A accordingly. Equation 3.8 has been simplified with the
replacements m = % and s = 0,/0.

A—B

> op Tm N SO yzd d
P = ' 3.7
(wrong) / Novae / e Ty du (3.7)

o0 1 _(u—m)z # 1 _y?
P(wrong) = o 257 \/%e Tdy ) dp (3.8)

It is clear that (3.8) is now in the same form as (3.4) and that the subsequent
analysis is equivalent, with x = p. This is only true as the Gaussian distribution is
symmetrical. With other distributions, the probabilities when the mean is known
may be different to when the mean is not known. We may now use the error function

erf (1) = % /OI et dt (3.9)

to give

s \ SV 21 2

00 1 w2 1+ erf (X%
P(wrong) = / < T J) dx

1, ! /oo B i (<) d (3.10)
= = e 22 erf(—=)axr .
2 25v21 J oo V2

Unfortunately (3.10) is difficult to integrate directly. An alternative approach is
to recognise that the difference between two Gaussian distributions is also Gaussian
but with a mean value that is the difference between the means of the two distri-
butions and a variance which is a sum of the two variances (Cramer’s Theorem),
ie.,

N(pta;07) = N, 03) = N(pa — pio, 05 + 03) (3.11)
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If A dominates B in a minimisation sense, then the area under the resulting curve
from zero to infinity will give the probability that the decision that A dominates B
is wrong. If we normalise B to give

2 2

Ha — Hp Oy Ha — Hb Tg
N —)—N(0,1) = N(————,—5 +1 3.12
B %) o) = N Ty (3.12
= N(m,s*+1) (3.13)

Then the probability of being wrong is

- (zfm)2

e "+ dy (3.14)

P(wrong) =

ez

1 1 m
= 3 + 3 erf (7(2 — 252)> (3.15)

Equation 3.15 can be shown to be equal to (3.10) by numerical integration.

3.3. Numerical approximation of probability

Figure 3.3 shows a plot of (3.10) with probability of error plotted with respect to m
for different values of s. If A = B, the probability returned will be P = 0.5. As the
ratio s increases, the curve flattens out. It must be remembered that the parameter
m is normalised with respect to o, and therefore unless o, = 1, m will not represent
the absolute difference between samples A and B.

We can use the above derivation in an evolutionary algorithm in a number of
ways. If the objective function is very quick to calculate, we can evaluate each
chromosome a number of times and estimate the mean and standard deviation of
the objective value. We can then compare the objectives based on the estimates
of their statistics using the equations in section 3.2.1. If we cannot afford to do
multiple evaluations for each chromosome (often the case), we can choose a random
chromosome before running the EA and perform multiple evaluations to estimate
the noise standard deviation (and possibly noise distribution). This estimate may
be used subsequently for all the comparisons of individual samples using the equa-
tions in section 3.2.2. If the noise statistics are known to be nonlinear, it may be
advantageous to either re-estimate the statistics every few generations from an av-
erage chromosome, or even from the current population. When the same standard
deviation is used for comparing two objective values, o, = 0, = o, therefore s = 1.
Thus the probability is only determined by the value of m.

As the case of s = 1 is likely to be the most commonly used, we can tailor the
equations specifically. The equations are calculated as the probability of being wrong
in minimisation, this is the same as the probability of acceptance in maximisation.
Thus the probability of sample A dominating sample B in maximisation (P(A > B))
is

1 1
P(A>B) = §+§erf(%)
- 279

) (3.16)

20,
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Therefore if A =0, B=5and 0, =1, P(A > B) = 0 as expected.

Unfortunately, the error function erf(z) is not easy to calculate quickly. It
can be approximated using Chebyshev fitting [11, Section 6.2] but even this is not
very quick. Recognising that the curves in figure 3.3 are sigmoidal in shape, other
standard sigmoidal curves have been fitted to give a good approximation to the
curve, but allow the probability to be calculated quickly. Figure 3.4 shows the curve
approximation (dashed curve is (3.15)) and (3.17) & (3.18) show the approximations.
The results of the two different approximations are so similar to each other, they
appear as a single line on the graph.

1 m
P(A>B) ~ —(1+tanh ——— 3.17
( ) 2 ( 0.8v/2 + 232) ( )
1
PA>B) ~ —— (3.18)
1 4¢ Vere?

In the ranking process detailed in section 4, the calculation of the probabilities is
O(n?) with respect to the number of objectives ranked n. Using (3.19) & (3.20) be-
low, if s = 1 we can split the calculation of m allowing tanh(z/(1.60,)) or e~!-2>%/on
to be calculated for each of the objectives to be ranked. This process is O(n). The
O(n?) comparison process where the probability is calculated only needs to perform
very fast multiply and add instructions, drastically reducing the processing time for
large n. Unfortunately, (3.19) & (3.20) assume that tanh(z) and e” can be calculated
to infinite precision. In practice, if |x/(1.60,)| > 17 (for tanh) or |1.25x/0,| > 15
(for exponential) then (3.17) & (3.18) must be used. The exact limits though are
dependent on the machine precision.

tanh(a) — tanh(b)
tanh(a +b) = T~ tanh(a) tanh(0) (3.19)
A (3.20)

3.4. Multi-objective fitness functions and noisy domination

With multiple objectives, we no longer have only two possible outcomes from com-
paring two objectives A and B. We now have the possibility of the two objectives
being non-dominated. We therefore can have P(A < B), P(A > B), and P(A = B).
Figure 3.5 shows the effect graphically, with the point A in the centre of the figure
([0.5,0.5]) representing one sample of the fitness. The shaded regions correspond
to regions in which there is information to drive the evolutionary process. In the
non-dominated regions, we have no way of deciding between the functions.

If we have two, two objective, independent fitness measurements with corre-
sponding objective values Ay, As, By, and Bs, the probabilities P(A < B), P(A >
B), and P(A = B) are simply

P(A>B) = P(A1>Bl)P(A2>B2)
P(A<B) = P(A1<Bl)P(A2<B2)
P(A=B) = 1—P(A<B)—P(A> B) (3.21)
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Therefore in general with k£ objectives
k
P(A > B) [P« > B))
7=1
k
P(A < B) [P« < By)
7=1
k
[[a- P4, > By)
7=1
P(A=B) = 1-P(A< B)— P(A> B) (3.22)
1 T T T T
0.9
0.8
Non-Dominated P(x>A)
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A
0.4 ]
0.3 .
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0.1 .
0 | | | |
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Objective 1

Figure 3.5: Noise free non-domination map

If all our fitness values lie within a bounded region, which is often the case, we
may calculate the probability of being in a situation where one value dominates the

other. Equation 3.23 shows the integral of the area (with reference to figure 3.5),

this is relatively simple to evaluate by hand, and as expected gives a probability of
P = 0.5 for a two dimensional objective.

Plx<A)+Px>A)= /1/1 12y + (1 — 1) (1 — x9) daydzy = % (3.23)
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Repeating the analysis for a 3 dimensional problem reveals that the probability that
a point x will dominate, or be dominated by another point in the bounded area is
P =0.25. In general for k objectives

P(domination) =

501 (3.24)

If we have a noisy function, the equivalent domination map of figure 3.5, in
relation to point [0.5,0.5], is shown in figure 3.6. Here the change in probability is
not distinct and we have to display a surface (o, =1/8, s =1).

1
00.8
o
0
=3
A 0.6
NS
o
X
n' 0.4
o o2
0 e
N L7 ””‘ e
=} [TFFT TS TS5
= A=
%/(/ 0.2 7/ T
o
N
1

Objective 2 0 0.2

Objective 1

Figure 3.6: Uncertain non-domination map

We can however still approximate the mean probability of getting a dominated
solution as shown in (3.25) (for 2D case, integrated using Mathematica). Integrating
the three dimensional case is not as straight forward so it was verified numerically
that (3.24) still holds, where h; and hy are the factors relating to the approximation
constant 1.607 and 1.609 respectively and [i,j] and [z}, 2] are the coordinates of
the two points of comparison.
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P - (1 + tanh((xy — z)/hl))(l + tanh((xy — 7)/h2))
/ / /1{- tanh((z1—17)/hy) 1 + tanh((xa—j)/h2)
¢ )

= 3.25
; (3.25)

This shows that the regions where we can distinguish between good and bad
solutions shrinks rapidly as we increase the number of objectives in the optimisation
process. The larger the number of objectives, the larger the non-dominated region
and therefore more solutions will be required to cover the Pareto surface.



4. PROBABILISTIC RANKING AND SELECTION

4.1. Introduction

Ranking is often employed to prevent a superior solution dominating the early pop-
ulations in the evolutionary process. The conventional ranking process, however,
does not take the uncertainty in the measured fitness values into account. The fol-
lowing sections provide a fresh view of the ranking process and develop theory for
multi-objective ranking of uncertain fitness measurements.

4.2. Single objective ranking

T T > X
1 2 3 4 5 6 7

Figure 4.1: Fitness values to be ranked

Figure 4.1 shows seven fitness values to be ranked. If we are minimising, the
best fitness value is the lowest. In the case shown, value A will get rank 0, and value
G will be rank 6. Values C and D are equal and therefore should be assigned the
same rank. We can assign rank values as shown in table 4.1

If we did not have a tie between C' & D, we could use the linear selection equation,
(4.1) to calculate probabilities of selection, based on the ranked fitness, where n is
the number of fitness values and R; is the rank of individual ¢. The sum of the rank
values on the denominator will sum to n(n — 1)/2 = 21 which is the sum of the
arithmetic series zero to six, therefore the best individual will get a probability of
selection of 2/n and the worst a probability of zero.

(n—1)— R 2((n—1)— Ry)

P(select;) = -
(select) = “5=r 7 n(n 1)

(4.1)

15
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Table 4.1: Ranks of example fitness values

Value || Rank
A 0
B 1
C 2
D 2
E 4
F 5
G 6

If we use the rank values in table 4.1 with both the tied fitness values being given
the best ‘untied’ rank, we find that the sum of the ranks is no longer consistent, and
in this case, Z?Zl R; = 20. Alternatively, as C & D are tied, it may be better to
penalise them both a little and therefore take an average of the rank positions they
could have shared, i.e., give them both a rank of 2.5. This would return the overall
sum to be 21 and would be consistent, no matter how many fitness values share a
rank. This is method most used for ranking a vector of data.

We can view the ranking process as counting the number of fitnesses that dom-
inate the fitness of interest [8]. If a fitness equal to the current one is encountered,
then it is half dominating, and half dominated by the current fitness. Therefore we
can create the rank position numbers by this simple counting process. For example,
FE is dominated by A, B, C' € D and therefore has a rank of 4. Value C' is dominated
by A € B but is tied with D and so gets a rank of 2.5.

Alternatively, we could consider the dominating / not dominating decision as
being the probability that each fitness value dominates the value of interest. For
example, if we consider fitness C, the probability that A dominates C is one. The
probability that G' dominates C' is zero. The probability that D dominates C', from
(3.10) with m =0, is P = 0.5. Thus we can represent the rank position as the sum
of probabilities of domination as shown in (4.2), where P(F; > F}) is the probability
that fitness value j dominates fitness value .

R; =) P(F; > F) (4.2)

J=t i
In (4.2), we have to be sure not to compare fitness F; with itself. If we did, we
would get an extra probability of 0.5 added to the sum. We can therefore include

F; in the sum, but subtract the effect of comparing the fitness with itself. This is
shown in (4.3).

Ri=) P(F;>F)-05 (4.3)

j=1
As (4.3) is based on probability, if the fitness values are uncertain, we can use
(3.10) or the approximation (3.17) & (3.18) to calculate the probability of domina-

tion. For example, if fitness values A to G have a standard deviation of o,, = 1, the
rank positions (using (3.17)) compared to the no noise case are shown in table 4.2.
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Table 4.2: Ranks and probabilities with uncertainty of o, = 0 and o, =1

Value || Rank (0, = 0) | Rank (0, = 1)
A 0 0.38
B 1 1.27
C 2.5 2.31
D 2.5 2.31
E 4 4.17
F 5 5.07
G 6 5.49

With o, = 0, we have conventional ranking and the probabilities will range from
2/n to zero. If 0, = oo, all of the fitness values will be assigned the same rank,
and will have a probability of selection of 1/n. Thus the standard deviation of
the uncertainty has a similar effect to selective pressure in conventional selection
processes [12].

4.3. Multi-objective ranking

With multiple objectives, we now have three possible outcomes from comparing
the two fitness values: A dominates B, A is dominated by B, and A and B are
non-dominated. If we apply the single objective ranking equation, we find that the
total of the rank positions is no longer n(n — 1)/2 as we now have to account for
the non-domination. If we have no noise, for two fitness values where A dominates
B, P(A > B) =1, P(A < B) =0, and P(A = B) = 0 Therefore when we
sum the probabilities of domination, the contribution from this pair will be 1. If the
fitness values are non-dominated, the corresponding probabilities are P(A > B) = 0,
P(A < B) =0, and P(A = B) = 1. We have now lost the value 1 from the
probability of domination calculations, therefore reducing the sum of ranks total.
This state will be the same when we compare A to B and also when we compare B
to A, therefore if we sum the total probability of non-domination, this will give us
twice what was lost from the probability of domination calculations.

If we consider the ranking case for a single dimension, if A and B are identical,
we cannot choose between them and so add in 0.5 to the sum. With non-domination,
we also have the situation where we cannot choose between objectives and should
therefore add 0.5 to the sum as required. In the case of uncertain measurements, we
can multiply the value of 0.5 by the probability of non-domination, and still subtract
off 0.5 to allow for comparing the individual with itself, thereby maintaining the sum
of the rank positions as n(n — 1)/2. Thus we can add the non-domination term into
(4.3). The rank calculation for multi-objective ranking is shown in (4.4), where n is
the number of fitness measurements.

R; = zn:P(Fj > F)) + % Y P(F;=F)-05 (4.4)



Evan J. Hughes: Multi-Objective Probabilistic Selection Evolutionary Algorithm 18

Objective 2

Objective 1

Figure 4.2: Multiple fitness values to be ranked
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Table 4.3: Ranks, Probabilities and Non-domination counts with uncertainty of
o,=0and g, =1

Value || R (0,,=0) | R (0, = 1)
A 2 2.27
B 1.75 1.65
C 1.5 1.42
D 1.5 1.92
E 3.25 3.22
F 5.0 4.53

This probabilistic ranking equation allows chromosomes to be selected based
on uncertain multi-objective fitness measurements. For the objectives shown in
figure 4.2, we can calculate the rankings in order to minimise the fitness values.
Table 4.3 shows ranks (R) for 1 standard deviation noise, and no noise.

In the example, we see that A is non-dominated with B, C, D, & E and therefore
gets a rank of 2. Fitness B is non-dominated with A, C, € D but shares an objective
value with F, thus being half dominating and half non-dominated with F, the rank
of B is 1.5 from the three non-dominated points and 0.25 from F, giving a total
of 1.75. We also see that each of the columns of table 4.3 sums to 15 (= n(n —
1)/2) as expected. The ranking process is O(n?), as are many of the other ranking
methods [8, 9].

In the general noisy scenario, we see that the proximity of other fitness values,
even if only close on one objective, can influence how the rank is assigned. Measure-
ments such as C' which are relatively well spaced out on all objectives are ranked
more highly than other fitness values that are uncertain. With no noise, the ba-
sic ranking by just counting how many points dominate each fitness measurement
described by Fonseca and Flemming [8] is very similar, but does not allow for the
non-dominated cases. The sum of the rank values will not be consistent if non-
dominated solutions are present, causing a bias towards non-dominated solutions
over other solutions. The ranking used by Srinivnas and Deb [9] is based on ‘lay-
ers’ of non-dominated solutions and has no consistency with regards to how many
layers, or ranks, are produced, therefore making calculating selection probabilities
awkward.

It is interesting to note that if we require an objective to be maximised, setting
o, negative will cause the probabilities to be calculated for maximisation, setting
o, negative has the same effect as negating the fitness values (the conventional way
of converting from minimisation to maximisation). Therefore both minimisation
and maximisation objectives may be handled easily by just setting the sign of the
corresponding value of ¢,, appropriately.



5. DESIGNER PREFERENCE & CONSTRAINTS

5.1. Introduction

For optimising real systems, allowing the designer to have interactive control over
the evolutionary process is paramount. The designer will often want to confine the
region of evolution in order to investigate an interesting region in detail and may
also want to mark some objectives as being a higher priority. A simple approach
to defining regions of interest is to allow the designer to specify a limit on each
objective. Solutions with a corresponding value worse than the limit would be
penalised. Problem parameters are also often constrained. With a single objective
it is straight forward to add a penalty function that adds to the objective value if the
parameters are out of bounds. In a multiple objective case, as the relative scalings
between the objectives is not known, applying a penalty is less straight forward.
The designer may also want to focus attention on certain solutions, in the case of
a noisy function, the objective values will be time dependent. For a discussion of
other Pareto preference techniques see [13].

5.2. Parameter Constraints and Objective Limits

The parameters defining potential problem solutions often have regions within which
they must be constrained. Deb [14] provides a discussion on the different methods
used to apply constraints in EA’s. If possible, the constraints should be handled
by the genotypic / phenotypic description to help prevent the production of fatal
solutions. To describe the constraint, we can define a function G(x;) as being unity
if the chromosome y; is wholly within a constrained region (assuming no noise or
uncertainty) and zero if a constraint is violated. If the individual constraints are
formulated as g;(x;) < 0, we can define an error metric as €;; = g;(x;) and use (3.16)
with the constraint noise standard deviation o, to give

1 1 —€5i

Gi(xi) = 5T §erf(

). (5.1)

20,

Multiple constraints may be combined either by forming the product (5.2) of the
u constraints, or by taking the geometrical mean (5.3). It is prudent not to constrain
the problem too highly in the early generations if possible to allow the evolutionary
process to work with the greatest number of feasible solutions possible.

¢ = []a (5.2)
j=1
G = \u/ G1G2 e Gu (53)

20
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Table 5.1: Required probabilities when constrained

C(A) [C(B) || P.(A> B) | P.(A< B) | P.(A = B)
0 0 0 0 1
0 1 0 1 0
1 0 1 0 0
1 1 | P(A>B) | P(A<B) | P(A= B)

21

Limits on the objectives may be applied by treating the k limits as forming a
point Z in the k£ dimensional objective space. The probability of each individual
dominating this point can be calculated (P(F; > Z)) and this probability can then
be multiplied with the parameter constraint value G(y;) to give C'(x;)-

We can apply the constraint easily to the previously developed ranking process
by applying the logic of: if both chromosomes meet all constraints, the dominance
probabilities are unchanged; If both violate the constraints, they are classed as being
non-dominated; if one violates constraints and the other does not, the violating
chromosome is classed as being dominated. Table 5.1 gives an alternative view of
the logic.

Equation 5.4 shows the logic expressed in a form suitable for noisy systems.

P.(A> B) = P(A > B)C(A)C(B) + C(A)(1 — C(B))
P.(A< B) = P(A < B)C(A)C(B) + (1 — C(A))C(B)
P(A=B) = 1-P.(A> B)— P,(A < B) (5.4)

The probabilities after the constraints have been applied may be used directly in
the ranking calculation shown in (4.4).

With this method of applying the constraints, the sum of the ranks is preserved,
compared to an alternative technique where the reversed rank of individual 7 is
multiplied by C(y;) to give C(x.)((n — 1) — R;), i.e., the constraints are applied
to the ranked values. Thus a solution with good objective values that violates
constraints will get a low probability of selection. With this alternative approach
the sum of the ranks may not be n(n — 1)/2 anymore. With either technique, by
modifying the rank position, objective scaling differences are no longer a problem.
This approach allows the designer to specify limits on the evolution interactively as
the population evolves. Sharing may also be applied and the niche count used to
reduce C(x;) accordingly, i.e. Cs(x;) = C(x;)/s, where s is the niche count for the
individual. This is detailed in [15].

5.3. Preferred solutions and Priority

As the population evolves, the designer may see solutions that may be viable. If
the individual in question is marked as a preferred solution, a form of elitism may
be used to guarantee that all marked solutions survive and are copied into the next
generation. Thus solutions that may have died off can be preserved, passing on
a proportion of their genetic material. The marking process has no effect on the
rank or probability of selection and if poor individuals are marked early in the
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evolution, it is up to the designer to remove the mark as appropriate. In a noisy
environment, solutions may move position and once marked, should be re-evaluated
every generation, allowing the deviations of the objective values due to noise to be
observed.

The noise standard deviation, o,,, may be set differently for each objective. Any
objective with 0,, = oo will have an effective selection pressure of zero in the ranking
process. This will prevent a decision being made regarding the objective and will
make the rankings more non-dominated. If o, = 0, any difference in the two ob-
jectives being compared will lead to a domination decision. In the ranking process
therefore, objectives with lower o, will have a higher effective selective pressure and
therefore o, could be used to express objective priority.

Unfortunately, the use of 0, to control selective pressure and priority is not
convenient as the values of 0, needed are dependent on the scaling of each objective.
A better way is to include selective pressure and priority explicitly within the ranking
process. Equation 5.5 shows alternative methods of calculating the domination
probabilities, with v; being the selective pressure for objective j and lying in the
range [0,1] with 1 being maximum selective pressure and zero being no selection.
The selective pressure of each objective can be controlled separately, when they
are all set to zero, all the solutions have the same probability of selection. If one
objective has a selective pressure of zero, it still has an effect on the ranking process,
forcing the ranks to be more non-dominated.

k

PS(A > B) = H <PC(A] > Bj)Vj + %(1 — Vj))
i 1
PS(A < B) = H <PC(A] < Bj)Vj + 5(1 — Vj))
— H <(1 — P.(A; > B)))v; + %(1 - Vj))
P(A=B) = 1 Py(A < B) — P,(A> B) (5.5)

For priority, we can use a similar technique to selective pressure, but here, if we
have one objective with a priority of zero, it should play no part whatsoever in the
ranking process. Equation 5.6 shows equations to allow the priorities p; for each
objective j to be integrated into the ranking process. The priorities p; lie in the
interval [0,1] with 1 being the highest priority and zero making the objective play no
part in the ranking. In (5.6), the factor h will be zero if all of the priorities are zero.
This will force all solutions to be non-dominated and so have an equal probability
of selection.
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h=<1—fﬂl—m0

j=1

P,(A > B) h,H (A; > Bj)p;j + (1 —p;))

P,(A < B) hH (A; < Bj)p;j + (1—p;)) (5.6)

Equation 5.7 shows the final form with both selective pressure and priority taken
into account. As both processes are performed as part of the ranking process, the
consistency in the sum of the ranks is maintained.

Pp(A>B) = hH(( P> B+ 50- 1)) 0+ (L)

Pu(A<B) = hH(( PA; < B+ 50- 1)) 0+ (L)
Py(A=B) = 1-P,(A<B)—Py(A>B) (5.7)

As the priority calculation is performed as part of the Pareto ranking process,
the consistency in the sum of the ranks is maintained. Equation 5.6 can be used in
place of (3.22) in calculating the domination probabilities. This elegant integrated
approach to priority and constraint gives full control to the designer.



6. FITNESS SHARING AND RESTRICTIVE
BREEDING

6.1. Introduction

Due to the very nature of evolutionary algorithms, after many generations, the
imbalances in the selection process leads to genetic drift and clusters of very simi-
lar individuals forming. Sharing allows multiple stable populations to form spread
across the objective region. MOGA [8] and NSGA [9] both use sharing to help
spread individuals across the Pareto front. In NSGA and some versions of MOGA,
individuals are shared within each rank only.

In the case of uncertain objective measurements, the individual rank layers are
no longer apparent and therefore the sharing needs to be applied irrespective of
rank, therefore based on the whole population. Solutions from opposite sides of
the Pareto front, once mated, can produce fatal solutions, therefore some restrictive
breeding process can be beneficial.

6.2. Fitness sharing

The aim of sharing is to spread out the objectives to cover the non-dominated front
evenly. Ideally we should apply the sharing to the objectives, but often the objectives
are subject to unknown scaling parameters. The most often used scaling methods
rely on measuring the Euclidean distance between two solutions. The scaling may
have dramatic effects on the sharing process with parameters having a large scaling
value having a disproportionate effect on the distance measured. Often the sharing
is applied to the chromosomes rather than the objectives as the scaling parameters
are easier to determine.

In this report, the sharing will be applied to the objective values rather than the
chromosome in order to get an even spread of solutions in the objective space. To
help remove the effect of scaling, a different share distance is set interactively by the
designer for each objective. A share value is calculated for each pair of individuals,
¢t and 7, and each objective. The share value is unity if the individuals are identical
and have zero uncertainty. Therefore with k£ objectives, there will be k share values.
These are combined into a single value by taking the geometrical mean as shown in
(6.1).

v(i,j) = Sorvs - on (6.1)

For one objective, we can use (3.11) to generate the distribution of the difference
between a pair of individuals on one objective. A Gaussian shaped share function
can be used to quantify the share value. In other methods such as MOGA and NSGA

24
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linear sharing functions have been used but in the case of uncertain measurements,
a Gaussian shape is simpler mathematically. The share function is defined as having
a maximum of unity, regardless of the spread, i.e.

2

F(Share) = e%s (6.2)

Figure 6.1 shows the result of sharing measurements A = 1 and B = 2 with both
measurements having an uncertainty of o, = 0.1 with a share function with a spread
of o, = 1. The figure shows the spread of the functions normalised with respect to
the error difference function.

0.9

0.8

0.7

Share function

Probability Density
o o

1 o

I I

©
»
T

0.3 Normalised distance

0.2

0.1

0 | | | | |
-30 -25 -20 -15 -10 -5 0 5 10 15 20
Normalised share distance

Figure 6.1: Sharing uncertain fitness values

The share value v is defined as the area under the product of the two curves.
After spread normalisation, the sharing function retains a peak value of unity.

o 2 1 _ (E*Mg)z
v = e 2% e 6.3
/oo V2roy (6:3)

Where 02 = 02, + 02, and 1 = A — B. We can normalise the Gaussian describing
the difference between the two objective values to be zero mean and unity variance
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to give
Cwrgh?eq
vo= 23 eJ)7 6.4
m/ (64)
/ e (6.5)
v= —= e 22 e 2 .
V2 J oo
_ _ha ot
= ———e¢ d (6.6)

V1+hy

Where d = p4/04 and hy = 05/04. If the noise spread of A and B is the same,
o4 = V20, therefore for this common case, we can use the previous definition of
= (A — B)/o, and define h,, = o,/0,, to give

h _om?
= ———¢ 20+h}) (6.7)
V2 + hy

When the share values, v, for each objective are combined using the geometrical
mean, computational savings can be made by noting that the equation for v is an
exponential form and therefore the multiplication of the individual share values is
equivalent to summing the exponents. The n™ root may be taken by dividing the
sum of the exponents by n.

The effects of sharing are applied by sharing each solution with every other
solution, except for itself, and then summing the share values to give a share count.
The share count has unity added to it to allow for the individual sharing perfectly
with itself. As in the calculation of rankings, if we sum over all individuals, including
the one of interest, we need to subtract off the share value that occurs at m = 0 to
account for self sharing. We can therefore define the share count for individual 7 as

D,
_Z v(i, §) \/erl (6.8)

We can then use the share count in (6.8) to derate the constraint values C'(x;) to
give a shared constraint of Cy(x;) as shown in (6.9). The shared constraint values
may be used in (5.4) to produce the constrained and shared rank values.

C(Xz')

S;

In low noise applications, as the sharing is applied to the whole population,
solutions which are dominated by a point of interest will also have an effect on
that points share count. This can be reduced by utilising the probability of non-
domination to influence the effect of individual comparisons. Increments only need
to be made to the share count by points that are non-dominated. A modification to
the share count calculation that accounts for non-domination is shown in (6.10).

N e 1 hn
si:jzlP(z:j)v(z,j)—<1—2kl> m—i—l (6.10)
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6.3. Restrictive breeding

It has been established [8] that with certain problems, the objective surface is such
that if the genetic material from distant regions of the Pareto surface are mated,
often fatal solutions are created that perform far worse than either of the parents.
The share distance v may be used as a basis for reproduction, with preference
being given to mates with a higher v, therefore similar objective values. A similar
measure may be applied to the chromosomes to identify solutions that are close in
the genotypic domain.

6.4. Steady state evolutionary algorithms

With steady state EA’s, only a few individuals are evaluated at a time and then re-
inserted into the population. With a large population, it is expensive to re-evaluate
the whole of the Pareto ranking calculations each time. Using the ranking methods
derived previously, if the probability of domination data is stored in an array, to
remove an individual, only the appropriate row and column needs to be deleted
from the array. To insert an individual, an extra row and column must be added,
comparing the new individual to every other. The sums of the rows (or columns as
appropriate) can then be calculated to yield the rank positions. This approach only
requires the final sum to be re-evaluated for the whole array each time.



7. PROBABILISTIC TOURNAMENT SELECTION

7.1. Introduction

Evolutionary techniques such as Differential Evolution [16] use tournament selection
to drive the evolutionary process. An offspring is created and compared to a parent
in the population. If the offspring is better, it replaces the parent, otherwise it
is discarded. With multiple objectives and no noise, comparing two individuals
will give one of three results: A < B, A > B or non-domination (A = B). If
the individuals are non-dominated, they are equivalent and therefore there is no
evolutionary drive to select one over the other. It is not clear which individual
should be retained or how the non-domination should be managed. In a noisy
scenario, if the individuals are well spaced on each objective, then they will be truly
non-dominated. However, if they are ‘close’ on at least one objective, it may be
uncertain whether the individuals are truly non-dominated, or if one may sometimes
dominate the other. This allows us to quantify how much better one close, but non-
dominated, individual is to another. Figure 7.1 shows two individuals that are close
on one objective but well separated on the other.

7.2. Tournament selection algorithm

For a single objective we only have two possible domination outcomes, therefore
P(A < B)+ (A > B) = 1. We can also apply the constraint details developed in
section 5.2. To select an individual:

1. Generate probability that A dominates B, P(A > B), and probability that
B dominates A, P(A < B) using (3.17) or (3.18). Also generate constraint
parameters C'(A) and C(B).

P(A>B)C(A)
A>B)C(A)+P(A<B)C(B)

2. Generate random number, R, and accept A if R < = , else

take B.

For multiple objectives, we also have the case of non-domination, therefore P(A >
B)+P(A<B)+P(A=B)=1,andso P(A=B)=1—-P(A< B)—(A> B).
To select an individual we can use:

1. Generate probability that A dominates B, P(A > B), and probability that
B dominates A, P(A < B) using (3.17) or (3.18) and (3.22). Also generate
constraint parameters C'(A) and C(B).

P(A>B)C(A)
A>B)C(A)+P(A<B)C(B)

2. Generate random number, R, and accept A if R < = , else

take B.

28
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3. Generate a second random number Ry and classify solutions as non-dominated
if Ry < (1—-P(A > B) — P(A < B)). If solutions are non-dominated, add
them both to a ‘history reservoir’. At the end of the generation, if the history
reservoir is too full, rank all the solutions using (4.4) and select the best to give
the required reservoir size. The constraints for the non-dominated solutions
are then handled in the ranking process by (4.4).

Care needs to be taken to prevent the denominator of the selection equations
in step 2 of each algorithm from becoming zero. If the denominator is zero, the
probability of selecting A or B should be 0.5.

This approach allows decisions to be made with some account for noise or un-
certainty. The algorithm suggested for multiple objectives is only one possible way
of maintaining the non-dominated solutions. In this algorithm, the history reservoir
is not used in the selection of individuals for the population and is only used to
maintain a record of the non-dominated surface found. Elements such as restrictive
breeding or re-combination with members of the history population may help with
certain problems and the algorithms can be adjusted accordingly.



8. EXPERIMENT RESULTS

8.1. Introduction

Noise and uncertainty can be split into two broad categories relating to noise that
occurs within the process (Type A) and measurement noise (Type B):

1. Type A Noise: Noise is applied to the chromosome before the objective
function is calculated, i.e. O = F(x + N).

2. Type B Noise: Noise is applied to the objective function after calculation,
ie. O =F(x)+ N.

Both types of noise are of interest and often the observed noise will be a combination
of type A and B. Experiments have been devised to assess each of the main sections
of the work developed in this paper in the presence of noise: ranking, tournament
selection, sharing, and constraints.

8.2. Test Objectives

A range of test objectives were developed for the trials. Table 8.1 lists the objective
functions used, with either type A or type B noise as appropriate.

8.3. Results

8.3.1. Rank Positions

Trials have been performed to assess how the noise effects the assigned rank positions
within a population of chromosomes. For the following results, 100 two-parameter
chromosomes were generated uniformly distributed in the range [0,1] for assessing
the rank performance.

Scaled versions of the objective functions MOP1, MOP2, and MOP3, defined by
Van Veldhuizen and Lamont [10] and given in (8.1, 8.2, & 8.3), were used to provide
input data to the ranking processes, with either type A or B noise applied as appro-
priate. The data were ranked and the assigned rank postion for each chromosome
recorded. The process was repeated 1000 times with different values chosen for the
applied noise each time. For each chromosome, the standard deviation of the rank
position was calculated. The mean standard deviation of the 100 chromosome rank
positions was then generated and plotted.

The ranking algorithms from NSGA and MOGA were generated for compar-
ison with the new multi-objective probabilistic selection evolutionary algorithm
(MOPSEA) ranking process developed in this paper. With a different set of 100
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Table 8.1: Objective Functions

Objective Definition [nput
MOP1 [10] o _ TtV = 100 x(1) — 50
LT 5000 = 100 x(2) — 50
(z—2)° + (y — 2)?
1
©: 5408 (8.1)
MOP2 [10] n 1\2 x; = 4x(i)—2
0, = 1- - P
1 exp ( ; (l‘ \/ﬁ> )
02 = 1- exp (— (ZL‘Z + —> ) (82)
im1 v
MOP3 [10] o &) | gin(a? +42) x = 6x(1)—3
b 8.249 = 6x(2) -3
3z—2y+4)2 z—y+1)?
o, — ( 8y+)_i_( g7+)
46.940
S —1.1e Y 0.1
a2 4yc+l
O = 0.296 (8:3)
CON1 0, — 10 z = x(1)
O, = 1.0 = x(2)
0.01 > (z—05)*+(y—0.5)* (8.4)
CON2 [10] o, . x mx(1
02 = == 7TX(2
0 > —(z)*—(y)*+1+0.1 COS<16 arctan(f))
y
0.5 > (z—0.5)7+(y—0.5) (8.5)
EJH1 T z; = x(i)
a = 3l =) a? 8.6
\ - Z:; (8.6)
1 n
b o= 3 =) (1—) 8.7
\ - ZZ;( ) (8.7)
O — 14 sin(a)
! a
sin(b
0, = 1-{ #‘ (8.8)
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initial chromosomes, a slightly different set of graphs will result. The differences
have been found to be small however.

For example, in (8.3), x(1) and x(2) are the two parameters of the input chro-
mosome in the range [0,1]. The parameters x and y are scaled to lie within [-3,3]
as defined by Van Veldhuizen and Lamont. The three objective functions are then
calculated and scaled to give each of the objectives in the range [0,1]. Noise was
then applied either to the input chromosome y for type A noise, or to the output
objectives O for type B noise. The applied noise was Gaussian with a standard
deviation of o.

18 F T T T T T T T T
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4+ _
2 |
| | | | | | | |
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Noise,

Figure 8.1: Applied noise with respect to mean standard deviation of rank position
for MOP1, type A noise. Performance of MOGA and NSGA ranking compared to
MOPSEA with 0, =0 & o,, = 0.3

From figures 8.1 to 8.8, it is clear that both MOGA and MOPSEA outperform
the NSGA ranking process in the presence of noise for this objective function. As
the uncertainty parameter o, is increased, it is clear that MOPSEA can out perform
both alternative algorithms. The specific performance of each algorithm is depen-
dent on the objective function though, and each set of 100 points to be ranked.
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Figure 8.2: Applied noise with respect to mean standard deviation of rank position
for MOP1, type B noise. Performance of MOGA and NSGA ranking compared to

MOPSEA with 0, =0 & o,, = 0.3
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Figure 8.3: Applied noise with respect to mean standard deviation of rank position
for MOP2, type A noise. Performance of MOGA and NSGA ranking compared to
MOPSEA with 0, =0 & o,, = 0.3
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Figure 8.4: Applied noise with respect to mean standard deviation of rank position
for MOP2, type B noise. Performance of MOGA and NSGA ranking compared to
MOPSEA with 0, =0 & o,, = 0.3
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Figure 8.5: Applied noise with respect to mean standard deviation of rank position
for MOP3, type A noise. Performance of MOGA and NSGA ranking compared to
MOPSEA with 0, =0 & o,, = 0.3
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Figure 8.6: Applied noise with respect to mean standard deviation of rank position
for MOP3, type B noise. Performance of MOGA and NSGA ranking compared to

MOPSEA with 0, =0 & o,, = 0.3
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8.3.2. Limits, Priority, and Constraints

The following graphs demonstrate the effectiveness of the ranking equations under
the conditions of:

1. Limits on objectives.
2. Objective priority.

3. Parameter constraints.
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Figure 8.9: MOP2 objective space. No noise, No limits, No prefe rence

Both types of noise are of interest and often the observed noise will be a com-
bination of type A and B. A range of test objectives were developed for the trials.
Table 8.1 lists the objective functions used, with either type A or type B noise as
appropriate.

The evolutionary algorithm used was a simple structure with selection, crossover,
and mutation. A population of 100 individuals was used with chromosomes consist-
ing of two real-valued genes with values lying in the range [0,1]. Stochastic universal
sampling was used to select individuals for breeding and then intermediate crossover
at a rate of 70% and uniformly distributed mutation at a rate of 10% were applied
to generate new individuals. The best 70% were inserted back into the population.
The plots shown were all taken after 50 generations.
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8.3.3. Objective Limits
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Figure 8.10: MOP2 objective space. Noise o0 = 0.1, Type A, 0, = 0.1, Limits [0.7
0.9], No preference

Figure 8.9 shows the objective MOP2 without noise, constraints, preferences,
or sharing applied. Figure 8.12 shows the effect of applying the limits [0.7 0.9] to
objectives f; and f; respectively with o, = 0 used to give a rapid transition from
constrained to unconstrained.

Figure 8.10 shows how the ranking process copes with significant type A noise.
The chromosome values have been perturbed, leading to a smaller region in the
chromosome space being responsible for the spread of objective values seen. Despite
the noise, the search is still focussed in the required region.

Figure 8.11 shows the effect of type B noise. Here the objective value itself
has been perturbed. Again the chromosomes occupy a smaller region, with the
perturbed objective values still being focussed. By focusing the objectives, the
spread of chromosomes is also reduced. With noisy objectives, if the objectives are
constrained too much, there may be no single chromosome that will always have
a perturbed solution within the constrained region. This can cause problems with
genetic drift and loss of diversity within the population.
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0.9], No preference
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Figure 8.12: MOP2 objective space. No noise, Limits [0.7 0.9], No preference
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Figure 8.13: MOP2 objective space. No noise, No limits, Preference [0.9 1.0], Sharing
0.005 on objectives
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8.4. Objective Preference

Often with multiple objectives, not all the objectives are of equal interest to the
designer. For example, in a cost / performance tradeoff, if very high volumes are to
be manufactured, the cost is often paramount.

Figure 8.13 shows the function MOP2 without noise or objective limits but with
the priorities [0.9 1.0] specified for objectives f; and fs respectively. As the objectives
are minimised, preferred solutions are better on f; and therefore will be worse on
f1 and so will tend to lie towards the bottom right of the plot. A small amount of
sharing has been applied to reduce genetic drift. It is clear that f; is dominating
the resul ts.

Figure 8.14 shows the effect of a preference vector [0.5 1.0]. Here f is penalised
further. If the vector [0 1.0] was used, only fo would have any influence on the
ranking process.
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Figure 8.15: CONS1 chromosome space

8.5. Chromosome Constraints

Figure 8.15 shows the chromosome locations for the problem CONSI1, along with
the boundary of the constrained region. Both objective values always equal unity
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and therefore only the constraints have any effect. It is clear that the algorithm
quickly converges to the constrained region. In problems of this type, it would be
advisable to use sharing on the chromosome positions to try to reduce the effects of
genetic drift.

Figure 8.16 shows the non-dominated boundary of the CONS2 function. The
discontinuous objective surface can be seen clearly. The handling of the constraints
as part of the ranking process treats solutions that do not satisfy constraints as
non-dominated, and so share rank positions. This reduces the rank value and ef-
fective selective pressure of the individuals, allowing the solutions that satisfy the
constraints to dominate.
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Figure 8.16: CONS2 Objective space



9. CONCLUSIONS

The results have shown that the modified ranking process can reduce the distur-
bances in the rank positions caused by noisy objectives. Unlike conventional rank-
ing processes, the rank values and therefore the corresponding selection probabilities
take some account of the noise and uncertainty in the system. The theory developed
in this paper forms an important first step towards addressing directly noise and
uncertainty in multi-objective problems. The simplicity of the ranking and selection
equations may also provide a route to further theoretical research into the operation
and performance of evolutionary algorithms.

The integrated ranking, constraint, and priority equations that have been devel-
oped form a first step towards evolutionary algorithms that can address the problems
of noisy objective functions directly. By integrating the constraints and priorities
into the ranking, the rank values maintain their consistency and allow selection
probabilities to be calculated easily.

The new ranking, constraint, and preference equations are simple functions, un-
like many existing ranking processes that are based on logical decisions and are
difficult to manipulate mathematically. This may help in the analysis of algorithm
operation in the future. By reducing the effects of the noise on the rank positions,
the evolutionary process is more stable and with the inclusion of constraints and
preferences, allows the designer full interactive control over the evolutionary pro-
cess.
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A. MATLAB MEX-FILE

/*

noisy non-dominated ranking
Matlab Mex-file. Compiled on Sun Ultra 10, Matlab 5.3

[prob(select), rank, sharecnt, q] = NoisyNondom(obj, sigmaobj,
P q y J g J
sigmashare, objlimits, constraints,
priority, selective_pressure)

input:

obj - p x k : objective values to minimise

sigmaobj - 1 x k : standard dev. of objective noise

sigmashare - 1 x k : share distance for objectives

objlimits - 1 x k : objective constraint vector

constraints - p x 1 : constraint vector - noise processing done externally
priority -1xk: [11..1] gives all same pri.

sel press - 1xk : [11 .. 1] for maximum selective pressure

p is population size, k is number of objectives.
output:
prob(select) will sum to unity, best has largest probability.

rank is ’rank fitness’, smallest the best, minimising all objectives
for maximisation, use negative std dev in sigmaobj.

sharecnt is the share count for each individual.

q is the final constraint value, after objective constraints,
parameter constraints and sharing.

time is 0(n~2) for tanh operations
E.J.Hughes 28 July 2000

*/

52
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#include "mex.h"
#include <math.h>
#include <stdlib.h>

#tifndef PI
#tdefine PI 3.141592653589793
#tendif

#define SQ2 0.7071067811865475

#define obj(i,j) objil[(i)+(popsizex(j))]
#define t(i,j) tmp [(1) +(popsizex*(j))]

void NoisyNondom(double *err, double *nerr, double *gerr, double *errx,
double *obji, double *st, double *shr, double *q,
double *c, double *pr, double *sp, int popsize, int nobj)

double *tmp, *tmpn, *tmpq, *pq, *stmp, *prtmp, *prtmpb, *sptmp, *sptmpb;
double tt,stl,st2,tn,sumq,numdiv,tx, shfact, prtot;
int 1i,j.k;

tmp = (double *)mxCalloc(popsizex*nobj,sizeof (double));
tmpn = (double *)mxCalloc(popsize,sizeof (double));

pq = (double *)mxCalloc(popsize,sizeof (double));

tmpq = (double *)mxCalloc(nobj,sizeof (double));

stmp = (double *)mxCalloc(nobj,sizeof (double));

prtmp = (double *)mxCalloc(nobj,sizeof (double));
prtmpb = (double *)mxCalloc(nobj,sizeof (double));
sptmp = (double *)mxCalloc(nobj,sizeof(double));
sptmpb = (double *)mxCalloc(nobj,sizeof (double));

/* precalc sharing factors */

shfact=0;
for (k=0;k<nobj;++k)
{
stl=shr[k]/(st[k]+1.0e-10)/sqrt(2.0);
shfact+=log(stl)-log(stl*st1+1)/2.0;/* logls/sqrt(s"2+1)] =/
stmp[k]=1.0/4.0/(stl*st1+1); /* Gaussian sharing */
+

/* precalc effects of sigma
- beware sigma == 0, not trapped properly*/

/* process fitness values */
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for (i=0;i<popsize;++i)
for (k=0;k<nobj;++k)
t(i,k)=obj(i,k)/(st[k]+1.0e-10);

if (q)
/* process restriction point values */
for (k=0;k<nobj;++k)
tmpq [k]1=q[k]/(st[k]+1.0e-10)/1.6;

/* zero elements */

for (i=0;i<popsize;++i)
tmpn[i]=pq[i]l=err[i]=0.0;

if (q)
/* calc probability of dominating the restriction point Q */
for (i=0;i<popsize;++i)
{
st1=1.0;
for (k=0;k<nobj;++k)
st1*=(1.0+tanh(tmpqlk]l-t(i,k)/1.6))/2.0; /* probability */

pqlil=st1;
}
else
for (i=0;i<popsize;++i)
pqlil=1.0;
if(c)

for (i=0;i<popsize;++i)  /* apply constraints */
pqlil*=c[i];

if (pr)
for (i=0;i<nobj;++i)  /* set priority */
prtmp[il=pr[il;
else
for (i=0;i<nobj;++i) /* set default priority */
prtmp[i]=1.0;

prtot=1.0;
for (i=0;i<nobj;++i) /% pre-calc for priority */
{
prtmpb[il=1.0-prtmp[i];
prtot*=prtmpb[i];
}

prtot = 1.0-prtot;
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if (sp)
for (i=0;i<nobj;++i)  /* set selective pressure */
sptmp[i]l=sp[il;
else
for (i=0;i<nobj;++i) /* set default SP */
sptmp[i]=1.0;

for (i=0;i<nobj;++i)  /* pre-calc for SP */
sptmpb[i]=(1.0-sptmp[i])/2.0;

/* Calculate share count */
for (i=0;i<(popsize-1);++i)
for (j=i+1;j<popsize;++j)
{
tn=shfact;
for (k=0;k<nobj;++k)
{
tx=t(i,k)-t(j,k); /* calculated k */
tn-=tx*tx*stmp[k]; /* sharing */
+
tn=exp(tn/(double)nobj);
tmpn[i]+=tn; /* share info */
tmpn[j]+=tn;
+

for (i=0;i<popsize;++i)
pqlil/=(tmpn[i]+1); /* add 1 to account for self, and apply sharing */

/* calc probability table */
/* sum probability so if on Pareto, will calc how many we dominate */
/* do not count self comparison */

for (i=0;i<(popsize-1);++i)
for (j=i+1; j<popsize;++j)
{
stl=prtot; /* for priority */
st2=prtot; /x for priority */
for (k=0;k<nobj;++k)
{
tt=(1.0+tanh ((t(i,k)-t(j,k))/1.6))/2.0; /* probability A_i>B_ix/
/* stl*x=tt;
st2%=1.0-tt; */
/* do priority & SP */
stl*=(tt*sptmp [k]+sptmpb [k]) *prtmp [k]+prtmpb [k] ;
st2*=((1.0-tt) *sptmp [k]+sptmpb [k] ) *prtmp [k] +prtmpb [k] ;



Evan J. Hughes: Multi-Objective Probabilistic Selection Evolutionary Algorithm

3

st1=st1lxpqlil*pql[jl+pqljl*(1-pqlil);
st2=st2*pqlil*pql[jl+(1-pqljl)*pqlil;
/* non-domination */

tx=(1-st1-st2)/2.0;
err[i]+=stl+tx;
err [jl+=st2+tx;

¥

for (i=0;i<popsize;

++tmpn[i] ;

if (errx)

for (i=0;i<popsize;

errx[il=err[i];

if (nerr)

for (i=0;i<popsize;

nerr[i]=tmpn[i];

if (qerr)

for (i=0;i<popsize;

gerr[il=pqlil;

/* correct to make

++1)

/* apply constraints */

/* add 1 to account

/* save
++1)

/* save
++7)

/* save
++7)
probabilities

tt=(double) (popsize-1);
sumg=2.0/ (double) (popsize* (popsize-1)) ;
for (i=0;i<popsize;++i)

err[i]l=(tt-err[i])*sumq;

mxFree (sptmpb) ;
mxFree (sptmp) ;
mxFree (prtmpb) ;
mxFree (prtmp) ;
mxFree (stmp) ;
mxFree (tmpq) ;
mxFree (pq) ;
mxFree (tmpn) ;
mxFree (tmp) ;

/* gateway function */

raw info

raw info

raw info

that sum

for self x/

*/

to unity */

/*normalise into prob of selection*/
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void mexFunction(int nlhs,mxArray *plhs[], int nrhs, const mxArray *prhs[])

{
double *errx, *nerr, *qerr, *c, *q, *pr, *sp;
double freq,ap;
int m,n,popsize,nobj;

if (nrhs > 7 || nrhs <3) {
mexErrMsgTxt ("NoisyNondom requires three to seven input arguments.");

}
if (nlhs >4) {
mexErrMsgTxt ("NoisyNondom requires one to four output arguments.");

}

m = mxGetM(prhs[0]);

mxGetN (prhs[0]) ;

n

if (m<2) |1 (n <1))
mexErrMsgTxt ("NoisyNondom requires that obj be a pop x nobj matrix");

popsize = m;

nobj=n;
m = mxGetM(prhs[1]);
n = mxGetN(prhs[1]);

if ((m!'=1)||(n !=nobj))
mexErrMsgTxt ("NoisyNondom requires that sigma be 1 x nobj");

m
n

mxGetM(prhs[2]);
mxGetN (prhs[2]);

if ((m!'=1)||(n !=nobj))
mexErrMsgTxt ("NoisyNondom requires that sigma share be 1 x nobj");

if (nrhs>=4)
{

m
n

mxGetM(prhs[3]);
mxGetN(prhs[3]);

if ((m!=1)[|(n !'=nobj))
mexErrMsgTxt ("NoisyNondom requires that Q be 1 x nobj");

q=mxGetPr (prhs[3]) ;
}

else
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q=NULL;

if (nrhs>=5)
{

m

n

mxGetM(prhs [4]) ;
mxGetN (prhs[4]);

if ((m!'=popsize)||(n !=1))
mexErrMsgTxt ("NoisyNondom requires that C be npop x 1");

c=mxGetPr (prhs[4]);
}

else
c=NULL;

if (nrhs>=6)
{

m
n

mxGetM(prhs [5]);
mxGetN(prhs[5]);

if ((m!=1)[|(n !'=nobj))
mexErrMsgTxt ("NoisyNondom requires that priority be 1 x nobj");

pr=mxGetPr (prhs[5]) ;
}
else
pr=NULL;

if (nrhs>=7)
{

m
n

mxGetM(prhs[6]) ;
mxGetN (prhs[6]) ;

if ((m!'=1)||(n !'=nobj))
mexErrMsgTxt ("NoisyNondom requires that SP be 1 x nobj");

sp=mxGetPr (prhs[6]) ;
}
else
sp=NULL;

plhs[0] = mxCreateDoubleMatrix(popsize,1,mxREAL);

errx=NULL;
nerr=NULL;
gerr=NULL;
if (nlhs>=2)
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{
plhs[1] = mxCreateDoubleMatrix(popsize,l,mxREAL);
errx=mxGetPr (plhs[1]);
}
if (nlhs>=3)
{
plhs[2] = mxCreateDoubleMatrix(popsize,l,mxREAL);
nerr=mxGetPr (plhs[2]);
}
if (nlhs==4)
{
plhs[3] = mxCreateDoubleMatrix(popsize,l,mxREAL);
gerr=mxGetPr(plhs[3]);
}

NoisyNondom(mxGetPr (plhs[0]), nerr, qerr, errx, mxGetPr(prhs[0]),
mxGetPr(prhs[1]), mxGetPr(prhs[2]), q, c, pr, sp, popsize, nobj);

} /* mexFunction */



