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Abstract


In the design of new, more sophisticated missile systems, simulations need to be


realistic and fast. Realistic target models are just as important as realistic models


of the missile, but have often been overlooked in the past. Existing methods for


creating realistic target models require considerable computational resources. This


thesis addresses the problem of using limited resources to create realistic target


models for simulating engagements with radar guided homing missiles.


A multiple genetic algorithm approach is presented for converting inverse syn-


thetic aperture radar images of targets into scatterer models. The models produced


are high �delity and fast to process. Results are given that demonstrate the gener-


ation of a model from real data using a desktop computer.


Realistic models are used to investigate the e�ects of target �delity on the missile


performance. The results of the investigation allow the model complexity to be


traded against the �delity of the representation to optimise simulation speed.


Finally, a realistic target model is used in a feasibility study to investigate the


potential use of glint for target manoeuvre detection. Target glint is considered


as noise in conventional missile systems and �ltered to reduce its e�ects on the


tracking performance. The use of glint for target manoeuvre detection would provide


a cheap and novel alternative to the optical techniques currently being developed.


The feasibility study has shown that target manoeuvre detection using glint may be


as fast as optical techniques and very reliable.


Keywords
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Target Manoeuvre Detection.
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1. Introduction


1.1. Introduction


Radar target tracking and radar guided missiles are an essential part of modern


weapons systems. Aircraft technology is advancing with aeroplanes becoming faster,


more manoeuvrable and more di�cult to detect. The accuracy requirements of the


tracking systems are being pushed to the limits. The technological problems are


further aggravated by �nancial constraints on product development. Flight testing


of missiles is very expensive.


Synthetic missiles may be own in a virtual world against simulated targets.


Simulation reduces the costs involved in researching into new homing and guidance


techniques. These simulated engagements need to be realistic to derive any bene�ts.


To be realistic, the parameters that a�ect the engagement must be modelled in a


detailed manner. There are many di�erent areas that need to be addressed in


developing a full engagement model [1]. This thesis concentrates on the radar cross


section aspects of the target modelling.


This chapter begins by de�ning the problem to be solved and then investigates


the current approaches in the open literature. A package of work is de�ned and the


approach to be taken and �nal objectives described. Finally, the original work and


publications generated during the research are detailed.


1.2. Problem De�nition


Target tracking algorithms perform best if the target manoeuvre is constant. Any


changes mean the tracking algorithms must �rst identify that the target has altered


course, and then update the track details [2, 3]. If indication could be given that a


target is changing its track, the guidance algorithm could be improved.


Target glint (chapter 6) a�ects the missile's estimation of target acceleration and


is usually treated as noise. I have proposed that it may be possible to use target


glint to give indications of rapid target attitude changes, such as banking before


turning. The missile could then be given advance warning of an evasive manoeuvre.


In order to test this proposal, a simulation environment is required that allows the


e�ects of glint on the missile to be observed. Target manoeuvre detection using glint


is the motivation for the work covered in this thesis.


Most guidance models treat the target as an ideal source and add Gaussian noise


or �xed o�sets to the acceleration estimates ([4, 5] for example). More sophisticated


models add coloured noise to the acceleration estimates (eg. [6, 7, 8]). These models


are more realistic but the errors are not correlated with the missile and target motion


and therefore do not create true glint e�ects.


1
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The main problem addressed in this thesis is the production of target models


that can be used to create realistic radar cross sections for any aspect angles. The


following requirements must be satis�ed by a model.


1. Fast to process { The model will be used thousands of times in each simula-


tion. If genetic algorithms or arti�cial neural nets are used during the guidance


system design process, many thousand trials will be performed.


2. High �delity { In some situations it may be desirable for the target to rep-


resent a speci�c vehicle.


3. High resolution { Glint spikes have been observed that are less than 1=100th


of a degree wide. The narrow spikes can become signi�cant if the rate of rela-


tive angular rotation (between target and missile) is low. The model resolution


should typically be at least 1=200th of a degree to model glint uctuations ac-
curately.


4. Correlation { Echo amplitude should be correlated with echo phase to give


realistic glint e�ects in the seeker head. The echo signal must be correlated to


relative motion.


5. Low storage requirements { It must be possible to contain the whole model


in the machine's physical memory to prevent excessive disk use.


The processing and memory requirements should be suitable for a typical desktop


PC. The following assumptions will be made.


1. The target has a rigid body that does not ex in manoeuvre { Any re-


quirements for complicated structural analysis of the target are thus removed.


2. Radar is continuous wave or uses pulses that are long compared


to the target { Each radar pulse illuminates the whole target, allowing av-


erage radar cross section measurements to be taken directly, rather than by


integrating range pro�les.


Once a realistic model has been created, trials must be performed to establish


the e�ects of �delity on the engagement, thus ensuring a realistic target. The glint


tracking hypothesis may then be tested.


1.3. Existing Modelling Techniques


1.3.1. Introduction


A search of the open literature to �nd existing solutions to the modelling problem


revealed a number of potential techniques. Broadly, the radar cross section of a


target may be found by direct measurement or by calculation. Four main classes of


solution have been identi�ed and are discussed below:


1. Real data { Data are measured directly from the target or a scale model.
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2. Scatterer models { Groups of ideal point scatterers are modelled to produce


a radar cross section pattern. The scatterers may be positioned at random or


placed so as to reproduce a speci�c cross section pattern.


3. Statistical models { Data are generated randomly but conform to typical


probability density functions.


4. Structural models { The scattering calculations are based upon a model of


the physical structure of the target.


Radar cross section is a function of the angular orientation and shape of the


scattering body, the frequency, and the polarisation of the transmitter and receiver.


The radar cross section of a target is de�ned as:


A measure of the power that is returned or scattered in a given direction,


normalised with respect to the power density of the incident �eld.


� = 4� lim
R!1


R2 j ~Esj2
j ~Eij2 = 4� lim


R!1
R2 j ~Hsj2
j ~H ij2 (1.1)


Where ~Es, ~Hs are the scattered electric and magnetic �elds respectively,


and ~Ei, ~H i are the incident �elds. [9, Chapter 3]


1.3.2. Real Data


Directly measured results are di�cult to obtain in practice, especially with full scale


targets ([10, 11, 12] for example). Scale models may be used but any discrepancies


and small deviations will a�ect the measured results. Measurement noise may hide


some small details and ultimately the resolution of the data has �nite limits for


any given measurement angle segment. Out-of-plane data are usually awkward to


measure as the target orientation with respect to the ground has to be altered. This


can create slinging and handling problems. Measuring a full scale target over 4�


steradians to a useful resolution (ie. 200 points per degree) is often impractical.


Measured data though give a reliable representation of a real target; although


small changes will occur in-ight due to structural distortions. These distortions can


be minimised by suitable slinging and support techniques during measurement, in-


troducing airframe stresses similar to those experienced whilst the target is airborne.


Careful attention to supports, slinging wires and measurement chamber con�gura-


tion is necessary to prevent artifacts being present in the measured data [9, Page


331{345][13].


1.3.3. Scatterer Models


Small numbers of randomly distributed, independent, isotropic point-scatterers are


often used for theoretical radar cross section analysis ([14] for example). The cross


section for a typical point scatterer model may be calculated using Equation 1.2.


�T =


�����
nX
k=1


p
�k e


j


�
4�d


k


�


������
2


(1.2)







CHAPTER 1. INTRODUCTION 4


The total radar cross section of the target, �T , is de�ned as the coherent sum


of the echos from the n scatterers, each scatterer with its own cross section, �k [15,


Page 23]. If the number of scatterers is large and the viewing angle segment is


small, the model may be �tted to any arbitrary cross section pattern. Chapter 4


gives more details regarding radar cross section calculation of simple and extended


point scatterer models.


Information about the scattering centres may be obtained through Inverse Syn-


thetic Aperture Radar (ISAR) imaging (chapter 2) where two and three dimensional


images may be created from radar cross section data obtained for both angle and


frequency. ISAR images of point scatterer models exhibit the same spatial charac-


teristics as real targets.


A strong argument may be made for considering targets to be collections of


small numbers of point scatterers when the target is viewed at high frequency. Most


papers obtained relating to target signature analysis, ie., identifying targets from


their radar cross section, are based on the identi�cation and comparison of the major


scattering centres (eg. [16, 17]).


Point scatterer models have low storage requirements and radar cross section


calculations are quick to perform. Unfortunately, although it should be possible to


generate models to �t any arbitrary pattern, the �tting process can be di�cult in


practice.


1.3.4. Statistical Models


Few statistical radar cross section models appear to have been developed. Sandhu


and Saylor [18] perform a rigorous analysis of glint and radar cross section statistics


and compare these results to real data. Their methods assume that the target


is in the far-�eld and that the phase front across a true phase-comparison missile


seeker head is near linear (chapter 6). Thus these results may not apply to end-game


scenarios where the target is engaged in the near-�eld. Further analysis of the e�ects


on monopulse seekers is explored by Tullsson [19].


Daba and Bell [14] develop the statistics of small numbers of randomly placed


scatterers and compare them to empirically determined probability density func-


tions. Gordon [20] derives probability density equations for the radar cross section


of simple convex bodies, ie., ovoids. Borden and Mumford [21] develop the statistics


of a point scatterer model and use them to create a synthetic radar cross section


and glint generator. The generator is based on �ltering and combining Gaussian


random processes. This process can be used to generate realistic cross section data


but they will be uncorrelated to target motion.


1.3.5. Structural Models


Introduction


Calculating the true radar cross section of a target is not trivial. The methods of


approaching the problem fall into three broad categories; dominant feature analysis,


quasi-optical methods and element analysis. Many methods though use a combina-


tion of the techniques to obtain better cross section approximations.
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Dominant feature analysis


Analysing the dominant features of a target is the classical technique for developing


the radar cross section pattern. The method is usually performed by hand [22] but


can be automated [23]. The target is assumed to have a radar cross section that is


similar to a target constructed from basic primitive shapes such as cones, cylinders,


wires, spheres, and at plates. The procedure is to identify the parts of the target


that are likely to be prominent in the radar signature; for example, the leading edges


of wings, fuselage, cavities etc.. The features are modelled using primitive shapes


and then the estimated contribution to the cross section for each of the identi�ed


features is plotted. A general pattern of radar cross section uctuation with respect


to angle is thus created. This method is concerned solely with the magnitude of


the radar cross section, the e�ects of phase interactions are ignored. E�ects caused


by multiple bounces of the signal, such as the large echo from a trihedral corner


reector, are accounted for directly in this method.


Quasi-optical methods


Many computational packages have been developed based on quasi-optical methods.


These methods rely on the approximation that the radar signal behaves in a similar


way to light when the target features are greater than about ten wavelengths in size.


This condition is termed the optical region of operation [9, Page 53]. The packages


use three-dimensional CAD models to represent the targets. The targets are based


on either solid modelling or surface representations. Surface representations range


from simple faceted models through to complex spline surfaces. All of the packages


are capable of generating good approximations to the true radar cross sections for


the supplied models, at the expense of computation time [24, 25].


The models that represent the target surface as small triangular facets are some


of the simplest [26, 27, 28, 29]. Unfortunately, faceted surfaces have inherent false


discontinuities at the junctions between the faces and can generate spurious signals.


The most accurate cross section predictions appear to be obtained through using


structures built with solid models or curved patches. Near continuous surfaces can


be produced with these methods that alleviate facet noise [30, 31, 32, 25].


Many of the systems use the physical optics [9, Pages 119{130] approximations


to generate the basic radar cross section and then apply the method of moments [33]


or method of equivalent currents [9, Pages 136{139] to account for e�ects caused by


di�raction and discontinuities [30, 31, 27, 28]. Others achieve similar results through


the physical theory of di�raction [9, Pages 140{144][25, 32].


Most of the computation time is expended in the ray-tracing elements of the pro-


cessing. To counter this problem, most of the approaches use dedicated hardware-


graphics-accelerator cards to produce images of the target. Hidden surfaces are


removed and the image colours are used to represent the surface outward unit nor-


mals [25]. Cross section processing is then performed on the rendered image using


look-up tables for speed. Accuracy is sacri�ced as each surface normal is quantised


into three 8-bit values. This approach allows the use of o�ce computers with graph-


ics accelerator cards to produce a reasonable approximation to the cross section for a


speci�c angle and frequency in a few seconds. Indications of the processing require-


ments for generating a radar cross section pattern with conventional ray tracing are
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given by Turner [28]. Using a Cray 1S, a fairly simple tank or aircraft would take


around 1 second per frame to render. Similar times are obtained using dedicated


graphics hardware and a conventional PC.


Few of the methods take account of small gaps on the model surface [31, 26] or


surface travelling waves. Kim and Ling [34] derive a ray technique for large inho-


mogeneous objects such as aircraft and missile plumes. This technique is also used


for developing range pro�les and ISAR images directly from the CAD models [35].


Element analysis


All the above methods are restricted to high frequency analysis where the bodies are


electrically large and therefore mainly in the optical region. For smaller bodies that


lie in the Raleigh and Mie regions, the computational approach is usually based on


�nite element analysis [36, 37]. These methods are also used to compute the radar


cross sections of di�cult subjects such as cavities [38] and targets coated with radar


absorbent material [39].


Discussion


The data generated from surface models can usually be considered as realistic. The


surface model used as the basis for the calculations must be modelled to very high


levels of �ne surface detail. It has been shown that minor discrepancies in the


models can lead to major deviations in the radar cross section [32, 40, 28]. The


cross section can be calculated to any required resolution and from any angle and


range. As the model is virtual, no supports are necessary and so no support artifacts


occur in the data. The only noise present in the data will be due to the precision


of the calculations performed to generate the radar cross section. Unfortunately,


calculating radar cross section in real-time is unlikely to be possible in the near


future, even with very powerful computers.


Andersh et al. [32] concludes that improper modelling of small features and


materials contribute to major errors in the predictions. He also states that the


ultimate level of �delity for CAD geometry is unknown. Turner [28] demonstrates


this problem, showing radar cross section calculations for an un�tted and a �tted


ship. The resulting cross section plots are dramatically di�erent whereas the CAD


drawing of the �tted ship appears to di�er only in surface detail. The e�ects of �ne


surface detail are analysed by Williams [40] who indicates that the e�ects of the


surface micro-geometry often dominate the radar cross section for large, complex


bodies.


1.3.6. Conclusions


Lees and Davies [27] discuss the pros and cons of many prediction methods with


respect to their accuracy at estimating the true radar cross section of a body. They


conclude that good surface representations are required if the radar cross section


pattern is to be predicted accurately. For this study, true cross section calculations


are not the objective. Only signals that have similar characteristics to those seen


by a missile, with a monopulse seeker head, ying at the target are required.
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As the only true way to determine what the seeker head will see and do is to y


the missile at the target, a synthetic missile must be used in a virtual world scenario.


Both radar-echo phase and magnitude must be modelled to allow the e�ects of glint


to be determined. The model must be operated in a scenario where the full 4�


steradians may be observed.


Table 1.1 shows the results of a decision analysis process. The techniques are


scored against the requirements with


0 { Bad


1 { Average


2 { Good.


The results are summarised in table 1.2.


Requirement


Technique Speed Fidelity Resolution Correlation Storage Total


Real Data 2 2 1 2 0 7


Scatterer Model 2 2 2 2 1 9


Statistical Model 2 0 2 0 2 6


Structural Model 1 2 2 2 1 8


Table 1.1: Decision analysis matrix for establishing best technique


Rank Technique Total Score


1 Scatterer Model 9


2 Structural Model 8


3 Real Data 7


4 Statistical Model 6


Table 1.2: Summary of decision analysis matrix results (table 1.1)


Of the di�erent methods available for generating a synthetic radar cross section,


the most practical appears to be the use of point scatterer models. Point scatterer


models allow the radar cross section to be calculated quickly for any angle and any


frequency. Any correlations between cross section and motion are inherent in the


model. Complex cross section patterns may be represented easily with a moderate


number of scatterers. Point scatterer models allow the e�ective resolution of the data


to be increased by interpolating between measured sample points. The interpolation


is non-linear and is related to the arrangement of the scatterers. The interpolated


data therefore appear as a realistic radar cross section pattern.


If point scatterer models are used, they have to be generated from some known


radar cross section data �rst. These data may be measured from a real target or


could be synthetic data generated from a CAD surface model. There are two main


requirements for the generation method:
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1. Coverage { The point scatterer models need to give 4� steradian coverage


for e�ective simulations.


2. Fidelity


The four existing methods below have been found for extracting point scatterer


models from radar cross section data.


1. Dominant Feature Analysis { This technique uses detailed target models to


identify the major scattering centres, such as corner reectors and at surfaces


etc.. Three-dimensional models are generated but the radar cross section is


only an approximation of the true radar cross section [23].


2. ISAR { Scatterer coordinates and amplitudes may be found directly from


ISAR images. High �delity models may be generated in both two and three


dimensions from 2D/3D data [41, 42, 43, 44, 45, 46]


3. Sinogram { The range pro�les of the target for an angle of revolution are laid


side-by-side to generate the sinogram. Scatterers appear to create sinusoidal


patterns in the sinogram that are related to the scatterers coordinates and


amplitude. High �delity models may be generated, but in practice, only in


two dimensions [17].


4. PTD/SBR { The Physical Theory of Di�raction / Shooting and Bouncing ray


technique allows point scatterer models to be generated directly from CAD


models of targets. The �delity of the models is restricted to the predictive


capability of the Physical Theory of Di�raction [47].


Table 1.3 shows the results of a decision analysis process. It is clear that the


best method for generating high �delity point scatterer models is from ISAR images


as this process allows both real and synthetic 3D data to be used. There are three


main requirements for the model extraction process:


Requirement


Technique Coverage Fidelity Total


Dominant Feature 2 1 3


ISAR 2 2 4


Sinogram 0 2 2


PTD/SBR 2 1 3


Table 1.3: Decision analysis matrix for establishing best model generation method


1. Coverage


2. Complexity { The method must be able to process satisfactorily images that


require large numbers of scatterers to achieve high �delity representations.
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3. Processing Speed { The extraction process should be as fast to execute as


possible.


The literature survey revealed the three existing approaches to extracting a model


from an ISAR image listed below.


1. Contour Processing { Contour lines are drawn on the image. Scatterers


appear as closed loops whose centres indicate the scatterers position. The


processing is slow and only really viable for two-dimensional images [42].


2. Least Squares /Prony's Method { Scatterer positions and amplitudes are


�tted using Non-Linear Least Squares or Prony's Method. These methods are


only suitable for very small numbers of scatterers [41, 43, 44, 45].


3. Iterative Peak Finding { The image is searched to �nd the highest peak. A


corresponding scatterer is generated and the peak is removed. The process is


repeated until all the peaks of interest have been found. The method requires


vast amounts of memory and is very slow for real data [46].


Table 1.4 shows the results of a decision analysis process.


Requirement


Technique Coverage Complexity Speed Total


Contour Processing 0 1 1 2


Least Squares /Prony 2 0 1 3


Iterative Peak Finding 2 2 0 4


Table 1.4: Decision analysis matrix for establishing best model extraction approach


Of the three methods, all of them are slow to process but the iterative peak


�nding approach is the most versatile, being able to process both two and three


dimensional data and cope with large numbers of scatterers. The process su�ers


from the following problems:


� Requires high resolution data to accurately locate scatterers.


� Heavy processing requirements.


� Large data storage overhead.


These problems need to be overcome in any proposed solution. At present, the


method is not practical with the computational resources available to this project.


1.4. Sequence of Work


The following areas of work were proposed.


1. Devise a method for automating model conversion and reducing the processing


requirements. The following should be addressed:
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1.1. Operate within the processing and memory restrictions of a desktop PC


1.2. Able to process low, medium or high resolution ISAR data


1.3. Minimise the number of scatterers used in the models.


2. Integrate point scatterer models into engagement scenario.


3. Establish level of model �delity required in simulations.


4. Investigate potential of using glint for detecting target manoeuvres.


1.5. Approach and Objectives


The relationship between the work, the thesis chapter, and the ow of data, is


illustrated graphically in �gure 1.1. In the �gure, boxes labelled as external relate


to details outside the scope of this thesis. The approach taken in addressing each of


the work items is as follows.


1.5.1. Item 1 { Automating model conversion


As described earlier in section 1.3.6, the model conversion problem is best tackled


using an iterative approach to identify scatterers from three-dimensional ISAR im-


ages. Bhalla and Ling's approach [46] does not satisfy the requirements though.


The requirements will be addressed as follows.


Item 1.1 { Operation with restricted resources


Bhalla and Ling's method identi�es the largest scatterer in the image and generates


a corresponding scatterer in the model. An approximation of the ISAR image of the


single scatterer is generated and then subtracted from the original data. To calculate


the image of the model, for an image of 640 pixels on each axis, 3 � (6402) =


1; 228; 800 Fast Fourier Transforms (FFT) need to be performed. On a typical


desktop PC, it would take around two hours to perform the transforms. To �nd


the brightest spot in the image, around a Gigabyte of data must be accessed. To


generate a model with 100 scatterers on a desktop PC using this method would take


over a week.


The approach taken to reduce the processing time is to try to identify multiple


scatterers in each iteration. A technique based on Genetic Algorithms (GA) [48]


is used that allows multiple scatterers to be identi�ed in each pass of the data.


Genetic algorithms are very e�ective when applied to optimisation problems that


are discrete, non-continuous or multi-modal ([49] gives review of genetic algorithm


applications in electro-magnetics).


For each iteration, one image is produced of all the scatterers found in the pass,


thus dramatically reducing the number of Fourier transforms required overall. An


added bene�t is the genetic algorithm only needs to access a fraction of the data to


identify the same number of scatterers as the existing method, thus improving the


speed further. The multi-species genetic algorithm will cut the processing time for


a 100-scatterer model to around 1 day.
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Item 1.2 { Image resolution independence


As the image resolution is reduced, locating the scatterers accurately becomes im-


possible. A second genetic algorithm is used to adjust the raw position information


in an attempt to minimise positioning errors. This �ne-tuning process enables high,


medium or low resolution data to be converted into models.


Item 1.3 { Model reduction


The �tting process can generate large numbers of scatterers for high �delity models.


If a model with a reduced level of �delity is satisfactory, some of the scatterers


may be discarded, resulting in a smaller model and therefore faster engagements. A


third evolutionary algorithm is used to perform a combinatorial optimisation of the


model.


Objectives for item 1


The two objectives for this section were as follows.


1. A small amount of low-resolution, two-dimensional, real data have been ob-


tained. The data cover a �20� azimuth sweep in 256 steps, looking nose-on to


the target. The azimuth sweep is repeated over 256 frequencies in the range 2:5


to 3GHz. A 64-sample azimuth section has been extracted from the data that


corresponds to approximately �5�. The objective is to �t a two-dimensional


model to this section of data. The radar cross section data for the azimuth


sweep at the centre frequency and the frequency data at 0� azimuth should �t


the model to an � = 0:9 Kolmogorov-Smirnov (Appendix D) con�dence level.


2. In the absence of real three-dimensional data, a synthetic model with �fty


scatterers will be generated, based on the scatterer locations identi�ed from


the real 2D data. This 50-point model will be used in subsequent trials as


a realistic 3D truth model. An ISAR image will be generated with 64-steps


on each axis and over an angular range of �1� in azimuth and elevation.


The objective is to �t a three-dimensional model to the data. The radar


cross section data for the azimuth and elevation sweep at the centre frequency


and the frequency data at 0� azimuth should �t the model to an � = 0:9


Kolmogorov-Smirnov con�dence level.


1.5.2. Item 2 { Integration into the engagement scenario


The target is tracked by the missile using a monopulse radar seeker-head (sec-


tion 4.3). Two di�erent variants of the seeker-head, phase-comparison and amplitude-


comparison, are used in current missiles. Models of the two types need to be evalu-


ated to determine which may be most suited to target manoeuvre detection.


It is hypothesised that the miss distance distribution of trials own from di�erent


directions against a stationary target should mainly be inuenced by thermal noise,


seeker head type, and the target's radar cross section.
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Objectives for item 2


1. Evaluate the performance of a missile with each seeker against an ideal single


point target with constant radar cross section to verify that the missile miss


distance is near constant.


2. Repeat objective 1 against the 50-point truth target to generate miss-distance


distributions and therefore validate the hypothesis.


1.5.3. Item 3 { Establishing �delity


As the number of scatterers in the model directly inuences the execution time for


each engagement, the fewer scatterers in the model, the faster the trial. Reducing


the number of scatterers in the model though may reduce the �delity of the radar


cross section representation.


The required radar cross section pattern can be �tted to a model with a smaller


number of scatterers, but with a residual error level that increases as the model size


is reduced. The way in which the missile is inuenced by the reduction in �delity


must be investigated.


Objectives for item 3


1. Test the e�ect on the missile miss distance of reducing the number of scatterers


in the 50-point truth model.


2. Repeat on a 100-point randomly generated model to allow the e�ects of model


complexity and structure to be analysed.


3. Establish that the acceptance levels used in �tting the 2D and 3D ISAR data


are valid.


4. Produce a high-�delity reduced model for the target manoeuvre detection


trials.


1.5.4. Item 4 { Target manoeuvre detection using glint


Any indication of a manoeuvre before the target deviates from its current track


would be bene�cial to the missile guidance system. Currently, optical methods exist


for ground based tracking systems [2] but these methods require expensive extra


hardware. The majority of radar guided missiles use monopulse seeker techniques


and are therefore susceptible to glint. If manoeuvre information could be extracted


from the seeker bore-sight error signals, no extra sensors would be required. The


volume and cost of the seeker head could then be reduced.


Objectives for item 4


1. Investigate the noise on the monopulse bore-sight error signal.


2. Attempt to identify manoeuvres from glint errors. Use straight, level, ight


with a single bank turn manoeuvre.
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1.6. Original Work and Publications


1.6.1. Original Work


The following itemises the original work and ideas.


� Multi-Species Genetic Algorithm { Development of a novel multi-species


genetic algorithm to locate multiple scatterers in ISAR images. This algo-


rithm drastically reduces the processing overhead involved in existing model


conversion techniques. The processing uses a novel species' statistics idea to


increase execution speed (chapter 2).


� Genetic Algorithm Based Fine-Tuning Method { The �ne-tuning pro-


cess allows low and medium resolution ISAR images to be converted into point


scatterer models. The existing iterative technique is restricted to processing


only high resolution images. (chapter 2).


� Evolutionary Algorithm Based Model Optimisation { These techniques


allow large models created from real data to be used e�ciently in the simu-


lation environment. The e�ects of the model reduction on the �delity of the


representation can be traded against simulation speed by the user (chapter 3).


� Binary Space Partition Trees for Model Selection { This novel approach


gives a exible generic structure for combining small models to allow the radar


cross section coverage to be extended. Models derived from limited amounts of


real data can be combined easily with synthetic structures to give 4� steradian


coverage (chapter 4).


� Analysis of Model Size and Fidelity { The �delity analysis using syn-


thetic engagements provides models that are fast but su�ciently detailed to


deceive the missile. The e�ects of �delity have been established, allowing


model complexity to be reduced while maintaining realism (chapter 5).


� Target Manoeuvre Detection Using Glint { This novel approach to target


manoeuvre detection is cheap, very reliable, and utilises existing sensors. The


research has also provided new insights into the structure requirements for


realistic targets (chapter 6).


� Optimal Tuning of PBIL Algorithms { Two new parameters have been


introduced to the algorithm, allowing performance criteria to be derived. Op-


timality requirements have been established for one parameter and empirical


settings for two others have been proposed. The functions of all the parameters


are now known, allowing Population Based Incremental Learning optimisation


algorithms to be tuned easily (appendix E).


1.6.2. Publications


Author


Evan James Hughes, Transfer report: Radar cross section modelling.,


Royal Military College of Science, Cran�eld University, February 1997.
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Major Author


E. J. Hughes, M. Leyland, and B. A. White. \A multi-species ge-


netic algorithm applied to radar scattering centre identi�cation in three-


dimensions.", In GALESIA '97 Conference, pages 472{477, Glasgow,


UK, 1{4 September 1997. IEE Pub. No. 446. Won prize for best paper


at conference.


E. J. Hughes and M. Leyland. \Radar cross section model optimisation


using genetic algorithms.", In RADAR '97 Conference, Edinburgh, UK,


14{16 October 1997. IEE Pub. No. 449. Pages 458{462.


Joint Author


E.J. Hughes, P. Creaser, N.N. Jackson, M. Leyland, J.S. Dahele and


B.A. White. Radar Target Augmentation Study. Technical Report for


Agreement No. LSC/2004/115 with DRA, Malvern. November 1996


E.J.Hughes, P.Creaser. Engagement Model Software De�ning Speci�ca-


tion. Technical Report No. DAPS/EJH/17/97, Royal Military College


of Science, Cran�eld University, April 1998







2. Scatterer Location and Tuning


2.1. Introduction


This chapter covers the scatterer location and tuning phases of the model extraction


process. First, an overview of the complete extraction process is given. ISAR


theory is then covered in detail and then an introduction to genetic algorithms is


given. The multi-species genetic algorithm for scatterer identi�cation is described in


detail. The genetic algorithm used for �ne-tuning the scatterers is introduced, and


non-dominated ranking is covered. Finally the �tting-cycle termination method is


detailed.


2.2. Overview


Figure 2.1 shows a block diagram of the complete model extraction process. The


radar cross section data need to be measured over a small range of azimuth and


elevation angles and for a spread of frequencies. These data can then be used


to form a three-dimensional inverse synthetic aperture radar image. This image is


analogous to an optical hologram and allows the rough spatial locations of the major


scattering centres to be identi�ed [50]. A typical ISAR image is shown in �gure 2.4.
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Figure 2.1: Block diagram of complete model extraction process


The positions of the scatterers are located using the �rst of the genetic algo-


rithms. This genetic algorithm has a population split into multiple species and is


capable of identifying multiple scatterers in each run. A model is generated with


16
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scatterers located at the rough positions identi�ed from the image and the second


genetic algorithm applied. This algorithm is designed to �ne-tune the location of


the scatterers to improve the accuracy of the model.


The radar cross section of the model is checked against the required target pat-


tern. If the model does not �t, an ISAR image is generated of the model. This


image is subtracted from the original image, revealing the scattering centres that


have not yet been included. The identi�cation / �ne-tune cycle is repeated until the


radar cross section of the model matches the required data satisfactorily. At this


point, the model may have well in excess of one hundred scatterers.


Once satisfactory model elements have been generated when compared to the


ISAR image and radar cross section data, the model must be reduced to a conve-


nient size and �delity. The third genetic algorithm performs a combinatorial search


of di�erent numbers of scatterers and con�gurations in an attempt to reduce the


number of scatterers in the model whilst minimising the induced error. A Pareto-


optimal [51, Pages 197{201] set of evaluated solutions is generated, allowing the


designer to trade between �nal model size and the accuracy of the radar cross sec-


tion to the original data. Final models suitable for high �delity simulations often


contain around one hundred scatterers.


2.3. ISAR Images


2.3.1. Introduction


Conventional radar processes often see the uctuations in the radar cross section of a


target as noise and attempt to remove them via signal processing. Inverse Synthetic


Aperture Radar (ISAR) techniques exploit the variation of radar cross section with


relative target motion to generate spatial images of the radar target. Coherent


processing of the returned echoes allows the locations of the target scattering centres


to be resolved both in cross range (perpendicular to line-of-sight) and slant range


(parallel to line-of-sight).


The motion of the target relative to the radar is used to generate the diversity of


information required about the target. It is assumed that the targets have dimen-


sions that are small compared with the target range and images are obtained from


observations made over small segments of viewing angle. These assumptions simplify


the theoretical analysis. Data obtained under conditions that violate these assump-


tions can produce distorted images. In operational scenarios, long range imaging of


non-cooperative aircraft and ship targets is possible using ISAR techniques.


2.3.2. Basic ISAR Theory


If a rotating target is observed with a radar that has a high range-resolution, ns
complex samples per range pro�le for each of N range pro�les can be obtained


during time T , while the target rotates through angle ��. Each of the ns samples


form a single range cell. The size of these range cells determine the resolution of the


range information. The Doppler frequency shift produced by a scatterer for small


�� is proportional to the relative target angular rotation rate as well as cross range


distance between the scatterer and centre of target rotation [15]. One Doppler
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spectral line will exist for each Doppler resolved scatterer, the magnitude being


proportional to the reectivity of the resolved scatterer. The targets reectivity can


be mapped therefore in both slant range and cross range. The cross range scale


factor is dependent on the relative target angular rotation rate.


The orientation of the rotation axis relative to the radar Line-Of-Sight (LOS)


establishes the orientation of the image plane. This plane always lies so as to de�ne


the slant range as being parallel to the LOS and the cross range direction perpendic-


ular to both the line-of-sight and axis of rotation. Thus the best images are obtained


when the LOS and axis of rotation are perpendicular. If they are parallel, no two


dimensional images may be formed.


The relationship between a scatterer's position and the resulting Doppler fre-


quency is shown in �gure 2.2. If the target rotates at ! radians per second, a single


scatterer at cross range distance r then has instantaneous velocity !r towards the


radar.


ωr


ω


Radar


Target


r


Figure 2.2: Relationship between scatterer and Doppler frequency


Equation 2.1 details the Doppler frequency shift produced by rotation over a


small angle.


fD =
2


c
!rcf (2.1)


Where f is the centre frequency of the radar, c is the propagation velocity and rc
denotes cross-range.


If two scatterers are in the same slant range cell and are separated by a cross


range distance of �rc, then the received signals are separated by a frequency �fD
and therefore cross range separation may be de�ned as in equation 2.2


�rc =
c


2!f
�fD (2.2)


Doppler resolution may be related to the coherent integration time as �fD � 1
T
[15,


Page 278]. Cross range resolution for a small change in viewing angle, ��, occurring
during integration time T may be given by equation 2.3.


�rc =
c


2!Tf
=


1


2


�


!T
=


1


2


�


��


�����
�fD= 1


T


(2.3)
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A discrete Fourier transform may be used to convert the time-history samples from


the N range pro�les collected over time T into a Doppler spectrum.


The slant range time history may alternatively be obtained using stepped fre-


quency data. The target echo is measured at a series of discrete frequencies and the


Inverse Discrete Fourier Transform taken, yielding the time response and therefore


the synthetic range pro�le of the target. Range resolution can be de�ned as the


range increment between any two adjacent discrete range positions. A set of n fre-


quency steps spaced �f apart, produces n equally spaced range increments within


the unambiguous range length c
2�f


. Equation 2.4 details the slant range resolution


�rs.


�rs =
c


2n�f
(2.4)


If the angular segment over which the radar cross section data are recorded, ��,


is large (> 10� or so), the assumption that the Doppler frequency of a scatterer


remains constant begins to break down. The e�ect is to blur the resultant image.


If the segment is not too large, the blurring can be corrected by focusing the ISAR


image. The raw radar echo data are measured in polar form. If the measurement


angle segment is small, the data can be processed as if they are in a rectangular


coordinate system. For large angles, the focusing process converts the raw data from


a polar form to a true rectangular coordinate system [15, Page 311]. Figure 2.3


illustrates the re-sampling process. A uniformly spaced, rectangular grid is laid


over the polar data. The echo data at the new sample points are obtained by


interpolation. The spacing of the new grid does not necessarily have to be related


to the original sampling scheme. The ability to change the sample points allows


the �nal image resolution and scale to be altered, although signi�cant errors can be


introduced for major scale and resolution changes. The interpolation process will


introduce errors into the image though. These errors are often small compared to


errors arising from the assumption that the polar data can be treated as rectangular.


Collected Data
Re-Sampled Data


Figure 2.3: Re-sampling radar cross section data prior to imaging


The image is produced from stepped frequency data by �rst focusing and then


performing an Inverse Discrete Fourier Transform (IDFT) to convert the frequency
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data to synthetic range pro�les. If the range data are stored in the rows of a


matrix, the next step is to perform a Discrete Fourier Transform (DFT) on the


columns of the data to resolve the cross range Doppler information. The usual


windowing requirements for Discrete Fourier Transforms should be met to reduce


spectral spreading in the �nal image. Typically a raised cosine window is su�cient


and is shown in equation 2.5. In practice, the Fast Fourier Transform (FFT) is used


in the calculations.


W =
cos (�) + 1


2


�����
������


(2.5)


2.3.3. Summary


The e�ective scaling of ISAR images in cross-range (up{down, left{right) and slant


range (front{back) is determined by the sample step size and number of samples


in azimuth, elevation and frequency. Equations 2.6 and 2.7 show how to calculate


cross range and slant range resolution respectively.


rc =
c


2nc��f
(2.6)


wc = ncrc


rs =
c


2ns�f
(2.7)


ws = nsrs


where nc is the number of steps in cross range, ns is the number of steps in slant


range , �� is the angular step size in radians, �f is the frequency step in Hertz, c
is the speed of propagation in metres/sec., and f is the mean frequency in Hertz.


The cross range and slant range resolutions are denoted by rc and rs while the total
range extent are wc and ws respectively. All range measurements are in metres. Care
must be exercised in the choice of angular window (nc��) that the measurements


are taken over. A window greater than 10� will begin to cause a blurring at the


edges of the image. Focusing techniques can be used, reducing the e�ects of the


wider angular coverage, but more scatterers are eventually required to �t accurately


the radar cross section to the model. Image generation involves the application of


Fourier transforms to the radar cross section data and therefore su�ers from the


spectral spreading problems inherent in this process. The genetic algorithms do


not require the application of window shaping functions to reduce spreading e�ects.


The inherent square window leads to sharp peaks with long tails extending into the


image. The long tails aid the search abilities of the �rst genetic algorithm as they


help indicate the locations of the peaks.


It has been proposed that inverted windows that enhance the size of the tails


and make the main peak narrower may improve the genetic algorithm performance.


Trials of the inverted raised-cosine window shown in equation 2.8 were performed.


Five trials of each window were conducted and the number of peaks found in each


trial was recorded. Using the Mann-Whitney test of means at � = 0:05, no sig-


ni�cant di�erence was found in the ability of the genetic algorithm to identify the
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peaks.


W = 1� cos (�) + 1


2


�����
������


(2.8)


2.3.4. Example Image


Figure 2.4 shows a typical ISAR image. The image was generated from real data


over an azimuth sweep of �5:1� to 5:4� in 64 steps and for a frequency sweep of 2.5


to 3 GHz at 0� elevation in 256 steps. The data are un-focused and are subject to


the inherent square window of the FFT process. The image has a resolution of 0.3


metres per sample in both cross range and slant range. The shape of the aircraft is


clearly visible in the image. The engines and nose (upper part of image) are easily


distinguished. The tail �n (towards the bottom)and wing tips (left of image) are


less visible.
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Figure 2.4: ISAR image example







CHAPTER 2. SCATTERER LOCATION AND TUNING 22


2.4. Genetic Algorithms


Genetic Algorithms [48] are designed to mimic the natural selection process through


evolution and survival of the �ttest. A population of M independent individuals is


maintained by the algorithm, each individual representing a potential solution to


the problem. Each individual has one chromosome. The chromosome is the genetic


description of the solution and may be broken into n sections called genes. Each


gene represents a single parameter in the problem domain. Therefore, a problem


that has �ve unknowns for example, would require a chromosome with �ve genes to


describe it.


The three simple operations found in nature, natural selection, mating and mu-


tation are used to generate new chromosomes and therefore new potential solutions.


Each individual's chromosome is evaluated at every generation using an objective


function that is able to distinguish good solutions from bad ones and to score their


performance. With each new generation, some of the old individuals die to make


room for the new, improved o�spring. Over several generations, the majority of the


solutions represented by the individuals in the population will tend to lie around an


optimal solution for the given environment. The exact rate at which the population


converges to a single solution is determined by the nature of the problem and the


structure of the genetic algorithm.


When used to solve optimisation problems, genetic algorithms tend to search


areas spread across the entire optimisation surface before converging on a maxi-


mum or minimum depending on the problem. Thus, despite being very simple to


code, requiring no directional or derivative information from the objective function


and being capable of handling large numbers of parameters simultaneously, genetic


algorithms can achieve excellent results.


The method can be described by the following algorithm:


1. Create a population of M individuals, each having a chromosome with gene


values chosen at random.


2. Assess the performance of each individual.


3. Rank individuals with respect to performance and assign a Fitness Value de-


pendent on ranking.


4. Create a set of M parent individuals for breeding where the probability of


being included in the set is proportional to �tness. The �tness consideration


may lead to some individuals being chosen many times and others not at all.


5. Randomly pair parents and breed to form M o�spring.


6. Randomly mutate some of the genes in the o�spring chromosomes.


7. O�spring become new population, assess the performance of each individual.


8. Record best individual.


9. Repeat from step 3 for required number of generations.
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2.5. Location Process


Bhalla and Ling's iterative method [46] operates by �rst �nding the size and coordi-


nates of the brightest spot in the image. A scatterer is placed in the corresponding


position in the model. An ISAR image of this scatterer is produced and subtracted


from the original image to remove the corresponding bright spot. The process is


repeated until all the major bright spots have been removed.


The method works well but has one major drawback; it requires high resolution


data in order to locate accurately the centre of each scatterer. A typical three di-


mensional image of 640 pixels on each axis will require (640)3 elements and therefore


two Giga-bytes of storage space. Finding the location of the maximum value neces-


sitates searching the entire set of data for each scatterer that is resolved. Images


often require 100 or more scatterers for accurate representation and therefore the


equivalent of 200 GBytes of data must be retrieved from the storage media. On a


small system, the data access and transfer times are signi�cant. To remove each


scatterer, 3(6402) = 1; 228; 800 Fourier transforms are required to create the ISAR


image. For a model where 100 scatterers are identi�ed, the processing would take


longer than a week on a desktop PC. This is impractical.


A genetic algorithm may be used to locate multiple bright spots in one pass.


These bright spots can then be formed into a model, and the model's e�ects sub-


tracted from the original image as before. Further applications of the genetic algo-


rithm will locate any smaller points remaining. Generating an ISAR image of one


scatterer takes almost as long as generating an image of ten scatterers. Thus by pro-


cessing multiple points in each pass of the data, vast savings can be made in image


generation time. This multi-modal function approach can make model calculation


viable on a small system.


2.5.1. Multi-Modal Optimisation and Sharing


Most genetic algorithms use a single population of a single species. The algorithms


are designed so the solutions represented by the di�erent individuals converge on the


single optimum solution of the objective function. In multi-modal optimisation, the


genetic algorithm is designed to converge with multiple solutions, each corresponding


to a separate peak in the objective function.


There are a number of mechanisms that may be used to force a genetic algorithm


to exhibit multi-modal behaviour.


1. Iteration { Many independent runs of the genetic algorithm are performed


in an attempt to identify all the peaks. This method is very ine�cent as the


larger peaks will often be found many times [52, Page 176].


2. Sharing { The sharing system operates by modifying the objective value that


is seen by each individual. If a number of individuals all occupy the same peak


in the objective function they are made to share the objective value at that


point [53]. This simple concept is enough to allow multiple stable populations


to form.


3. Crowding { Crowding is a selective breeding technique where o�spring are
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inserted into the population by replacing individuals that are genetically sim-


ilar [54]. The process allows multiple stable populations to form.


4. Sequential Niching { The process operates by iterating the genetic algorithm


but maintains a record of the best solutions found. At each successive iteration


of the genetic algorithm, the peaks that correspond to the solutions found in


previous runs are suppressed. This method is essentially a sequential version


of the sharing process described earlier [55].


In order to identify multiple scatterers in each pass of the genetic algorithm, either


the sharing or crowding method must be used.


For the sharing process, a function that is related to the separation distance


between two individuals (genotypic or phenotypic space) is used to control the mod-


i�cation of the objective function. Equation 2.9 de�nes the sharing function used,


with d(�(i); �(j)) de�ned as the distance between the chromosomes �(i) and �(j),


s(i; j) is the sharing e�ect of i on individual j and �, � are factors for modifying


the function shape. When � = 1, this function produces a linear variation that


moves from unity at zero distance to 1 � � at a distance of � and zero thereafter.


If � 6= 1, the function has an exponential form. Using a value of � less than unity


has a similar e�ect to using high values of �, but without the processing overhead


of the exponential calculations.


s(i; j) =


(
1�


�
d(�(i);�(j))


�


��
� d � �


0 d > �
(2.9)


where d = d(�(i); �(j)) = j�(i)� �(j)j


For each individual, i, the distance is calculated from its chromosome to the


chromosome of every other individual, j, in a population of N individuals and the


values for each of the sharing functions are totalled (equation 2.10). The result is


used to derate the image value at the point de�ned by the chromosome of i, I(�(i))


yielding a new objective value O(i). Equation 2.11 shows the objective calculation.


S(i) =
NX
j=1


s(i; j) (2.10)


O(i) =
I(�(i))


S(i) (2.11)


These sharing functions work well but for the large and complex optimisation sur-


faces found in scattering centre identi�cation, large populations are required. Thus


the requirement for every individual to be compared to every other produces a sig-


ni�cant processing overhead. In an attempt to reduce the processing requirements,


the sharing function has been modi�ed to operate using multiple species rather than


individual members [56]. This process combines the niche forming properties of the


sharing process with the selective breeding of the crowding algorithm.


The position and spread of a species may be de�ned by the mean of the species


chromosomes and their standard deviation. Equations 2.12 and 2.13 de�ne the


position and spread respectively. Where nk is the number of individuals in a species
and �(i; k) denotes the chromosome of individual i of species k. If it is assumed that
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the spread of individuals around the mean position is roughly Gaussian, a sphere


with a two standard deviation radius from the mean will encompass the main bulk


of the population. Thus 2�k may be de�ned as representing the spatial distribution


of population k.


�k =
1


nk


nkX
i=1


�(i; k) (2.12)


�k
2 =


1


nk


nkX
i=1


j�(i; k)� �kj2


=
1


nk


nkX
i=1


d(�(i; k); �k)
2


(2.13)


Equation 2.14 de�nes the modi�ed sharing function, where �k is a sharing distance
that varies with the spread, �, of the species. The spread of the species is still limited


to a minimum distance of �. This sharing function is then applied to all Ns species,


except the members own, and the results summed (equation 2.15). The objective


cost for the individual is then derated by one plus the share value to account for the


individual itself and is shown in equation 2.16.


s(�(i; j); �k) =


8<
: 1�


�
d(�(i;j);�


k
)


�k


�2
� d��k


0 d>�k
(2.14)


where �k =


(
�k �k > �


� �k � �


S(�(i; j)) =
NsX
k=1


nk


2�k
s(�(i; j); �k)


�����
k 6=j


(2.15)


O(�(i; j)) =
I(�(i; j))


1 + S(�(i; j)) (2.16)


The sharing function de�ned in equation 2.14 is based on a squared law rather than


a linear function, ie. with reference to equation 2.9, � = 2. Individuals that are


close to the species centre are a�ected more than those further away. An increase


in calculation speed is gained by not requiring the square root of the magnitude of


the distance to be taken. Unlike the �xed shape individual sharing functions used


previously, the functions associated with each species are dynamic and vary with


the geographical motion of the individuals within the species.


The ratio of the number of individuals in a species (nk) to the specie's spread


(2�k) has been included as a factor in equation 2.10 to give equation 2.15. This ratio


makes the inuence that each species has on other individuals change dynamically


with the specie's spread. Each species is now referred to by its mean position.


When a species population is widely dispersed (� � �), the function has little


e�ect on other individuals. As a specie's population converges (� ' �), the range


of the function decreases but its inuence increases. This added inuence forces


di�erent species to separate as their populations converge. A minimum distance, �,
for the spread of the function is used to prevent di�erent species from converging


too closely to one another. This minimum distance helps increase the diversity of


the geographical spread of the species.
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2.5.2. Algorithm Construction


A real valued chromosome with three parameters, or genes, has been used to de�ne


each individual. The parameters are de�ned as being the (x; y; z) coordinates of


a location in the three-dimensional ISAR image. The genotypic level allows the


parameters to have fractional components. The fractional component allows real-


valued mutations to be applied. The genes are rounded to the nearest integer to


obtain the phenotypic data for the picture element index. The raw objective value


is de�ned as the image intensity at the indexed point.


The genetic algorithm follows the usual format of ranking, selection, crossover,


mutation and evaluation but with each species being processed separately. The same


number of o�spring as parents are generated and a total replacement policy is used.


The total replacement policy helps to reduce the rate of convergence and allows the


species to relocate themselves to minimise problems caused by overcrowding.


The �tness value F (x) is assigned according to rank position px of individual x.


The individual with the lowest O(x) (least �t) being assigned a rank position of 1


and the best individual being assigned rank position M . Equation 2.17 details the


calculation of F (x).


F (x) =
2s(px � 1)


M � 1
+ (1� s)


�����
0<s�1


(2.17)


Where s is the selective pressure [52, Page 56] and may lie in the range 0 < s � 1.


The emphasis that is placed upon the selection process may be controlled by adjust-


ing s. A value of zero is never used as any bias between good and bad individuals


is prevented and therefore no natural selection occurs. A value of unity gives the


maximum selection where the chances of selecting the worst individual are near zero.


The e�ect of reducing the selective pressure is to slow the convergence of the genetic


algorithm. In this algorithm, a selective pressure of 0:8 is used. This value has


been selected empirically and allows the species' to search the entire image but still


converge satisfactorily.


Stochastic Universal Sampling [48, Page 12] is used to select M individuals from


the population, each individual having a probability of selection de�ned in equa-


tion 2.18.


Prob(x selected) =
F (x)PM
i=1 F (i)


(2.18)


The individuals selected are randomly shu�ed and then paired up for breeding.


Uniform Crossover [52, Page 88] is used to generate two new o�spring from each


pair of parents. This operator swaps individual gene-pairs between the parents


with a probability of 0:5. For example, if we take two parents, a and b, both
with chromosomes containing two genes, uniform crossover can be used to generate


two o�spring. The �rst o�spring may have its �rst gene from parent-b and its


second from parent-a. Due to the spectral spreading that occurs with the Fourier


transforms in the image generation, each peak has long tails that spread out in the


axis directions. Although a real-valued chromosome is used, the uniform crossover


is suited to searching the image as individuals often settle onto a tail emanating


from a peak. If the two parents are each lying on di�erent tails of the same peak,


after crossover, the o�spring may lie exactly on the peak. Other recombination
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techniques that create o�spring by combining genes proportionally, are unlikely to


score a direct hit on the peak.


Genes are mutated with a probability of 0.3. This probability will mutate, on


average, approximately one gene per chromosome. The range of the mutation is


governed by equation 2.19. This Non-Uniform mutation [52, Chapter 6] function is


unity initially and progresses to zero at the �nal generation and is used to modify


the maximum deviation from the current gene value, where G is the generation


number and Gm is the maximum number of generations. Initially, the gene can


mutate to any value within its range, but this range is reduced with time. The


range modi�er function forces the genetic algorithm to converge on a solution by


con�ning the o�spring of each subsequent generation to a diminishing region. In the


�nal stages of the algorithm, the mutation range is limited to a very small locality,


forcing the species to converge on the true local optimum. The function shape allows


the genetic algorithm to perform a thorough search in the early generations but still


retain the convergence properties of non-uniform mutation toward the end phase of


the algorithm. The use of a real valued chromosome in this algorithm is due to the


use of this speci�c non-uniform mutation operator. Figure 2.5 depicts the function


shape graphically.


R(G) = 1�
0
@1� cos


�
(G�1)


(Gm�1)
�
�
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Figure 2.5: Mutation range modi�er function


The objective function for the o�spring is calculated as detailed previously, based


on the statistics of the parent population. Policies other than total replacement have


been tried but appear to o�er little bene�t as the objective function is e�ectively


dynamic with the motion of the species. The use of dual chromosomes and a domi-


nance mechanism (diploidy) has been tried to improve the search process by allowing
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species to develop a memory of good peaks they have occupied in the past. The


e�ect was to slow the convergence of the algorithm but no improvements in the


results were noticed, probably due to the low number of generations used in the


algorithm.


The genetic algorithm is terminated after 50 generations and the best overall


individual of each species is recorded as a peak location. The small number of


generations combined with forced convergence has been chosen to give a consistent


execution time. As the algorithm is being applied in an iterative fashion, the re-


quirement is to identify any of the peaks in the image, rather than the highest set.


Therefore the algorithm's ability to identify the global peak in each run is sacri�ced


for speed.


Once the algorithm has terminated, duplicate peaks and any that are within one


spread distance (��) are removed. A range of species is used, each with a di�erent


population size. This range of species sizes introduces a slight bias into the algorithm


where the smaller species are able to move more rapidly than the larger species but


have a weaker hold on any peaks they �nd. The larger species move slowly but are


capable of evicting small species from peaks that are already colonised.


The individual parameters of genetic algorithms are notoriously di�cult to tune.


For parameters such as mutation rate and crossover rate, simple rule-of-thumb set-


tings are often su�cient. Even large variations in these parameters often produce


few noticeable changes in the performance of the algorithm. Typical tuning strate-


gies for the three basic parameters are:


1. Crossover rate { Increasing the crossover rate reduces the rate of algorithm


convergence in the early stages of the run. The chances of convergence on a


local optima are increased. Typically, a crossover rate of unity is used.


2. Mutation rate { Increasing the mutation rate increases the rate of conver-


gence in the latter generations of the algorithm. Increasing the mutation rate


improves the chances of escaping from local optima, but reduces the ability of


the algorithm to converge exactly on any optimum solution. A mutation rate


that will, on average, mutate one gene per chromosome is often chosen.


3. Selective pressure { Reducing the selective pressure slows the convergence


of the algorithm and therefore reduces the chances of premature convergence


on a local optimum. A selective pressure of unity is often used.


4. Population size { Increasing the population size increases the diversity of


genes in the population. The rate of algorithm convergence is reduced but it


is less likely to converge on a local optima.


In the multi-species algorithms, the extra parameters are tuned as follows:


1. Minimum spread distance (�) { This distance is related to the width of


a typical peak in the image. If � is too small, species may settle on the sides


of high peaks. If � is too large, small peaks that are very close to large peaks


may be missed.


2. Shaping Parameter (�) { This parameter determines how brutal the e�ect


of � is. A value for � near unity will allow large species to exist at a distance
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less than � from smaller species. Reducing � will make it more di�cult for


large species to displace smaller species that have already converged on a peak.


3. Number of species { The number of species determines the number of peaks


that can be identi�ed in each run. Increasing the number of species will reduce


the average number of individuals in each species. Smaller species are more


likely to converge on a local optima, rather than search for the highest peaks.


Experiments have shown that up to 25 species with population sizes ranging


from 15 through to 100 provide good results over a range of di�erent images.


Experiments using di�erent population sizes have yielded some interesting re-


sults. By applying a genetic algorithm a number of times to an image in order to


identify the highest peak, the probability of �nding the peak can be established. It


was noticed that as the population size was increased, the probability of �nding the


peak also increased. Trials with di�erent images indicated that the probability was


also related to the relative area that the peak occupied in the image, ie. the larger


the footprint of the peak appeared to be, the easier it was to �nd. This relationship


to area is quite intuitive as the larger the initial random population, the more chance


there is of generating an individual that lies within the footprint of the peak. It was


hypothesised that the probability of �nding the peak is related to the area of the


peak's footprint, relative to the total image area.


The population based incremental learning algorithm described in appendix E


was used in an attempt to prove this hypothesis as the algorithm is very simple and


has few parameters to tune. It has been established that for high values of learning


rate, the probability of identifying the peak, PH , follows a binomial distribution.


This probability is shown in equation 2.20, where p is the size of the population, PH
is the probability of identifying the peak, and P1 is the probability of identi�cation


for a population size of unity (impossible to do with PBIL, it is estimated using


equation 2.20).


PH = 1� (1� P1)
p (2.20)


Further experiments have shown that the probability P1 is related to the footprint


of the global peak. Doubling the area the peak covers appears to double P1. This


result allows the uncertainty that the best peak found is the global optima to be


quanti�ed approximately. The best result found will have an associated probability,


P1. Using equation 2.21, a population size may be calculated that should give a


single run of the algorithm a probability, PG, of hitting a global peak that has


approximately one tenth of the area of the current best peak.


p =
log(1� PG)


log(1� P1=10)
(2.21)


Thus if no other, better, solutions are found, it could be said that there is a proba-


bility, PG, that there are no other solutions to the problem up to a tenth of the size


of the best found.


Unfortunately, at low learning rates, P1 does not remain constant with respect to


population size. The relationship has not yet been identi�ed. The research has not


yet been applied to genetic algorithms but they should behave in a similar manner







CHAPTER 2. SCATTERER LOCATION AND TUNING 30


to PBIL. The work has, however, provided an insight into the operation of the PBIL


algorithm and allowed major enhancements to be made.


Comparing the multi-species genetic algorithm to existing approaches that search


for the highest peak, if we have an algorithm with 750 individuals and run it for 50


generations, it will require 37500 objective calculations. The algorithm can locate as


many peaks as there are species, although a 70% identi�cation rate is more realistic.


For an algorithm with 14 species, if it is applied 10 times to identify 100 scatterers in


a high resolution image, a total of 375,000 accesses are required to the image data.


The conventional iterative model conversion approach accesses nearly 560,000 times


as much image data and generates ten times as many ISAR images to achieve the


same model resolution.


2.6. Fine-Tuning Scatterer Locations


2.6.1. Introduction


With low-resolution images, the scatterer locations generated by the �rst genetic


algorithm may be a signi�cant distance away from the optimum positions. Even


with high resolution data, if two scatterers are very close, the image peak positions


may not be truly aligned with the actual scatterer location [57]. By �ne-tuning the


model, these errors can be reduced. The �ne-tuning process will ultimately result


in the model requiring fewer scatterers to match the target data and so reduce the


burden on the third genetic algorithm.


2.6.2. Tuning Process


The �rst stage in converting the scatterer image details into a point scatterer model


is to register the image with the model. The image registration is achieved by


placing a scatterer at the origin of the model and generating an ISAR image of it.


The highest point in the image will correspond to the scatterer in the model, giving


the image{model zero location, �1 resolution cell. A rough amplitude scaling can


be calculated from the brightness of the peak in the image. Knowing the true image


resolution from equations 2.6 and 2.7, the model position of a point that is a �xed


distance on each axis away from the centre is calculated. The distance chosen must


be related to the position of the centre point so that the peak should not fall outside


the image region. If it does lie outside, an aliased peak will be present, but at a


false location. This second peak allows the image scaling to be be veri�ed and any


scale inversions identi�ed. It is possible for increasing x in the model space to lead


to decreasing x in the image etc.. This indicates that the data ordering has been


reversed in some way and must be corrected. The image{model registration only


needs to be performed once at the beginning of the conversion process.


Once the zero location and scale have been veri�ed, the location of each identi�ed


scatterer in the image can be transformed directly into a point in the model, with an


accuracy of �1 resolution cell. If the images are high resolution, for example greater
than 512 samples in each axis, the resolution induced error will typically be of the


order of a few centimetres or so and therefore close enough for conversion purposes.


The amplitude scale factor derived from the zero registration should also be accurate







CHAPTER 2. SCATTERER LOCATION AND TUNING 31


enough for direct conversion. An image of the model can then be subtracted from


the original ISAR image to reveal the smaller scatterers that have not yet been


located.


If the image is of low to medium resolution, ie. 32 to 512 samples, the error in


the scatterer's location becomes progressively worse as the resolution decreases, and


may ultimately be a few metres. Experience has shown that the amplitude scaling in


these cases may be as much as 100% out. To cope with these images, the raw model


positions must be �ne-tuned in an attempt to reduce positional and amplitude errors.


Figure 2.6 demonstrates the e�ects of a small number of samples on the image of a


scatterer when the scatterer does not align with the sample position. When the peak


of the image coincides with the sample location, the indicated amplitude is accurate.


As the sample point is shifted left or right, the measurement error increases, with


the indicated peak height being less than the actual peak.


Shifted Left Aligned Shifted Right


Figure 2.6: E�ects of mis-alignment between scatterer and sample instant


The following genetic algorithm is designed to adjust the raw scatterer positions


to improve the match to the required image. It should be noted that as the image


resolution decreases, the work of this genetic algorithm increases and the load on


the �rst genetic algorithm for scatterer location is reduced. This shift in processing


load should be adjusted by the designer for each di�erent image type that is to be


processed.


To reduce processing overheads, instead of calculating and comparing full three-


dimensional images, three one-dimensional images are used [46]. These images are


formed by taking data from the three principle axes of the radar cross section pattern


and using a Fourier transform to convert the radar cross section data to range


information. Typically, if the radar cross section data in the region around the


centre of the azimuth, elevation and frequency bands are of most interest, the radar


cross section would be measured �rst at the mean azimuth and mean elevation


and over the full frequency sweep; then at the mean elevation and mean frequency


with a full azimuth sweep etc.. If we have a 64 � 64 � 64 sample image, for full


conversion, 12; 288 Fourier transforms are required. Only three are required if the


one-dimensional approach is used. This major reduction in the processing overhead


is o�set by reduction in the �delity of the error measurements. It has been observed


that the �ne-tune operation is not compromised by the use of a reduced set of data,


although if very low resolution data are used, the processing of the full image is not
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too severe and its use in comparisons may be justi�ed to increase the �ne-tuning


capabilities of the genetic algorithm.


If the tuning process is not perfect, position and amplitude errors in the model


will lead to errors in the image. As the model image is subtracted from the required


image, any peaks in the model that are smaller than they should be will leave a


positive residue peak in the image after subtraction. This smaller scatterer will


be identi�ed in subsequent passes and reduced further. This mode of operation


eventually leads to models with an excess of scatterers. If the scatterers in the


model are larger than they should be or in the wrong position, a negative result


is obtained in these areas of the image after the subtraction process. This error


cannot be corrected in subsequent passes of the algorithm and causes bright spots


in the ISAR image that are too large. The negative error is highly undesirable and


is a problem with any technique that operates by an iterative scatterer subtraction


process.


The problem is addressed in the genetic algorithm by calculating the amount of


overshoot (negative error) and undershoot (positive error) of the �t separately. A


multi-objective approach is used that allows the designer to trade between a slow


�tting process that minimises the undesirable overshoot errors but leads to larger


models, through to a less stringent �tting scheme that minimises undershoot and


therefore uses less scatterers, at the expense of ISAR image accuracy. Alternatively


a compromise can be drawn between the two objectives that attempts to minimise


the negative error problems without creating a large model.


2.6.3. Non-dominated Ranking


A Pareto Optimal Set of results [51, Pages 197{201] may be formed where no one


solution is better than any other in both objectives. These solutions are said to be


Non-Dominated as no one solution can be chosen in preference to the others based


on the two objectives alone. There exists a single Pareto optimal set of solutions to


the problem. At any intermediate stage of optimisation, a Pareto set of results will


have been identi�ed. This set may or may not be the optimal set.


A non-dominated ranking method [58] is used in the genetic algorithm to generate


and maintain a Pareto set of results. Conventional genetic algorithms often use a


ranking method where the calculated objective values are sorted and assigned a rank


that is dependent only upon their position in the list, rather than their objective


value. The ranking operation helps to prevent premature convergence of the genetic


algorithm. The non-dominated ranking system operates by �rst identifying the


non-dominated solutions in the population and assigning them a rank of one. These


solutions are removed from the population and the non-dominated solutions in the


remaining set of individuals are then identi�ed, this time assigning a rank of two etc..


The ranking process is continued until all of the individuals have been accounted for.


Once all the individuals have been classi�ed, a dummy value (1 in this algorithm)


is assigned to all the solutions with rank one. The sharing process detailed in


section 2.5.1 is applied to these individuals, reducing their assigned value if they have


near neighbours (on a chromosome level). The sharing process ensures that a spread


of solutions is obtained across the Pareto front. The minimum value assigned to the


level one solutions is identi�ed and then reduced slightly (by 1%). This reduced
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value is then used as the dummy value for the level two solutions and so on. The


resulting objectives are intended to be used with a maximisation strategy.


The conventional ranking and selection processes are then applied as normal to


the objective obtained by the non-dominated ranking and sharing operation. An


elitist strategy is developed that preserves an entire Pareto front of P solutions from


generation to generation. To maintain a working population of N individuals, the


Pareto set from the previous generation is concatenated with the working population


and then N o�spring are generated from the N + P parents. After evaluation, the


o�spring become the new working set of individuals. The new Pareto set is calculated


from the population of solutions that results from concatenating the new working set


of individuals and the old Pareto set, thus choosing the best from the new solutions


and old Pareto front. The number of solutions that comprise the Pareto front, P , is


dynamic. Kumar and Rockett [59] discuss procedures that may be used if assurances


are required that the true Pareto optimal set of solutions has been identi�ed.


2.6.4. Algorithm Construction


A real valued chromosome is used and is held in a matrix structure that has four


columns corresponding to [�x �y �z a] , where �x, �y and �z are o�sets


from the raw scatterer position and a is the amplitude. The chromosome matrix


has the same number of rows as the number of scatterers identi�ed in the scatterer


location algorithm. The positional o�sets are limited to �1:25 resolution steps and


the amplitude is allowed to range from zero to 50% larger than the largest identi�ed


scatterer. In the phenotypic space, the scatterers corresponding to each chromosome


are concatenated to the previously identi�ed model before the images are generated.


For an image resolution of 64 samples on each axis, the algorithm would be run with


typically 100 individuals and for 500 generations.


Equations 2.22 and 2.23 show the two objectives that are used in the �tting


process, where E(x; k), de�ned in equation 2.24, is the error between the required


image, I(k), at point k and the image of the model, M(x; k), for solution x; N is


the number of points in the image; O1(x) is objective one and is a measure of mean


squared overshoot; O2(x) is objective two and describes undershoot. The objectives


are both to be minimised to establish the Pareto front.


O1(x) =
1


N


NX
i=1


(
0 E(x; i) > 0


E(x; i)2 E(x; i) < 0
(2.22)


O2(x) =
1


N


NX
i=1


(
E(x; i)2 E(x; i) > 0


0 E(x; i) < 0
(2.23)


E(x; k) = I(k)�M(x; k)jk=1:::N (2.24)


The �tness function as de�ned in equation 2.17 is applied but with a selective


pressure of s=1. This selective pressure gives the maximum bias towards the most


�t solutions. Stochastic universal sampling is used to select N individuals from the


N + P set described previously. Uniform crossover is applied where parts of the


paired chromosomes are exchanged. A �xed mutation rate of 0.25 is applied along


with non-uniform mutation as described previously in section 2.5.2.


At the end of the algorithm, one solution is chosen from the Pareto set. Which


solution is chosen is determined by the design strategy that is being employed. A
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slow but accurate method will chose the solution where O1 is the smallest (least


overshoot) while a less stringent strategy will pick the solution that minimises O2


(least undershoot).


2.7. Fitting Cycle Termination


After each �ne tuning phase, the model is tested to establish if enough scatterers


have been identi�ed to allow the �tting cycle to end and the reduction phase to begin.


Scatterer amplitudes and phases are �tted using a Constrained Least Squares process


(appendix C) in an attempt to match the required radar cross section pattern.


The Kolmogorov{Smirnov statistical test (appendix D) is applied to establish the


accuracy of the model. This test gives a measure of statistical similarity that is


independent of the amount and mean amplitude of the radar cross section data used


in the comparisons. If the radar cross section of the model does not �t the required


data, an image is generated from the model and this image is subtracted from the


original image. This process removes the scatterers that have been identi�ed. The


new image is then passed back to the �rst genetic algorithm to identify a new set of


peaks.







3. Model Reduction


3.1. Introduction


The process of model �tting can yield models with large numbers of scatterers.


This large amount of model data can create extended simulation times. If it is


accepted that a measured or calculated radar cross section will never be a perfect


representation of the real target [28, 40], small degradations in data �delity are


acceptable. Therefore, if some of the scatterers in an n-point model are removed, it


should be possible to re-adjust the model to give an approximation to the desired


radar cross section. As the model is used thousands of times in a typical engagement,


any reduction in model size is bene�cial. This chapter �rst describes and discusses


the di�erent approaches to reducing the number of scatterers in the model. It then


proceeds to describe the methods using genetic algorithms and population based


incremental learning in detail. The chapter concludes with the results of applying


the complete extraction process to 2D and 3D ISAR data.


3.2. Methods


Four di�erent approaches have been investigated.


1. Exhaustive Search { For a small model with twenty scatterers, there are


220 = 1048576 possible combinations to search to �nd the optimum solution.


Finding the optimum is guaranteed, but an exhaustive search of all possible


model combinations is often impractical. Increasing the model by just one scat-


terer doubles the search space. Exhaustive searching of a twenty-point model


took two days of processing on a desktop PC. A �fty-point model would take


nearly six million years to search. The exhaustive search process is thorough


but extremely slow.


2. Iterative Method { The approach is to throw out the scatterer that has the


least e�ect at each iteration. The method is very fast but unlikely to choose


the best models as reduction progresses; the radar cross section is governed


by scatterer interactions [60, Page 38][61] and a small scatterer may have


little e�ect on its own but may be dominant when paired with another similar


scatterer. For very small models (� 5 scatterers), the iterative method will


produce satisfactory results.


3. Multi-objective Stochastic Optimisation { Stochastic combinatorial opti-


misation techniques such as genetic algorithms are used to �nd the best model


for a given number of scatterers. The algorithms are allowed to generate mod-


els of all sizes for evaluation but eventually converge on models of the correct


35
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size. Algorithms that track the current best models for all sizes may be used.


The method is relatively slow but does not su�er from the exhaustive searches


exponential increase in processing for increasing model size.


4. Encoder Function with Stochastic Optimisation { A function is used


that generates model patterns with the correct number of scatterers. This


function is used with a stochastic optimisation technique such as population


based incremental learning or genetic algorithms. The process is repeated for


each model size. The advantage with this technique is that processing time is


not wasted in generating models with an inappropriate number of scatterers.


In all the methods, the scatterer locations in the trial model are kept �xed,


and magnitudes and phases are �tted using the constrained least-squares method


(appendix C). The constraint value used is the norm of the original model that


is being reduced. The radar cross section pattern is �tted over a de�ned region


of optimisation. This region may be a narrow-angle azimuth or elevation sweep,


through to data measured from a set of random positions covering 4� steradians.


The cost performance of each trial model is calculated by �tting weightings to


the selected scatterers and then generating the N radar echo data samples for the


region of optimisation. The mean squared error of the radar echo from the trial


model compared with the original required radar echo is calculated by applying


equation 3.1, allowing the e�ects of the reduction to be monitored for the current


region of optimisation. Where r(x)i is the radar echo of model x at point i, gi is the


required radar echo at point i, and N is the number of data samples.


Oe(x) =
1


N


NX
i=1


jr(x)i � gij2 (3.1)


For large models, the time taken to calculate the new scatterer weightings will


be the dominant processing overhead. When the evolutionary algorithms are close


to convergence, they tend to repeatedly generate the same small set of solutions


at each generation. The speed of the evolutionary algorithm based methods may


be improved by storing past scatterer patterns and their associated objective costs.


These data may be maintained in a tree structure for fast retrieval (detailed in


section E.3).


Table 3.1 demonstrates the processing requirements of the di�erent reduction


methods. For very small models (� 5 scatterers), the iterative approach will provide


near-optimal results in the fastest time. The iterative method will not produce good


results for larger models, although it can be used to produce an approximate set


of results for seeding the genetic algorithm method. A model of �fteen scatterers


or less is best reduced using an exhaustive search as the stochastic techniques are


ine�cient at small model sizes. For models containing up to two hundred scatterers,


multi-objective genetic algorithms that can maintain a set of solutions are the most


useful. For models with more than two hundred scatterers, the encoder function


method may be used to generate a small subset of reduced models. The use of


encoder function alleviates the need for all the model sizes to be evaluated.
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Number of Calculations


Model Size Iterative Exhaustive GA/PBIL


n n(n+ 1)=2 2n {


5 15 32 � 2; 000


15 120 32768 � 40; 000


50 1275 1:3� 1015 � 50; 000


Table 3.1: Comparison of di�erent reduction methods


3.3. Reduction Using a Multi-objective Genetic Algorithm


A n-bit chromosome has been used to de�ne the model structure, where n is the


number of scatterers in the model. Each bit corresponds to a scatterer. If a bit


is `1', the corresponding scatterer is present in the model, if it is `0', the scatterer


is omitted. The number of active scatterers in the model is calculated using equa-


tion 3.2, where �(x)i is gene i in the chromosome of individual x. This number is


used along with the radar echo error cost in equation 3.1 to generate a Pareto set


of results where model size is traded against reproduction accuracy.


Os(x) =
nX
i=1


�(x)i (3.2)


The non-dominated ranking methods described in section 2.6.3 are used to maintain


the Pareto population. A selective pressure of s=1 is used. Multi-point crossover


[48, Page 13] is used to generate two new o�spring from each pair of parents with a


crossover rate of 0.8. The crossover rate value has been determined empirically to


give good performance for a range of model sizes.


The genetic algorithm is terminated after 500 generations and the best overall


individual is recorded as the solution. A population of 100 individuals has been


used to reduce a 50 point model, therefore giving 50,000 objective calculations to


generate a Pareto set of results.


3.4. Reduction Using Encoder Function and PBIL


The encoder function is designed to generate a series of models that all have the same


number of scatterers. A recursive algorithm has been developed that allows scatterer


patterns to be generated quickly. Using the encoder function, the optimisation


algorithm optimises a pattern description rather than the model structure itself.


For example, if we take a source model with six scatterers and we wish to �nd a


model with three scatterers, there are twenty model combinations that have exactly


three scatterers active. In the genetic algorithm approach described previously,


the chromosome would contain six bits and would describe the model structure


directly. Six bits give 26 = 64 possible models, of various sizes, to search. With the


encoder function, the chromosome would describe a pattern number in the range


1 � p � 20. The pattern number would be converted to a unique model description


that contained exactly three scatterers. Thus the optimisation surface is one third
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of the size. The number of possible patterns is given by equation 3.3, where the


original model size is denoted by n, and the required number of scatterers by r.


No. of possible patterns,


 
n


r


!
=


n!


r!(n� r)!
(3.3)


The algorithm functions by creating a default model description with all the set


bits to the left and then adjusting the position of the rightmost set bit. As the


rightmost bit is moved to the right, the remaining pattern to the left can be treated


as a smaller sub-string. The number of combinations of the bits in the sub-string


may be calculated using equation 3.3. A running total of generated model patterns


is maintained. This total is continuously compared to the required pattern number.


Each sub-string is evaluated to determine if the required pattern lies within it. If


it does, the sub-string is processed, else the number of patterns in the sub-string is


added to the running total and the sub-string skipped. If the substring is skipped,


the rightmost bit of the current pattern is moved again to the right and the new


sub-string to the left of the bit is processed. The patterns are processed recursively


until the running total matches the required pattern number.


For example, if we have a six scatterer model (n = 6), and we require a model


with three scatterers (r = 3) that corresponds to pattern number nine (p = 9)


(where 1 � p �
 
n
r


!
), we begin by setting up the default model pattern shown


below. The initial model pattern starts with r set bits and (n�r) zeros, all the set
bits to the left and the zeros to the right.


1 1 1 0 0 0| {z }
n=6;r=3


There is only one combination of the two bits to the left of the rightmost set bit.


The total number of patterns expressed, T , is one (T = 1). The total is less than p
so the pattern is skipped and the rightmost set bit is shifted to the right.


1 1 1 0 0 0| {z }
n=6;r=3


�! 1 1 0| {z }
n=3;r=2


1 0 0


The sub-string created to the left of the rightmost set bit has


 
3


2


!
= 3 combinations.


The number of combinations would make the running total T = 4. The total is


less than the required pattern number p = 9, so the sub-string is skipped and the


rightmost set bit is shifted again. The running total is updated to T = 4.


1 1 0 1 0 0 �! 1 1 0 0| {z }
n=4;r=2


1 0


The sub-string created has


 
4


2


!
= 6 combinations. Skipping the sub-string would


make the running total T = 10. As the required pattern number, p = 9, is less than


T = 10, the sub-string should be evaluated. The running total is kept at T = 4.


There is only one combination of the one bit to the left of the rightmost set


bit of the sub-string. This pattern will make T = 5. The total is less than the
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required pattern p = 9 and so the pattern is skipped and the rightmost set bit of


the sub-string shifted.


1 1 0 0 1 0 �! 1 0|{z}
n=2;r=1


1 0 1 0


Here T = 5 and there are


 
2


1


!
= 2 combinations. The pattern is not in this interval


so the rightmost set bit of the sub-string is moved and T is updated to T = 7.


1 0 1 0 1 0 �! 1 0 0| {z }
n=3;r=1


1 1 0


Here the current total number of patterns skipped is T = 7 and there are


 
3


1


!
= 3


combinations of the sub-string. The required pattern, p = 9, lies in this interval.


As r = 1, ie. only one bit left, the bit may be positioned directly, giving the �nal


pattern for p = 9.


0 1 0 1 1 0


Using the encoder function, all the models generated will have the same number of


bits.


In the model reduction algorithm, the encoder function is used to convert each


trial solution from a genotypic pattern number to a phenotypic model representa-


tion. Weightings are �tted to the scatterers in the trial model using the constrained


least squares technique. The radar cross section pattern and the cost function, equa-


tion 3.1, are then evaluated for the trial solution. Care must be taken to ensure that


the calculation of the number of combinations (equation 3.3) can be held to full


precision in the internal representation of the computer. The maximum number of


combinations occurs at r = n=2. The machines precision may limit the maximum


model size unless precautions are taken to handle the large numbers properly.


Population Based Incremental Learning (appendix E) may be used to �nd the


optimum pattern number. The algorithm is simple but very powerful and requires


much less tuning than genetic algorithms. The algorithm operates by using the best


pattern from a population of trial solutions to update a prototype vector , from which


the next population of trial solutions is generated. The prototype vector has the


same number of elements as there are bits in the genotypic representation. Each


element represents the probability of generating a `1' at that bit position when the


next population is generated. The elements of the prototype vector all begin at a


value of 0:5 and are increased or decreased depending on whether the corresponding


bit in the best solution was `1' or `0'. The algorithm terminates when all the elements


of the prototype vector have converged to a level near zero or one.


Two main parameters are used to control the algorithm. The �rst, learning rate,


lies in the range zero to one and determines the �nal accuracy of the solution. The


lower the learning rate, the less likely it is that the algorithm will converge on a


local optimum. With high learning rates, the algorithm will be less likely to do a


comprehensive search of the optimisation surface. Low learning rates take far more


function evaluations before convergence than high learning rates. Typical learning


rates lie in the range 0:1 � l � 0:4.
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The second, and most important parameter, is population size. Population size


determines the probability that the algorithm will �nd the global optimum. Increas-


ing the population size will increase the chances of �nding the optimum solution,


though it will also increase the number of function evaluations required.


Trials for a small model have demonstrated that for a learning rate of 0:25 and


a population size of twenty, the optimum combination of 15 scatterers out of a


twenty scatterer model can be found with a hit rate of approximately 70% (average


of 10 trials). An average of 1276 function evaluations were used. There are 15; 504


possible patterns, therefore the method is approximately 12 times faster than the


exhaustive search in this experiment.


3.5. Model Extraction Results


3.5.1. Introduction


To satisfy the objectives detailed in section 1.5.1, two example trials are presented.


The �rst trial was run on measured two-dimensional data and the second on a


simulated three-dimensional image. The strategy used for �ne-tuning in both trials


was to try to �nd an average solution. The particular solution chosen is the one


that minimises the sum of the normalised objective terms. For each objective,


the minimum and maximum values are found from those individuals in the Pareto


set. These limiting values are used to normalise the objective values to lie in the


range zero to one. The normalised values are then summed for each individual.


The individual which has the lowest sum is chosen. The non-dominated ranking


genetic algorithm was used for both reduction phases. A limit of 300 scatterers


was imposed in both trials. In both cases, the radar cross section data used in the


�tting process were derived from the same source as the 1D ISAR images described


previously in section 2.6.2. These azimuth, elevation (3D only) and frequency traces


are concatenated to form a single pattern to match.


3.5.2. Two Dimensional Image


The two-dimensional data were measured from a real target at zero elevation and


with the image conditions speci�ed in table 3.2, where range resolution and total


range are in metres. The results were obtained with the genetic algorithms operating


under the conditions shown in table 3.3.


Range Res. Total Steps Sweep Range


Slant 0.2986m 76.44m 256 2.5GHz : 3GHz


Cross 0.2963m 18.96m 64 �5:1� : 5:4�


Table 3.2: Conditions for ISAR image generation (2D)


The �rst �tting stage comprising GA-1 and GA-2 required 38 iterations to locate


174 scatterers with radar cross section K{S signi�cance of � = 0:9. Figure 3.1 shows
the locations of the scatterers and �gure 3.2 shows the original ISAR image. It
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Parameter GA-1 GA-2 GA-3


Maximum Generations 50 100 300


Total No. Individuals 100 20 25


No. of Species 7 1 1


Selective Pressure 0.8 1.0 1.0


Crossover Rate 1.0 1.0 0.8


Mutation Rate 0.3 0.25 0:5=n


Non-uniform Mutation yes yes no


Minimum Share dist., � 3 10 1


Share Shaping, � 0.5 1.0 1.0


Table 3.3: Operating conditions for genetic algorithms (2D)
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Figure 3.1: Scatterer locations (2D)
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Figure 3.2: Original ISAR image (2D)
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is quite apparent that the scatterer locations follow closely the form of the ISAR


image. The image is presented in its full form with the area of interest con�ned to


the lower half. The image scale and positioning is determined by the original target


con�guration and angle and frequency sweeps used to collect the data. As Fourier


transforms are used to create the image from the cross section data, cropping the


set of data will only alter the resolution of the image. The targets spatial extent


and relative location in the image will remain unchanged.


The third genetic algorithm was then used to generate a set of smaller models.


Figure 3.3 shows the set produced after 300 generations of GA-3. The cost function
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Figure 3.3: Set of reduced models (2D)


used is as de�ned in equation 3.1. Although the cost function is a good means of


quantifying the error between the model and the required radar cross section, it is


di�cult to gauge the optimum model size to use. Figure 3.4 shows the the results


of the K{S statistic when applied to the reduction set. It is clear that the best


identi�ed model has 128 scatterers as the � = 0:9 signi�cance level is maintained.


Allowing GA-3 to run for more generations would eventually provide a smoother


K{S curve but may not improve on the model size. The option to terminate the


algorithm early is left to the designer.
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Figure 3.4: K{S signi�cance of reduced models (2D)
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Figure 3.5 shows the scatterer locations in the reduced model. The radar cross


section of the model (solid) compared to the required cross section (dashed) is shown


in �gure 3.6. The ISAR image of the model is shown in �gure 3.7.


−6 −4 −2 0 2 4 6 8 10
−20


−15


−10


−5


0


5


Cross Range, Metres


S
la


nt
 R


an
ge


, M
et


re
s


Scatterer locations (128 points)


Figure 3.5: Scatterer locations of reduced model (2D)


Thus, despite having a resolution of approximately 30 centimetres, models can


be generated that have a reasonable number of scatterers and still approximate the


targets radar cross section.


3.5.3. Three-Dimensional Image


The three-dimensional test data were generated from a semi-random model con-


sisting of �fty scatterers based on the scatterer locations of the model identi�ed


in section 3.5.2. This model is de�ned as the �fty-point truth model and is de-


scribed in appendix B. The image was generated using the conditions speci�ed in


table 3.4, where range resolution and total range are in metres. The following results


were obtained with the genetic algorithms operating under the conditions shown in


table 3.5.


The �rst �tting cycle required 24 iterations to identify 173 scatterers that gave


a �tted radar cross section to a K{S signi�cance level of � = 0:9. The third genetic
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Figure 3.6: Radar cross section of reduced model (2D)


Range Res. Total Steps Sweep Range


Slant 0.3845 24.61 64 10.8 : 11.2 GHz


Cross, Az 0.3906 25.00 64 �1� : 1�
Cross, El 0.3906 25.00 64 �1� : 1�


Table 3.4: Conditions for ISAR image generation (3D)
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Figure 3.7: ISAR image of reduced model (2D)


Parameter GA-1 GA-2 GA-3


Maximum Generations 50 500 500


Total No. Individuals 750 100 150


No. of Species 10 1 1


Selective Pressure 0.8 1.0 1.0


Crossover Rate 1.0 1.0 0.8


Mutation Rate 0.3 0.25 0:5=n


Non-uniform Mutation yes yes no


Minimum Share dist., � 3 10 1


Share Shaping, � 0.5 1.0 1.0


Table 3.5: Operating conditions for genetic algorithms (3D)
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algorithm was then applied to obtain a set of reduced models. Figure 3.8 shows the


set produced after 500 generations of GA-3. Figure 3.9 shows the the results of the


K{S statistic when applied to the reduction set. It is clear that the best identi�ed
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Figure 3.8: Set of reduced models (3D)


model has 88 scatterers as this model gives an acceptable � = 0:9 signi�cance level.


Again it is up to the designer to decide how long the reduction algorithm should be


run for. The smallest model of suitable �delity should always be used to minimise


the engagement simulation times. Figure 3.10 shows the scatterer locations in the


reduced model. The radar cross section of the model (solid) compared to the required


cross section (dashed) is shown in Figure 3.11.


3.6. Conclusions


Attempts to solve this model identi�cation problem with one large algorithm have


proved fruitless. This lack of success suggests that sometimes the application of


many small genetic algorithms may be preferable to using one large and complex one.


The multiple algorithm approach is robust and will provide repeatedly a solution


to the problem; even though some of the algorithms are forced to converge, thereby
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Figure 3.9: K{S signi�cance of reduced models (3D)
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Figure 3.10: Scatterer locations of reduced model (3D)
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Figure 3.11: Radar cross section of reduced model (3D)
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limiting their potential. Forced conversion gives more uniform results with respect


to job execution times.


The �tting process is not exceptionally fast, especially on a small system. It


does, though, allow results to be obtained that would otherwise not be achievable.


When large problems are being tackled, there is no requirement for all the data to


be rapidly accessible or even all stored on the same machine. The ability of the


algorithms to operate on low and medium resolution data is a signi�cant advantage


over existing model extraction techniques.







4. Model Integration


4.1. Introduction


This chapter covers the integration of the point scatterer and seeker models into


the engagement scenario. The construction of point scatterer models is described


�rst. Monopulse principles and target glint are introduced and the seeker models


de�ned. The engagement model and missile operation are covered and then miss


distance and trial conditions are discussed. Finally, the results of the proving trials


are presented.


4.2. Point Scatterer Models


4.2.1. Introduction


The radar cross section of a basic point scatterer model at wavelength � may be


de�ned as shown in equation 4.1.


�T =


�����
nX
k=1


p
�k e


j


�
4�d


k


�


������
2


(4.1)


The total radar cross section of the target, �T , is de�ned as the square modulus


of the coherent sum of the echos from the n scatterers, each scatterer with its own


radar cross section, �k and at a distance dk from the observation point [15, Page 23].


The sum of the echos is a complex quantity with units of volts. The radar cross


section is a scalar with units of square metres.


For high �delity representation, many scatterer models are created, each one


being valid for some small solid angle segment. The models are combined using a


Binary Space Partition Tree structure [62, Pages 675{680][63] allowing the correct


point scatterer model to be retrieved rapidly for any aspect angle. The structure


allows the models generated for small aspect angles and frequency ranges to be


combined to cover a larger region of interest. Azimuth and elevation are normally


the main decision variables used to generate the tree but models that vary with


frequency, range and polarisation for example, can be easily incorporated. Point


scatterer models that do not all have the same coverage angle may be incorporated


into the tree structure.


4.2.2. Binary Space Partition Trees


Space partition trees are designed to split an object into its component parts in a


manner that makes them easily retrievable. If an object is split into N components,


on average log2(N) tests must be performed to establish the correct component part


53
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to be used. For example, if an object has 1000 component parts, an average of just


under 10 tests must be performed. If we have the example object space shown in


�gure 4.1, the components 1 , 2 and 3 can be separated by the two lines a and b.


The test procedure will be to determine whether the viewing position lies either to


the front or reverse side of the partitioning line under consideration (arrows on �gure


indicate front of line). Although �gure 4.1 shows the partitioning of a two dimen-


sional space, the binary space partition tree technique will extend to n-dimensional


space, where the sub-spaces are divided by a structure of n�1 dimensions. There-


fore a three dimensional world will be partitioned by two dimensional structures,


ie. planes.


The tree is constructed by recursively splitting the model into sub-spaces using


partition lines de�ned by the junctions between the models. Components which lie


on the front side of the partitioning line are placed in the left branch of the tree. The


components in the remaining sub-space are placed in the right branch. Figure 4.2


shows the complete tree for the components in �gure 4.1.


In a typical model, azimuth can be de�ned as running from �180� to +180� and
elevation from �90� to +90�. We may then have a partitioning line de�ned as being,


say, 5� in azimuth. If the front side of the line is de�ned as being increasing angle,


the models may be split about this line forming the �rst division of the tree. Each


branch is then further sub-divided until there is only a single model at each node.


During run-time, the �rst test made will be to check if the missile position relative


to the target is greater than 5�. If it is, the left branch of the tree is traversed, else


traverse the right side.


Care must be exercised when generating the models to pay particular attention


to matching the radar cross section pattern at the edge of the model. If the edges of


the models di�er wildly where they overlap, discontinuities may appear in the data.


Observations have shown that these discontinuities will often appear as small glint


spikes in the engagement. ISAR images are unlikely to be a�ected noticeably by


this problem.


Figure 4.1: Partitioned model
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Figure 4.2: BSP Tree for �gure 4.1


4.3. Monopulse Seeker Models


4.3.1. Introduction


Target tracking is not a simple problem. Many di�erent methods have been devised


to locate and track a target through space. In tracking radars, the antenna-beam


axis, or bore-sight, is kept aligned with the target direction. If the target deviates


from the bore-sight, or the antenna moves away, an error signal is generated whose


magnitude is roughly proportional to the amount of deviation, and whose sign indi-


cates the direction of the error. The error signal is then used to drive the antenna


back towards the target.


The Monopulse technique generates error signals for each active radar burst, or


will passively track a signal source. This passive mode of operation renders the


monopulse seeker impervious to simple jamming techniques. The missile systems


under consideration in this thesis are designed to use monopulse seekers.


Monopulse radars can be broadly classi�ed as either amplitude comparison or


phase comparison. Amplitude comparison involves comparing the received signal


strength from four simultaneously generated squinted beams. The phase of the


signals from each of the beams will ideally be the same. The angular error is formed


by dividing the di�erence between a pair of beams by the sum of all the beams.


Figure 4.3 shows a planar representation of two of the beams.


Phase comparison monopulse uses four overlapping beams that each have a


slightly di�erent phase centre, therefore each beam ideally receives signals of the


same amplitude but di�ering in phase. The phase di�erence is then used to gener-


ate the bore-sight error.


In practice, for amplitude comparison, if the four antennas are arranged as


3 1


4 2


and �n indicates the appropriate echo voltage, then equation 4.2 details the horizon-


tal and vertical di�erence signals.


dH = (�3 + �4)� (�1 + �2) Horizontal Di�erence


dV = (�1 + �3)� (�2 + �4) Vertical Di�erence
(4.2)
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Amplitude Comparison


Bore-Sight


Phase Comparison


Bore-Sight


Figure 4.3: Monopulse beam patterns


The underlying principle behind phase-comparison monopulse tracking is based


on detecting the incidence angle of the received phase front. If it is assumed that


the target is a single-point, isotropic reector, the normal to the received phase


front local to the monopulse receiver will always point at the centre of the target.


Di�erentiating the observed phase front will give the normal to the phase front and


thus the target direction can be derived. Figure 4.4 illustrates the location process


graphically.


Figure 4.4: Locating target by observing phase front


4.3.2. Glint and Bore-Sight Error


The perfect target is a single isotropic scatterer. If the target is more complex, ie.,


two or more scattering centres, the phase front may not be spherical and may have


discontinuities and variations. These variations are due to the interference of the


wavefronts. The Glint Distance is the apparent shift of the target position due to the







CHAPTER 4. MODEL INTEGRATION 57


normal to the phase front not being directed towards the target centre. Figure 4.5


shows the glint distance, x, graphically.
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Figure 4.5: Graphical representation of glint distance


If we have a phase comparison monopulse seeker, with the two radar heads


separated by a distance l as shown in �gure 4.5, the phase di�erence �� observed in


the radar echo may be related to a physical o�set distance v by equation 4.3. One


wavelength, �, corresponds to a phase change of 2� radians.


v =
���


2�
(4.3)


The apparent target o�set, or Glint Distance, x, is described by the line-of-sight


o�set angle �� and related to the seeker head and engagement geometry as shown


by equation 4.4.


�� = tan�1
�
v


l


�
= tan�1


�
x


r


�
(4.4)


Therefore, the glint distance x may be calculated as in equation 4.5.


x =
rv


l
=
r���


2�l
(4.5)


If the observation angle � as shown in �gure 4.5 is small, then by the small


angle assumption that sin ( ) �  , the separation, l, may be described as l = r� 
and therefore the glint distance may be de�ned as being proportional to the rate of


change of phase with respect to view angle as shown in equation 4.6.


x =
�


2�


��


� 
' �


2�


d(�)


d 
(4.6)
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In a practical monopulse seeker head, extracting phase di�erence information


is di�cult due to system noise and receiver imbalances. In phase comparison


monopulse, it is assumed that the radar heads have near identical beam patterns


but di�erent phase centres. If we have two received complex signals, p and q, they


may be described as in equation 4.7.


p = mej�p


q = mej�q
(4.7)


where m is the signal magnitude and �p, �q are the two signal phases.


If the complex di�erence of the two signals is evaluated, and then divided by the


complex sum, a de�nition for bore-sight error, be, is obtained. This de�nition is


shown in equation 4.8. The result is purely imaginary and is governed solely by the


phase di�erence between channels p and q.


be =
mej�p �mej�q


mej�p +mej�q


=
(cos (�p)� cos (�q)) + j(sin (�p)� sin (�q))


(cos (�p) + cos (�q)) + j(sin (�p) + sin (�q))


=
2j(cos (�q) sin (�p)� cos (�p) sin (�q))


2 + 2(cos (�p) cos (�q) + sin (�p) sin (�q))


be =
j sin (�p � �q)


1 + cos (�p � �q)
(4.8)


Equation 4.9 shows a similar result derived for amplitude comparison monopulse


systems. Here the squinted beams have a common phase centre giving a purely real


bore-sight error.


be =
mp �mq


mp +mq


(4.9)


It is possible to create the di�erence and sum signals within the waveguide sec-


tion of the radar head and they are therefore less sensitive to imbalances and drift.


The seeker head is consequently lighter and consumes less power with the passive


processing of the signals [64, Pages 66{84]. Figure 4.6 shows bore-sight error signal


with respect to angle for a phase comparison monopulse seeker with a 12cm sepa-


ration between phase centres. The normal region of operation is usually along the


near-linear section of �2�. Figure 4.7 shows the bore-sight error signal with respect


to angle for an amplitude comparison monopulse seeker with a beam-width of 3�.


In practical systems, the assumptions that the phase front is linear across the


seeker head, that the signals from a phase comparison system have the same am-


plitude, and that amplitude comparison systems have a common phase centre, do


not often hold. The breakdown of the assumptions leads to bore-sight error signals


that are complex instead of being purely imaginary or purely real. The previous


calculations may be performed for a situation where the received signals are de�ned


as in equation 4.10
p = mpe


j�p


q = mqe
j�q (4.10)
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Figure 4.6: Bore-sight error signal with respect to angle (Ph. comp.)
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Figure 4.7: Bore-sight error signal with respect to angle (Amp. comp.)
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where mp, mq are the signal magnitude and �p, �q are the two signal


phases.


Equation 4.11 shows the actual bore-sight error signal.


d


s
=


m2
p �m2


q


m2
p +m2


q + 2mpmq cos (�p � �q)
+


j2mpmq sin (�p � �q)


m2
p +m2


q + 2mpmq cos (�p � �q)
(4.11)


Table 4.1 summarises the e�ects on the monopulse system.


Condition Real Part Imag. Part Comment


mp = mq 0
sin (�p��q)


1+cos (�p��q)


Ideal Phase


Comparison


�p = �q
mp�mq


mp+mq


0
Ideal Amplitude


Comparison


<
�
d
s


�
= 0 0


2mpmq sin (�p��q)


m2
p
+m2


q
+2mpmq cos (�p��q)


Actual Phase


Comparison


=
�
d
s


�
= 0


m2
p�m


2
q


m2
p
+m2


q
+2mpmq cos (�p��q)


0
Actual Amplitude


Comparison


Table 4.1: E�ect of non-ideal signals


Figure 4.8 shows typical phase-comparison bore-sight error plots with respect to


both angle and range. The plots are derived from a twenty point model, viewed


from broadside at 10GHz. Plot a shows the bore-sight error signal when the target


rotates by 2� at 1Km. The plot is sampled at 400-points per degree. Plot b is


the same rotation but at 100 metres. Figure 4.6 shows the relationship between


bore-sight error signal and bore-sight error angle. A bore-sight error signal of unity


is approximately equivalent to a 2� angle error, therefore, many of the glint spikes


represent signi�cant errors to the seeker head. The two plots demonstrate how the


glint errors become worse as range decreases.


Plot c shows the horizontal bore-sight error signal as range decreases. The plot


has a resolution of 1 metre and the target is stationary, with the missile approaching


at 90�, ie. broadside. The model used has a twenty metre nose-to-tail span. The �rst


glint spike is noticeable at a range of around 2Km for the horizontal bore-sight error.


It is clear that the glint becomes much worse in the last 500 metres. The increased


noise levels make guidance very di�cult in the engagement end-game. Plot d shows


the vertical bore-sight error signal as range decreases. The maximum vertical sep-


aration of target scatterers though is only four metres, leading to a reduced range


over which the glint uctuates and grows rapidly. These characteristics of glint are


detailed further in section 6.4.
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(b) Horizontal Boresight Error WRT angle, 100 metre range
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(c) Horizontal Boresight Error WRT range, Broadside Encounter
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(d) Vertical Boresight Error WRT range, Broadside Encounter


Figure 4.8: Typical bore-sight error signals
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4.3.3. Seeker model Orientation


The seeker model takes target and missile positions and orientations along with


relevant point scatterer details and produces the horizontal and vertical seeker error


signals for the missile model. The target is de�ned as lying in target axes: the target


wings lie in the x{y plane with the fuselage parallel to the x axis and tail upward. A


right handed coordinate system is used with all objects being de�ned with the origin


at their centre and increasing x running from tail to nose. The choice of the object


centre is arbitrary but the object's geometric centre is often a convenient choice. If


the object is viewed head-on, increasing y will be from left to right. Increasing z is


de�ned as upward. The missile location and orientation is transformed from world


to target axes, thereby preserving their relative alignment and allowing the radar


cross section to be calculated without rotating the position of the target scatterers.


The rotations are performed using Unit Quaternions (see Appendix A) as they


allow a rotation about an arbitrary axis in space to be de�ned easily. The target and


missile position and orientation are passed as [ x y z ] coordinates and rotation


angles in a vector:


2
6664


Targetz }| {
[ x y z ]  T �T �T ;


Missilez }| {
[ x y z ]  M �M �M ;


Antennaz }| {
 A �A


3
7775


where  ; � and � are as shown in �gure 4.9.


z


x
y


φ
ψ


θ


D


Figure 4.9: Coordinate system


All [ x y z ] coordinates and target and missile orientations (  T ; �T ; �T and


 M ; �M ; �M) are de�ned relative to the world axes. Antenna orientation  A and �A
are de�ned relative to the missile.


A Unit Quaternion is �rst calculated that describes the orientation of the target


relative to the world axes and the position of the missile relative to the target is then


derived. Equation 4.12 details the process of converting the Euler angles de�ning


the orientation into a quaternion.
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~qa =


�
cos


�
�wt
2


�
; [1 0 0] sin


�
�wt
2


��


~qb =


�
cos


�
�wt
2


�
; [0 1 0] sin


�
�wt
2


��


~qc =


�
cos


�
 wt
2


�
; [0 0 1] sin


�
 wt
2


��


~qt = ~qc~qb~qa


~qt = ~qt=j~qtj


Dtm = ~q�t [0 ; (Dwm �Dwt)]~qt


(4.12)


Equation 4.13 details the calculations to derive a unit quaternion that describes


the transformation from seeker axes to target axes. Unit quaternions are used as


they allow composite rotations to be easily normalised, ensuring orthonormality.


~q1 =


�
cos


�
�ma
2


�
; [0 1 0] sin


�
�ma
2


��


~q2 =


�
cos


�
 ma


2


�
; [0 0 1] sin


�
 ma


2


��


~q3 =


�
cos


�
�wm
2


�
; [1 0 0] sin


�
�wm
2


��


~q4 =


�
cos


�
�wm
2


�
; [0 1 0] sin


�
�wm
2


��


~q5 =


�
cos


�
 wm
2


�
; [0 0 1] sin


�
 wm
2


��


~qm = ~q�t ~q5~q4~q3~q2~q1


~qm = ~qm=j~qmj


(4.13)


Where  wt (yaw of target orientation), �wt (pitch of target orientation), �wt (target
roll),  wm (yaw of missile orientation), �wm (pitch of missile orientation), and �wm
(missile roll) are all with respect to world axes. Yaw of seeker antenna ( ma) and


pitch of seeker antenna (�ma) are with respect to missile axes.


The radar cross section model consists of a binary space partition tree of point


scatterer clusters (section 4.2), each cluster is a valid model for a speci�c solid


angle segment. The appropriate cluster is retrieved by traversing the tree using


the current azimuth and elevation of the missile with respect to the target. The


azimuth ( ), elevation (�) and range (r) of the missile to the target may be found


from equation 4.14.
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r = jDtmj


[x y z] = Dtm


r


 = tan�1
�
y
x


�


� = sin�1(z)


(4.14)


4.3.4. Phase Comparison Seeker


Once an appropriate point scatterer model has been retrieved, the seeker head output


is calculated using equation 4.15.


�e = =
�
dz


s


�
vertical error


 e = =
�
dy


s


�
horizontal error


(4.15)


Equation 4.16 details how the sum and di�erence signals in equation 4.15 are


calculated from the simulated received echo from the target (equation 4.18).


dz = (�2 + �4)� (�1 + �3)
dy = (�1 + �2)� (�3 + �4)


s = �1 + �2 + �3 + �4


(4.16)


Received echos are calculated for four independent phase centres located at the


simulated missile position. The positions of the phase centres are calculated as


shown in equation 4.17.


F1 = Dtm + ~qm[0; [0 x x] ]~q�m


F2 = Dtm + ~qm[0; [0 x �x] ]~q�m


F3 = Dtm + ~qm[0; [0 �x x] ]~q�m


F4 = Dtm + ~qm[0; [0 �x �x] ]~q�m


(4.17)


Where x is the Phase centre o�set (6cm typ.) and F1:::4 denote the seeker


head phase centres arranged
3 1


4 2
when viewed from the front.


Equation 4.18 details the calculation of the returned echo. The calculations are


performed with respect to the target axes set. Noise is added to the signal to give


a maximum detection range of RN metres against a 1m2 target. The noise level is


set to give a unity signal to noise ratio of the received echo at the range RN .


�n =
mX
p=1


Z


0
@
 
Tp � Fn


jTp � Fnj �
~̂d


!h1A ap
p
S


(
p
4�dnp)


�p e
j


�
2��pdnp


�
+�p


� ������
n=1:::4


+N(0; k2)ejU(0;�)


(4.18)
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Where


Z =


(
x x > 0


0 x � 0


and


h =
log


�q
1=2


�
log


�
cos


�
��
360


��
and RMS noise level is


k =


p
S


4�R2
N


~̂d is the unit direction vector of the seeker head, ~̂d = ~qm[0; [1 0 0] ]~q�m
Tp are the coordinates of target scatterer p (Target Axes)
S is the radar source power


� is the half power beam-width of the seeker head (10� typ.)


N(�; �2) denotes a Gaussian noise source with mean � and standard


deviation �.
U(a; b) denotes a random number generator that creates values uniformly


distributed in the range a � x � b.


4.3.5. Amplitude Comparison Seeker


For amplitude comparison, the seeker head output is calculated using equation 4.19.


�e = <
�
dz


s


�
vertical error


 e = <
�
dy


s


�
horizontal error


(4.19)


Equation 4.20 details how the sum and di�erence signals in equation 4.19 are


calculated from the simulated received echo from the target (equation 4.22).


dz = �((�2 + �4)� (�1 + �3))


dy = �((�1 + �2)� (�3 + �4))


s = �1 + �2 + �3 + �4


(4.20)


Four received echos are calculated using four squint vectors that share a common


phase centre located at the simulated missile position (Dtm). The squint vectors are


calculated as shown in equation 4.21. The arrangement aligns the bore-sight along


the half power regions of the beams.


a = cos


�
��


360


�


b = sin


�
��


360


�
=
p
2


~̂V 1 = ~qm[0; [a b b] ]~q�m


~̂V 2 = ~qm[0; [a b �b] ]~q�m
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~̂V 3 = ~qm[0; [a �b b] ]~q�m


~̂V 4 = ~qm[0; [a �b �b] ]~q�m (4.21)


Where � is the half power beam-width and ~̂V 1:::4 denote the unit seeker


head squint vectors arranged
3 1


4 2
when viewed from the front.


A beam-width of 3� is used in this thesis for the amplitude comparison seeker. The


seeker head will then produce very similar bore-sight error signal levels to a phase


comparison seeker with a 10� beam-width and 6cm head o�set (over range �1� of
o�-bore-sight angle).


Equation 4.22 details the calculation of the returned echo. The calculations are


performed with respect to the target axes set.


�n =
mX
p=1


Z


0
@
 
Tp �Dtm


jTp �Dtmj
� ~̂V n


!h1A ap
p
S


(
p
4�dnp)


�p e
j


�
2��pdnp


�
+�p


� ������
n=1:::4


+N(0; k2)ejU(0;�)


(4.22)


Each scatterer in the model is assumed to be independent of all other scatterers


for simplicity. The seeker head functions return bore-sight error data and range to


the missile model.


4.4. Engagement Model


4.4.1. Introduction


The engagement model consists of a homing guidance missile and a synthetic target


and allows controlled missile{target engagements to be simulated. The engagements


occur in a 3-dimensional world against targets that have a synthetic radar cross sec-


tion which uctuates realistically with respect to angle, range and frequency. The


uctuating radar cross section causes errors in the homing missile. These errors


are correlated to the target's motion and usually prevents the missile exactly hit-


ting the target. The extent of this miss distance gives an indication of the missile


performance against the target.


4.4.2. Model Structure


The engagement model structure is shown in �gure 4.10. Target and missile positions


and orientations are used with the radar cross section data to generate heading error


information for the missile model. The missile then manoeuvres in response and so


alters its position and orientation, changing its viewpoint of the target and therefore


the radar cross section that it sees. This process continues until the missile to target


range begins to increase and the engagement is terminated. The software is written


in a combination of MATLAB and `C' with a modular design to allow di�erent


model con�gurations to be integrated into the engagement scenario. Details of the


software may be found in [65]. Details of the homing missile may be found in [66].
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Figure 4.10: Block diagram of engagement model


4.4.3. Guidance Strategy


The missile uses a proportional navigation strategy to home onto the target. Before


launch, a collision triangle is formed to determine the required missile heading. The


target direction and velocity are used to triangulate an impact point. The missile is


launched to y toward the estimated impact point, rather than directly at the target.


The seeker antenna is pointed towards the target. The missile lateral acceleration


is controlled to keep the antenna angle, with respect to the missile body, constant.


Figure 4.11 shows the geometry graphically. If the antenna angle � is constant, the
line-of-sight rate is zero. A zero rate implies that the missile and target are on a


collision course.


The antenna is steered in response to the bore-sight error signals from the radar


in the seeker head. Fluctuations in the target radar cross section will cause glint


noise (chapter 6) and therefore upset the alignment of the seeker antenna. The the


mis-alignment creates a noisy line-of-sight rate and therefore a miss distance.


4.4.4. Miss Distance Calculations


There are two de�nitions for miss distance. These are:


1. Trial Miss Distance { The minimum achieved distance between the missile


seeker head centre and the target centre in each engagement.


2. Missile Miss Distance { The distance within which 39% of all trial miss


distances fall. This corresponds to a half standard deviation radius from the


target.


The trial miss distance is calculated at the end of each engagement. The missile


miss distance is calculated from a batch of trial miss distances. The missile miss


distance gives a good indication of overall missile performance. Real missiles have a


proximity fuse that detonates the warhead when the missile is within an optimum


range. The warhead in most missiles is e�ective up to three or four metres from







CHAPTER 4. MODEL INTEGRATION 68


Impact Point


Missile


Target


Line-of-sight


θ


Figure 4.11: Engagement geometry







CHAPTER 4. MODEL INTEGRATION 69


the target hull. In the target models used in this thesis, the closest scatterer to


the target centre is 1:6 metres away. Therefore, any miss-distances of 1:6 metres or


less may be classed as a direct impact. With an e�ective range of 4 metres for the


warhead, distances of 5:6 metres or less are a hit, ignoring the chances of hitting the


aircraft's wings.


As the engagement is conducted in discrete time, the smallest range measurement


in the engagement may not be an accurate representation of the miss distance.


Figure 4.12 shows the missile and target tracks around the point of interception,


with the indicated locations being separated by the seeker sample time (� 2 milli-


seconds). As the missile has a speed of around 600 m/sec, in a 2 milli-second frame it


travels around 1:2 metres. Thus the assumption may be made that over the sample


interval in which the interception occurs, the target and missile are travelling in


straight lines.


T-1


M-1


M0


T0


T1


M1


m d


Figure 4.12: Missile and target tracks at interception


If the target and missile tracks are described as the vector representation of the


lines shown in equation 4.23, then the trial miss distance may be de�ned as shown


in equation 4.24, with 0 � e � 1.


TI = T0 + e(T1 � T0)


MI = M0 + e(M1 �M0) (4.23)


 = jMI � TI j = j~gj =
q
~g � ~g


md = min() (4.24)


The minimum miss distance occurs when


d()


de
= 0 (4.25)


Therefore if


~g =MI � TI =M0 � T0 + e(M1 �M0 � T1 + T0)
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Then
d()


de
= (~g � ~g)�1=2


 
~g � d(~g)


de


!
=
~g � (M1 �M0 � T1 + T0)p


~g � ~g (4.26)


As
p
~g � ~g on the denominator of equation 4.26 is , for equation 4.25 to be satis�ed,


~g � (M1 �M0 � T1 + T0) = 0


(M0 � T0 + e(M1 �M0 � T1 + T0)) � (M1 �M0 � T1 + T0) = 0 (4.27)


If we select a =M0�T0 and b = (M1�M0�T1+T0) then equation 4.27 becomes


(a+ eb) � b = 0


a � b+ e(b � b) = 0


e = �a � b
b � b (4.28)


and


 = ja+ ebj (4.29)


Finally, inserting equation 4.28 into equation 4.29 gives


md =


�����a� a � b
b � b b


����� (4.30)


If the interception point is near to M1 and T1, the engagement may sometimes


have one too many sample frames to interception. The stop criteria of the range


increasing can be fooled into not terminating at the correct sample instant. In this


scenario, a negative value for e will be obtained when equation 4.28 is evaluated. In


this situation, the correct result may be obtained for the miss distance by repeating


the calculations with T1 = T0, M1 =M0, T0 = T�1 and M0 =M�1.


4.5. Engagement Model Proving Trials


There are two main disturbance mechanisms that occur during the engagement,


antenna noise and target glint. Antenna noise is Gaussian noise that is generated


within the antenna and processing circuits and remains at a constant level through-


out the engagement. When the bore-sight error signal is generated, the antenna


noise gets divided by the received echo strength and so appears to decrease with


reducing range. Target glint noise is caused by uctuations in the radar cross sec-


tion inter-reacting with the mono-pulse processing in the seeker head. Target glint


errors are related to the relative rate of rotation between the target and missile, and


also to range. Short ranges are most a�ected by target glint, whereas long ranges


are most a�ected by antenna noise. Details of the noise characteristics are covered


in chapter 6.


Two initial experiments with 1000 trials in each were performed. The ideal


single-point model was used to give no glint e�ects, and each experiment used a


di�erent seeker head, but with no simulated antenna noise. Every trial had a zero


miss distance. Therefore, with no antenna noise and no glint, the missile miss


distance is zero. These trials give the benchmark results for testing a hypothesis.
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The hypothesis that the miss-distance distribution is dependent on antenna noise,


target radar cross section, and seeker head type must be tested. Two objectives are


de�ned in section 1.5.2. The �rst requires the e�ects of the two seeker heads on an


ideal target to be evaluated. The second requires that the e�ects of a complex target


on the two seeker types is investigated. The models used are detailed in appendix B.


Four experiments are required to be performed. They are detailed in table 4.2.


Target Type


Seeker Type Single Point Fifty Point


Phase Comparison Experiment a Experiment c


Amplitude Comparison Experiment b Experiment d


Table 4.2: Model proving experiments


In each of the experiments, 1000 missile trials are performed. A set of 1000


launch positions are generated at random. The launch positions are generated using


equations 4.31 and 4.32. These equations generate points with a uniform distribu-


tion across the surface of a 5Km radius sphere. In the equations, x1 and x2 are


uniformly distributed random variables with �1 � x � 1,  is azimuth in radians,


� is elevation in radians, and [x y z] is a position in metres referenced to world axes.


Each experiment uses the same set of launch positions for consistency.


 = �x1


� = sin�1(x2) (4.31)


x = 5000 cos( ) cos(�)


y = 5000 sin( ) cos(�)


z = 5000 sin(�) (4.32)


4.5.1. Experiment a


The engagements were run with the parameters in table 4.3.


Figure 4.13 shows the cumulative probability distribution for the 1000 miss dis-


tances. The missile miss distance equates to the distance within which 39% of the


shots fall and is marked on the graph. All the trials have a miss distance of less than


1:6 metres and are therefore all direct hits. The small spread of miss distances are


due to the noise on the bore-sight error signals from the antenna. This result shows


that the miss distance is a�ected by simulated antenna noise, but at a low level.


4.5.2. Experiment b


The engagements were run with the parameters in table 4.4.


Figure 4.14 shows the cumulative probability distribution for the 1000 miss dis-


tances. The spread of miss distances are again small and due to the antenna noise
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Parameter Value


Source power, S 100W


Target detection range, RN 10Km


Seeker type Phase Comparison


Frequency 10 Ghz


Beam-width, � 10�


Head O�set, x 0:06m


Model Single Point


Table 4.3: Experiment a con�guration
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Figure 4.13: Cumulative miss distance probability { Experiment a
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Parameter Value


Source power, S 100W


Target detection range, RN 10Km


Seeker type Amplitude Comparison


Frequency 10 Ghz


Beam-width, � 3�


Model Single Point


Table 4.4: Experiment b con�guration
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Figure 4.14: Cumulative miss distance probability { Experiment b
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a�ecting the bore-sight error signals. The performance of the missile is slightly


worse with the amplitude comparison seeker head. This degradation of performance


is probably due to the missile's Kalman Filter con�guration being non-optimal. The


�lter con�guration was tuned for the phase comparison seeker head. The deviation


from the optimal �lter con�guration is small, but signi�cant enough to show a dif-


ference in these results. All the trials may be classi�ed as direct hits.


4.5.3. Experiment c


The engagements were run with the parameters in table 4.5.


Parameter Value


Source power, S 100W


Target detection range, RN 10Km


Seeker type Phase Comparison


Frequency 10 Ghz


Beam-width, � 10�


Head O�set, x 0:06m


Model Fifty Point


Table 4.5: Experiment c con�guration


Figure 4.15 shows the cumulative probability distribution for the 1000 miss dis-


tances. Only 83% of the trials have a miss distance of less than 5:6 metres and


are therefore within warhead range. The missile miss distance is calculated as 2:26
metres. This distance is quite small but it is apparent from the distribution that


there are a small number of very large miss distances of up to �ve times the target


length. This result shows that the miss distance is a�ected by target glint. The


e�ects on the missile can be drastic in a small number of cases.


4.5.4. Experiment d


The engagements were run with the parameters in table 4.6.


Parameter Value


Source power, S 100W


Target detection range, RN 10Km


Seeker type Amplitude Comparison


Frequency 10 Ghz


Beam-width, � 3�


Model Fifty Point


Table 4.6: Experiment d con�guration







CHAPTER 4. MODEL INTEGRATION 75


0 10 20 30 40 50 60 70 80 90 100
0


0.1


0.2


0.3


0.4


0.5


0.6


0.7


0.8


0.9


1


Miss Distance


C
um


ul
at


iv
e 


P
ro


ba
bi


lit
y


Missile Miss Distance=2.26 metres


Cumulative Miss Distance Probability Curve, Experiment c


Figure 4.15: Cumulative miss distance probability { Experiment c
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Figure 4.16: Cumulative miss distance probability { Experiment d
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Figure 4.16 shows the cumulative probability distribution for the 1000 miss dis-


tances. Only 91% of the trials have a miss distance of less than 5:6 metres and


are therefore within warhead range. The missile miss distance is calculated as 2:02


metres. This distance is smaller than for the phase comparison seeker and the dis-


tribution shows that there are far fewer large miss distances. The largest distance is


around the same size as the target length. This result shows that the amplitude com-


parison seeker is not a�ected as badly by target glint. The improved performance is


probably due to the bore-sight error function being better behaved at extreme error


angles than for a phase comparison seeker (see �gures 4.6 and4.7).


4.5.5. Conclusions


The results of the experiments are summarised in table 4.7.


Experiment Missile Miss Distance, metres Hit rate,% (< 5:6m)


a 0.06 100


b 0.10 100


c 2.26 83


d 2.02 91


Table 4.7: Summary of experimental results


Miss distance is inuenced by thermal noise. At long ranges where the reected


energy from the target is small, the e�ects of thermal noise may be large. At close


range, the levels of noise are likely to be small compared to the echo strength. Target


glint has a major inuence on the miss distances. The phase comparison seeker


head is e�ected more than the amplitude comparison seeker with the possibility of


a small percentage of extreme misses. These results suggest that the �delity trials


should be performed with the amplitude comparison seeker. This seeker appears to


have a more compact distribution compared to the long-tailed distribution of the


phase comparison seeker. The chances of the statistical comparisons being upset by


extreme miss distances will be reduced. Target manoeuvre detection trials though


should be conducted with the phase comparison seeker as the target glint appears


more severe and should be easier to detect and monitor.







5. Target Fidelity Analysis


5.1. Introduction


By its very nature, the e�ect of glint on a missile is di�cult to quantify determinis-


tically. The engagement model provides a means of evaluating the e�ect of a target


on a simulated missile. To minimise simulation times, we would like to use a model


with the fewest scatterers possible. If the number of scatterers in a point scatterer


model is reduced, only an approximation of the original radar cross section pattern


can be re-created. The error between the original pattern and the pattern from the


reduced model will increase as fewer scatterers are used. The error is a gauge of the


�delity of the reduced model to the original target.


This chapter is concerned with establishing the e�ects on the missile performance


of reducing the model size and therefore the target �delity. First, the approach to


the experiments is described. Then the method of model reduction is detailed. The


trial results are presented and �nally conclusions are drawn about the e�ects of


�delity on missile performance.


5.2. Problem De�nition and Existing Work


In order to minimise simulation times, models with the smallest number of scatterers


must be used. We may often require the model to be an accurate representation of


a speci�c target. The number of scatterers in the model must be traded against the


accuracy of representation, or �delity. If scatterers are removed from a high-�delity


model, the magnitude and phase characteristics of the remaining scatterers can be


adjusted to approximate the original target. The adjustment is achieved using the


constrained least squares �tting process detailed in appendix D.


Quantifying �delity is di�cult. The cost function de�ned in equation 3.1 is


useful for indicating the di�erence between two radar cross section patterns. Unfor-


tunately, di�erent targets will have di�erent characteristics and their cost functions


are not related. Statistical measures, such as the Kolmogorov{Smirnov and Mann{


Whitney statistical tests provide a convenient yardstick, if somewhat noisy, that are


independent of radar cross section magnitude and distribution. Previous work on


radar cross section �delity has shown that it is often possible to reduce the number


of scatterers while not altering signi�cantly the radar cross section pattern [61].


The e�ects of a reduced �delity model on missile miss distance are unknown.


The problem is to establish how far models can be reduced before the trial miss


distance distribution is signi�cantly di�erent to that seen with the original target.
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5.3. Experimental Approach


For any statistical analysis to be reliable, the target must be analysed stochastically


over 4� steradians. To achieve this coverage, synthetic missiles were �red towards


a stationary target from random start points on a sphere. To establish the e�ects


of �delity on the missile, repeated trials of the missile have been performed against


the reduced targets. The following hypothesis was tested for each of the reduced


models:


Null Hypothesis H0: The reduced model causes similar missile miss


distances to the reference model.


Alternative Hypothesis H1: The models cause di�erent miss distances.


For each model, one thousand trials were performed, each from a randomly


chosen start point. A range of �ve kilometres was chosen for all of the engagements.


This range is su�ciently far enough away to minimise the e�ects of range on the glint


errors, but maintains a short execution time for the simulation. One thousand trials


were performed in order to obtain good statistical results but with an acceptable


processing overhead. Every trial for every model was begun from a randomly chosen


position. Two sets of reference data were generated, one for the �fty-point model


and one for the one hundred point model. Each set of data contains the miss distance


results of 1000 trials. Two statistical tests were performed on the experimental data


for each of the model types and sizes. Each test compares the appropriate set of


reference data to the set of trial data being investigated.


The Kolmogorov{Smirnov statistical test compares the distribution of a pair of


data sets. The test is applied at � = 0:05 to reject H0. The Mann{Whitney test


is a test of means and is also applied at the � = 0:05 level. Both of the tests are


distribution free and are described in appendix D.


5.4. Reduced Model Generation


The reduced �delity models for the trials were generated from the �fty-point and


one-hundred-point models described in appendix B. The iterative reduction method


(section 3.2) was used to generate quickly a set of reduced models. This set was


used to seed the genetic algorithm described in chapter 3.


Full 4� steradian coverage is required for the missile trials. The reference target


echo pattern was generated from 10; 000 samples taken at random positions gener-


ated using equation 4.31. This equation gives uniform coverage of the target. The


coe�cients of the scatterers in the reduced models were �tted using the constrained


least squares process. The 10; 000 azimuth and elevation data used to generate


the reference echo pattern are also used in the �tting of each reduced model. The


10; 000 points used can only give an approximation to the true 4� steradian radar


cross section. Using more points would improve the accuracy but at a rapidly in-


creasing computational cost. The tree structure described in section E.3 may be used


to reduce the genetic algorithm processing burden by storing previously generated


chromosomes and objectives to prevent unnecessary repeat calculations.
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The �nal Pareto set of results may not be the true optimum though for the


set of 10; 000 trial points chosen. The genetic algorithm was stopped after 300


generations. Allowing the algorithm to run for longer may have improved the set of


reduced models but at increasing computational cost. If a di�erent set of points are


chosen over which to match the target echo pattern, a di�erent set of models may


be generated.


Figure 5.1 shows the results of reducing the 50-point model. The upper plot


shows the Kolmogorov-Smirnov signi�cance levels generated by comparing the radar


cross section of the reduced models to the original model. Here, error signi�cance is
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Figure 5.1: Results of reducing 50-point model for �delity trials


plotted against model size with the 5% limit drawn on the graph. The sections of


the curve that are below the line correspond to H0 being rejected, ie. the radar cross


sections are not the same. Applying the hypothesis test at � = 0:05, the smallest


model where the hypothesis H0 is accepted has 36 scatterers out of 50. The lower


plot shows the mean squared error between each reduced model's radar cross section


pattern and the reference pattern (equation 3.1).


Figure 5.2 shows the results of reducing the 100-point model. The model was


produced with the scatterers positioned at random to give a similar physical extent


to that of the 50-point model. It is interesting to note that the minimum model size
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Figure 5.2: Results of reducing 100-point model for �delity trials
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where the hypothesis H0 is accepted has 56 scatterers out of 100. The di�erence in


the reduction ratio is probably due to the 50-point model's aircraft-like structure.


It is clear from comparing the cost function plots of �gures 5.1 and 5.2 that mean


squared error is not a good gauge of �delity as the curves' scales are related to the


di�erent radar cross section patterns.


The experiment is required to establish:


1. If the missile is inuenced by target structure.


2. The reduction factor that can be applied before the target �delity is compro-


mised.


3. If the � = 0:9 level used in the model �tting process will ensure a high �delity


model.


The launch position for the missile will be chosen at random. The missile will be


�red from a 5km range towards a stationary target. Table 5.1 shows the missile


con�guration used in the trials. Two experiments will be performed:


Parameter Value


Source power, S 100W


Target detection range, RN 10km


Seeker type Amplitude Comparison


Frequency 10 Ghz


Beam-width, � 3�


Table 5.1: Missile con�guration for �delity trials


a. 1000 missile trials against each of the models derived from the 50-point target.


b. 1000 missile trials against each of the models, with an even number of scat-


terers, derived from the 100-point target. Only the even-sized models will be


used to keep the processing overhead within reasonable limits.


A total of 100; 000 missile trials will be required to complete the experiments.


5.5. Experiment Results


Table 5.2 summarises the results of the experiments. Figure 5.3 shows the results of


the trial miss-distance comparisons for the models derived from the 50-point model


(Experiment a). The upper plot shows the Kolmogorov{Smirnov signi�cance against


model size with the 5% limit drawn on the graph. The sections of the curve that


are below the line correspond to H0 being rejected, ie. the miss distances are not


the same. The lower trace shows the Mann-Whitney error �gure against model size


with the 5% limit drawn on the graph. The sections of the curve that are above the


line correspond to H0 being rejected, ie. the miss distances are not the same. Both


tests agree that the smallest model where H0 is accepted has 25 scatterers.
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Parameter Experiment a Experiment b


Number of trials 50,000 50,000


Reference model 50-point 100-point


Minimum H0 K{S accept (RCS) 36 scatterers 56 scatterers


Minimum H0 K{S accept (Miss Dist) 25 scatterers 54 scatterers


Minimum H0 M{W accept (Miss Dist) 25 scatterers 54 scatterers


Table 5.2: Results of target �delity experiments
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Figure 5.3: Results of experiment a of the �delity trials (50-point model)
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Figure 5.4: Results of experiment b of the �delity trials (100-point model)
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Figure 5.4 shows the results of the trial miss-distance comparisons for the mod-


els derived from the 100-point model (Experiment b). The upper plot shows the


Kolmogorov{Smirnov signi�cance against model size and the lower trace shows the


Mann-Whitney error �gure against model size. Both tests agree that the smallest


model where H0 is accepted has 54 scatterers.


5.6. Conclusions


The key results of the experiments are as follows:


1. The reduction factor to achieve � = 0:05 for the Kolmogorov-Smirnov test of


the model radar cross section may be inuenced by the scatterer distribution.


2. The reduction factor to achieve � = 0:05 for either the Kolmogorov-Smirnov


test or the Mann-Whitney test of the trial miss distances appears to be inde-


pendent of the model structure. The reduction factor is � 1
2
.


3. A model that is reduced to the � = 0:05 limit of radar cross section will be


within the � = 0:05 limit of the trial miss distance distribution.


Result 3 is important as it con�rms that the � = 0:9 acceptance level used in


the image-to-model conversion process should result in high-�delity models. The


experiments have shown that the K-S statistical measure can be used to gauge the


level of target �delity. To minimise the processing overhead of the target manoeuvre


detection experiments in chapter 6, a high-�delity reduced model has been created.


The twenty seven scatterer model derived from the 50-point truth model has been


chosen. The twenty seven scatterer model is higher-�delity than the minimum 25-


point model, but is not too large to compromise computational e�ciency.







6. Target Manoeuvre Detection Using


Glint


6.1. Introduction


Current target tracking algorithms are highly sophisticated and capable of tracking


highly agile targets. Unfortunately, even agile targets spend most of their time in


straight, level ight. Tracking algorithms that are designed to track manoeuvring


targets are usually poor at following non-manoeuvring vehicles. The ability to switch


rapidly between di�erent tracking regimes is of paramount importance.


I have proposed that it may be possible, through observing glint noise, to detect


when a target has changed its orientation in preparation for a rapid manoeuvre.


As current aircraft performance is often pilot limited, in order to perform a high-g


manoeuvre, the aircraft must bank steeply. The rapid target rotation associated


with the bank is likely to produce a stream of glint spikes in the bore-sight error


signal.


Any ability to detect potential manoeuvres can be used to greatly enhance the


homing capability of missiles. The use of glint to augment target tracking is novel


and could be used to create a signi�cant tactical advantage in a radar guided missile


for little cost.


This chapter �rst investigates the existing techniques used for target manoeuvre


detection and glint processing. The noise characteristics of the bore-sight error


signal are examined and the construction of a fuzzy-logic based manoeuvre detector


is described. The experimental method is outlined and the trial results presented.


Finally the potential of the technique is discussed and recommendations are made


for further work.


6.2. Existing Manoeuvre Detection Techniques


6.2.1. Introduction


Two categories of manoeuvre detector have been identi�ed:


1. Prediction Methods { These methods attempt to identify a manoeuvre


by predicting the expected target position and comparing it to the measured


track.


2. Optical Methods { The detector attempts to identify changes in the targets


orientation by monitoring images of the target.
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6.2.2. Prediction Methods


Prediction is the conventional approach to target manoeuvre detection. The current


estimate of the target's position, velocity and acceleration are compared to the


known target track. If the target deviates from its previous course, the target is


manoeuvring. Unfortunately, the estimate of the target's position is subject to


noise. This uncertainty prevents manoeuvres from being detected rapidly.


Most of the manoeuvre detection schemes use Kalman �lter techniques to es-


timate the target parameters [67]. One of the most successful methods uses the


interacting multiple models (IMM) algorithm [68]. The algorithm allows the kine-


matic equations in the Kalman �lter to represent a set of di�erent manoeuvring


hypothesis. The ability to use di�erent target models enables the Kalman �lter to


use a tracking regime that best suits the target manoeuvre.


Prediction methods are quite slow and typically require a few seconds to detect a


manoeuvre. This speed of reaction is satisfactory for a ground based tracking radar,


but not for a missile.


6.2.3. Optical Methods


Kendrick et al. [69] �rst investigated the use of target orientation information from


optical sensors to augment tracking algorithms. A pattern recognition algorithm


was used to predict the target orientation from the images. The image processing


is quite computationally intensive. Sworder and Hutchins [70] also apply imaging


techniques in order to estimate target radial acceleration.


Shetty and Alouani [71] have used three centroid position measurements of the


target image to detect manoeuvres. This approach does not require any a-priori


knowledge of the target structure and is relatively quick to process. Romine and


Kamen [2] provide a detailed description of a Kalman �lter based optical manoeuvre


detector. Their results show that the optical technique can detect a manoeuvre in


under half a second.


Laneuville and Mariton [72] have proposed using an interacting multiple model


tracking algorithm with an image based manoeuvre detector. The number of pixels


in the image was suggested as a feature to use in the manoeuvre detector. They


observed a signi�cant improvement in the tracking performance over the basic in-


teracting multiple model algorithm approach.


6.2.4. Discussion


The predictive methods are inherently slow in detecting rapid manoeuvres. The


performance is often satisfactory for ground-based target trackers, but unsuitable


for use in missiles. A combination of these sophisticated tracking techniques and a


fast manoeuvre detector would provide a better solution to the tracking problem.


Most of the optical methods are based on the assumption that the target must


bank before performing a high-g turn. The bank manoeuvre is required to prevent


the pilot experiencing excessive lateral g forces. Most of the methods operate by


counting the number of pixels that form the image of the target. As the target


manoeuvres, di�erent views of the target are seen. For example, if the target is


being viewed broad-side with its wings in the horizontal plane, a long, thin image
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will be seen. If the target performs a bank manoeuvre as part of a high-g turn away


from the observer, the wings of the target will rotate into the vertical plane. The


underside of the target will now be seen, presenting a much larger image area and


therefore a greater number of pixels.


The optical methods all require large amounts of image processing. Expensive


extra hardware would be required in a missile. Some of the techniques also require


knowledge of the target structure and characteristics. This is undesirable. Optical


techniques are more susceptible to climatic e�ects when compared to radar and are


only practically suitable for medium to short range engagements.


Sworder and Hutchins [73] provide a detailed investigation into the e�ects of


di�erent frame rates on the probability of detecting manoeuvres. They conclude


that even at very high frame rates, certain manoeuvres where there is only a small


change in the image, are very di�cult to detect reliably.


6.3. Glint Processing Methods


In order to detect target manoeuvres from glint, an investigation into the techniques


used to remove glint errors was conducted. These techniques give an insight into


the processing methods currently in use to identify glint spikes.


Many methods exist that attempt to improve target tracking accuracy in the


presence of glint. Most tracking radars utilise Kalman �lters to estimate optimally


the target motion from noisy radar data. Unfortunately, the Kalman �lter is highly


susceptible to non-Gaussian noise. It has been shown that glint noise is highly non-


Gaussian and has a long-tailed distribution [74]. The levels of noise due to glint also


increase with decreasing range. Wu [75, 76] has developed a tracking �lter that can


deal directly with the non-Gaussian glint noise by using multiple models internally


in a Kalman �lter.


A di�erent approach has been taken by Hewer et al. [74] where the error signal is


pre-processed in an attempt to make the glint noise approximate a Gaussian distri-


bution. The pre-processing allows a conventional Kalman �lter to be used to remove


the noise without compromising the �lter stability. Das and Yoganandam [77, 78]


apply non-coherent processing to amplitude comparison monopulse signal envelope


data in an attempt to reduce glint and the e�ects of receiver phase imbalances. This


method is robust and achieves a consistent improvement in glint error.


It has been shown that glint spikes are highly correlated to deep echo amplitude


fades and yet uncorrelated with glint observed at other frequencies or aspect angles


[79]. These principles have been applied to glint reduction in a number of ways.


Borden [80] derives methods that use either frequency or angular agility to integrate


multiple bursts and therefore average out the glint spikes. The techniques work but


may require sophisticated seeker heads in order to function properly. Guest [81]


utilises the correlation between amplitude fades and glint spikes to censor the data


being passed to the Kalman �lter when fades occur. The censoring gives a general


improvement but small glint spikes still pass through to the Kalman �lter.


In general, target tracking becomes more and more di�cult the closer the radar


gets to the target. In the last few hundred metres, the glint noise can be extreme


and highly non-Gaussian in nature. Of the glint reduction methods surveyed, all can
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give an improvement in the tracking capabilities of the radar but none can eliminate


the e�ects of glint totally.


The approaches that use a combination of the bore-sight error signal and the


radar cross section seem to be the most promising. Antenna noise e�ects are re-


lated to the target radar cross section and must be accounted for in the manoeuvre


detector processing.


6.4. Bore-sight Error-Signal Noise Characteristics


6.4.1. Introduction


The noise on the bore-sight error-signal consists of two main components:


1. Antenna Noise { The antenna noise levels seen in the bore-sight error signal


decay with decreasing range but are also related to the target radar cross sec-


tion. Most of the noise is thermally generated and has a Gaussian distribution.


Antenna noise is the dominant source at long and medium range.


2. Target Glint { The noise is highly non-Gaussian and is related to the relative


rate of tangential rotation between the target and the missile. Glint is the noise


to be used to detect a manoeuvre. Target glint noise also occurs due to changes


in range. This range-glint occurs mainly at short ranges and is the dominant


source of noise in the last few kilometres of an engagement.


These mechanisms and the approaches taken to account for the noise are detailed


below. Noise induced by countermeasures is beyond the scope of this feasibility


study.


6.4.2. Antenna Noise


Antenna noise is a combination of channel noise, receiver noise and the thermal


noise in the signal processing stages. The noise is approximately Gaussian and the


signal from each antenna may be de�ned as N(�; k2), where � is the mean of the


signal and k2 is the variance of the noise. The noise variance, k2, is a characteristic


of the missile and essentially remains constant throughout the engagement. An


approximation for k may be calculated from the operational characteristics of the


missile. Equation 6.1 details this calculation, where the RMS noise level k is set


to give a unity signal to noise ratio of the received echo, at the range RN metres


against a 1m2 target. The source power of the missile is denoted by S, normalised
to give an antenna with unity gain.


k =


p
S


4�R2
N


(6.1)


As part of the bore-sight error-signal processing, a sum and di�erence of the


four receiving antennas in the seeker head is formed. If the seeker is aligned with


the target, the di�erence channel will be a function of antenna noise only. Equa-


tions 6.2 and 6.3 show the noise functions of the di�erence and sum signals, where
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z represents the magnitude of the echo signal from the sum channel.


d = N(0; 4k2) (6.2)


s = N(z; 4k2) (6.3)


The monopulse ratio may be approximated from the di�erence and sum signals.


Equation 6.4 shows the approximation used for dividing two Gaussian noise signals.


The equation has been derived empirically and is detailed further in appendix F.


N(�1; v1)


N(�2; v2)
� N


 
�1


�2
;
�21v2 + �22v1 + v1v2


�22(�
2
2 + v2)


!
(6.4)


Applying equation 6.4 gives the result shown in equation 6.5.
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For phase comparison monopulse, the imaginary part of the monopulse ratio is


extracted. By reference to the noise model in equation 4.18, the e�ects on the noise


will result in equation 6.6.
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2k2
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!
(6.6)


If a small number of bore-sight error and sum signal samples are taken (10 in this


study), the mean radar cross section, z, can be approximated from the mean of the


sum signal, �s. Thus the antenna noise may be approximated as shown in equa-


tion 6.7, where the signals now represent short vectors of samples. Equation 6.7


may also be applied to amplitude comparison monopulse where the real part of the


complex di�erence is used instead of the imaginary part as here.


Nb = N(0; k2) � �sp
2
=
 
d


s


!
(6.7)


The set of samples, Nb, may be normalised using equation 6.8 to give B̂, which


is an approximation of the bore-sight error signal with an antenna noise component


of zero mean and unity variance.


B̂ � Nb �Nb


k
(6.8)


The standard deviation of B̂ may now be monitored. The e�ects of antenna


noise, now corrected for range and radar cross section, should lie within two standard


deviations for 95% of the time. Any signals outside this range are likely to be glint.


The theoretical analysis is only approximate and will need to be addressed if


a more re�ned manoeuvre detector is to be developed. The optimum number of


samples to use is unknown. More samples may delay detection of the manoeuvre


and less samples will increase the chances of false detection.
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6.4.3. Target Glint


Target glint is an artifact of monopulse processing and represents an apparent po-


sitional error of the target. Monopulse processing e�ects are described earlier in


section 4.3.2. Glint spikes are highly correlated to the target radar cross section


pattern and most often occur when the radar cross section amplitude fades. The


e�ect is that the signal in the sum channel of the seeker head becomes very small


and the bore-sight error signal approaches a divide-by-zero condition. Radar cross


section amplitude fades occur due to echos from scatterers being out of phase and


cancelling at the receiver. Target glint is associated both with target rotation and


range. In proportional navigation homing missiles, a zero rate of line-of-sight rota-


tion is maintained. Thus glint spikes caused by rotation should only occur during a


manoeuvre.


In �gure 6.1, the seeker antenna is pointed directly at scatterer-A but is receiving


echos from both scatterers. If the scatterers are the same magnitude, at very long


ranges, distance r is approximately the same as distance q. As the range reduces,


the distance q must be represented as q =
p
r2 + x2. When the di�erence between r


and q is half a wavelength, the scatterers will cancel, causing a glint spike. This type
of noise is range dependent and has been termed range-glint . As we are interested


in active seekers, the distance that the radar pulse/echo travels is twice the range


to the scatterer. Equation 6.9 details the condition for the furthest glint spike.


q


x


r


Scatterer AScatterer B


Observer


Figure 6.1: Scatterer con�guration for glint calculations
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r = 2


��
�
4


�2
+ x2


�
�


(6.9)


As
�
�
4


�2
is very small in comparison to x2 at the frequencies and distances of interest,


the maximum range may be simpli�ed as shown in equation 6.10.


r = 2
x2


�
(6.10)


For an n-point scatterer model, there are n(n� 1)=2 possible inter-scatterer dis-


tances. Figure 6.2 shows a histogram of the distribution of the 1225 inter-scatterer


distances associated with the 50-point model detailed in appendix B. For compar-
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Figure 6.2: Histogram of inter-scatterer distances (50-point realistic model)


ison, �gure 6.3 shows a histogram of the distribution of the 4950 inter-scatterer


distances associated with the 100-point model detailed in appendix B. The scatter-


ers in the 100-point model were distributed randomly. The distance histogram has


only one peak. To determine if the multiple peaks in the histogram of the 50-point


model are characteristic of the target shape, the 128-point model produced from


the real 2D data in chapter 3 was investigated. Figure 6.4 shows a histogram of
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Figure 6.3: Histogram of inter-scatterer distances (100-point random model)
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the distribution of the 8128 inter-scatterer distances associated with the 128-point


model produced from the real 2D data. The multiple peaks are clearly visible and


the locations correspond well to the peaks in �gure 6.2. Clearly the target structure


is important for generating realistic targets. The di�erence in peak sizes is probably


due to the real data only being two-dimensional and �tted over an narrow angular


range.
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Figure 6.4: Histogram of inter-scatterer distances (128-point 2D model)


Figure 6.5 shows a histogram of the maximum distance for the range-glint spikes


associated with the inter-scatterer distances shown in �gure 6.2. The multiple peaks


are again a dominant feature of the distribution. Consequently, there is an unex-


pected increase in the frequency of glint spikes due to changing range at around


ten kilometres. The 50-point target has a twenty metre wing-span. Smaller tar-


gets would produce shorter range-glint distributions. In practice, the antenna never


points exactly at a scatterer. The distances r and q in equation 6.9 become more


similar as the antenna moves between the scatterers. The range at which each spike


will occur will therefore be reduced slightly. Thus in practice, the distribution shown


in �gure 6.5 will be continuous.


The seeker head used in this investigation has a sample time of two milli-seconds.


This sample rate is far too slow to see the rise and fall of each glint spike caused
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Figure 6.5: Histogram of maximum range-glint distances
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by target rotation. The glint spikes from a manoeuvre appear as high-level wide-


band noise on the bore-sight error signal. Range-glint spikes occur singly at medium


range, with their frequency increasing with reducing range. It is possible for range-


glint spikes to extend across many samples. The e�ect can inuence the standard


deviation of B̂ and cause false triggering of the manoeuvre detector. To counter these


low frequency signals, the standard deviation of a high-pass �ltered version of B̂ is


also monitored. The high-pass �lter is easily achieved by numerical di�erentiation


of B̂, giving dB̂
dt
. Observations indicate that the standard deviation of dB̂


dt
is about


twice that of B̂ (assuming dt = 1). This empirical result is su�cient for use in the


fuzzy-logic detector.


Figure 6.6 shows the bore-sight error signal for a typical engagement from a range


of 10km. The engagement shown included a 2g coordinated manoeuvre lasting 1.3


seconds. Extreme glint spikes in the bore-sight error signal have been cropped to �2
to aid legibility. The manoeuvre is indicated by the dashed line on the plot, the slop-


ing sections indicating the periods when the target was banking. Figures 6.7 and 6.8
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Figure 6.6: Typical bore-sight error plot (10km engagement)


show the plots of B̂ and dB̂
dt


respectively for the �rst eight seconds of the engagement.


The manoeuvre is quite clear on these �gures.







CHAPTER 6. TARGET MANOEUVRE DETECTION USING GLINT 97


0 1 2 3 4 5 6 7 8
−25


−20


−15


−10


−5


0


5


10


15


20


Engagement Time, Seconds


N
or


m
al


is
ed


 B
or


e−
si


gh
t e


rr
or


Typical normalised bore−sight error plot with 2g manoeuvre (−−)


Figure 6.7: Normalised bore-sight error plot of �gure 6.6 (B̂)
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Figure 6.8: Di�erential of �gure 6.7 (dB̂
dt
)
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It is proposed that to trigger the manoeuvre detector, the standard deviation


of both B̂ and dB̂
dt


should be large (� 2 or greater for B̂, � 4 or greater for dB̂
dt


for


95% inclusion). The seeker head generates signals for both horizontal and vertical


errors. A signi�cant signal in either channel should trip the manoeuvre detector.


At medium and short ranges, there should be a slight delay between the �rst glint


spike being detected and activation of the manoeuvre detection signal. Indication


of a manoeuvre should only be generated if the glint spikes are still present at the


end of the delay period. The delay helps prevent the solitary range-glint spikes


from causing false alarms, at the expense of an increased turn-on delay. At long


ranges the glint spikes from a manoeuvre may be small in size and widely spaced.


Therefore, only a very short delay should be used.


Once a manoeuvre has been detected, the manoeuvre detector must be able to


coast over small gaps between the spikes. The wider the gap that can be tolerated,


the less likely are the chances of terminating falsely the manoeuvre indication signal.


The longer the hold time, the longer it will take for the detector to signal the end of


a manoeuvre. While the detector is activated, a large standard deviation of either


B̂ or dB̂
dt


would be su�cient to maintain the detection signal.


In the last few kilometres of the engagement, the normalised bore-sight error


signal level, B̂, becomes very susceptible to range-glint, causing false triggering of


the manoeuvre detector. Luckily, the levels of glint due to a manoeuvre are also


very large in this region. It is suggested that the standard deviation of the raw


bore-sight error signal is used directly, with a suitable gain to bring the manoeuvre


glint spikes into the range of � 3 standard deviations. This gain needs to reduce


with reducing range to account for the increasing glint levels. Typical signal levels


may be seen in the last three seconds of the engagement shown in �gure 6.6. In the


engagement used to generate �gure 6.6, the missile was unable to recover from the


2g manoeuvre and missed the target by 117 metres.


6.5. Manoeuvre Detector Construction


6.5.1. Introduction


As only a feasibility study is being performed into target manoeuvre detection using


glint, a fuzzy-logic approach was adopted for speed of development and simplicity.


The fuzzy-logic detector is only intended as a proof-of-principle model and therefore


only a minimum of tuning was performed.


Fuzzy-logic is a convenient method for mapping input data into a new output


space. The form of the mapping is controlled essentially by the membership func-


tions used to fuzzify the input data, a set of rules that determine which output


functions are active, and the output function shapes. An excellent description of


fuzzy-logic is given in the MATLAB Fuzzy Logic Toolbox Manual [82].


6.5.2. Concept


The manoeuvre detector has been constructed from four di�erent fuzzy inference


system module types. Figure 6.9 shows how the modules are inter-connected. The


functions of the four modules are as follows:
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Figure 6.9: Block diagram of fuzzy-logic manoeuvre detector


1. Stage 1 { This module removes the range dependent characteristics of the


bore-sight error signals. The signals Bn and Br represent the standard de-


viations of the normalised and raw bore-sight error signals respectively. The


signals dBn and dBr represent the standard deviations of the di�erentiated


versions of the normalised and raw bore-sight error signals. At long ranges,


the normalised signals are passed straight through. At short ranges, the raw


error signal is output through a range-dependent gain.


2. Stage 2 { The module combines the four processed standard deviation sig-


nals for the normal horizontal, di�erentiated horizontal, normal vertical, and


di�erentiated vertical components. Two signals are generated. The �rst, xl,


is active when all the signals are low. The second, xh, is active when either


both horizontal signals or both vertical signals are large.


3. TMD { The manoeuvre detector module uses the activity signals from stage-2


to provide the manoeuvre detection signal. The trigger delay and detection


hold functions are implemented by using a state feedback loop for each func-


tion. The delay and hold times are range dependent.


4. TMC { This module provides an indication of the manoeuvre detection signal


accuracy. When the delay or hold functions are operating, the signals from


the stage-2 module may contradict the manoeuvre detector output. The con-


�dence signal should therefore be low accordingly. The con�dence level is also


reduced at both long and short ranges to reect the di�culty of detection.
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Details of the software for each of the modules is given in appendix G.


Figure 6.10 shows the output of the manoeuvre detector for an example 6g co-


ordinated turn. The detector turned on in 80 milli-seconds and turned o� in 104


milli-seconds.


0 0.5 1 1.5 2
−0.4


−0.2


0


0.2


Time


B
er


r,
 h


or
iz


.


Start range = 6521 Metres


0 0.5 1 1.5 2
−0.6


−0.4


−0.2


0


0.2


0.4


Time


B
er


r,
 V


er
t.


0 0.5 1 1.5 2
0


0.2


0.4


0.6


0.8


1


Time
tm


d/
tm


c(
−


−
)


0 0.5 1 1.5 2
0


0.2


0.4


0.6


0.8


1


Time


R
eq


ui
re


d 
M


an
oe


uv
re


 D
et


ec
t


Figure 6.10: Example manoeuvre detector response


6.6. Experimental Method


In order to determine the general performance of the manoeuvre detector, an ex-


periment was devised that could characterise the following performance criteria.


1. Turn on time


2. Turn o� time


3. Reliability of detecting manoeuvre


4. Reliability of detecting manoeuvre start


5. Reliability of detecting manoeuvre progress
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6. Reliability of detecting manoeuvre end


As the noise characteristics are range dependent, the performance criteria must be


evaluated for engagements at di�erent ranges. The performance of the con�dence


output, tmc, is not required to be evaluated.


The e�ects of di�erent launch positions need to be minimised in this experiment,


therefore the launch positions will be chosen at random using equation 4.31 to give


uniform 4� steradian coverage. The launch range will be chosen at random from


between 1km and 20km. A random delay lasting between 0.2 and 1 second will


be given before the manoeuvre to allow the missile to stabilise. The manoeuvre


will be a 6g coordinated turn. This manoeuvre involves the target banking to


80:4� to maintain a maximum lateral force of 1g on the pilot. The bank will take


0.51 seconds to complete. The turn will be maintained for a period of between


0.25 and 0.75 seconds before the target reverse banks and returns to straight, level


ight. The reverse bank manoeuvre will last for 0.51 seconds. The engagement


will be terminated 0.5 seconds after the manoeuvre has been completed. A 6g


coordinated turn is likely to seriously disturb the missile guidance and so there will


be no bene�t in extending the simulation after the manoeuvre. The target model


used in the simulation will be the 27-point model that resulted from the �delity


trials in chapter 5. The model is detailed in appendix B. Five thousand trials will


be run to give one trial approximately every four metres in range.


The missile uses a proportional navigation homing guidance system with a phase


comparison monopulse seeker. The seeker con�guration is shown in table 6.1.


Parameter Value


Source power, S 100W


Target detection range, RN 10km


Seeker type Phase Comparison


Frequency 10 Ghz


Beam-width, � 10�


Head O�set, x 0:06m
Model 27-Point


Table 6.1: Missile con�guration for manoeuvre detector trials


Figure 6.11 shows the timing details of the manoeuvre detection signal. Pre-


detection errors will occur in the time period ts. The rise time of the manoeuvre


detector is tr. Drop-out errors, where the detector falsely switches o�, will occur


during time tp. The fall time of the manoeuvre detector is tf . Post-detection errors


will occur in the time period te.


The following details of the trials will be logged:


1. Starting range of manoeuvre.


2. Turn-on time.


3. Turn-o� time.
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tr tftpts te


Actual Manoeuvre


Manoeuvre Detector


Figure 6.11: Timing details of the manoeuvre detection signal


4. The number of total detection failures, where the detector failed to respond


to the manoeuvre.


5. The number of start-detection errors, where the detector was already tripped


when the manoeuvre occurred.


6. The number of end-detection errors, where the detector failed to turn o� within


0.5 seconds after the manoeuvre ended.


7. The proportion of the pre-detection time (ts) that the detector was falsely


tripped.


8. The proportion of detection time (tp) that the detector had dropped out.


9. The proportion of the post-detection time (te) that the detector was falsely


tripped.


6.7. Trial Results


The results of the trials were sorted by manoeuvre start range before plotting. Ta-


ble 6.2 summarises the main results of the experiments.


Figure 6.12 shows the distribution of turn-on delay with respect to range. The


peak around 9km is coincident with the peak in the range-glint distribution of �g-


ure 6.5. The peak also seems to be related to the change in the delay time of


the fuzzy detector. An experiment with a di�erent delay time still maintained the


bulk of the peak, suggesting it is a target characteristic. The mean turn-on delay


time is 96 milli-seconds. This delay is comparable to the reaction speeds of optical


manoeuvre detectors.







CHAPTER 6. TARGET MANOEUVRE DETECTION USING GLINT 104


Parameter Result


Number of trials 5000


Mean turn-on delay 96 milli-seconds


Mean turn-o� delay 148 milli-seconds


Number of total failures 2


Number of detection failures 14


Number of turn-o� failures 403


Minimum range of manoeuvre start 850 metres


Maximum range of manoeuvre start 19891 metres


Table 6.2: Results of target manoeuvre detection experiment
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Target Manoeuvre Detection Experimental Results


Figure 6.12: Turn-on delay with respect to range
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Figure 6.13 shows the distribution of the turn-o� delay times with respect to


range. The inuence of the fuzzy membership function for range in the TMD module


is clearly visible between ten and twenty kilometres. The mean turn-o� delay time


is 148 milli-seconds. Again, the turn-o� time is comparable to the reaction speeds


of optical manoeuvre detectors.
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Target Manoeuvre Detection Experimental Results


Figure 6.13: Turn-o� delay with respect to range


Figure 6.14 shows the proportions of pre-detection, during-detection, and post-


detection errors. The pre-detection errors are relatively few and occur mostly at long


range. At long ranges, the turn on delay is short and so the detector responds to


any isolated spikes. The during-detection errors reect the shape of the range-glint


distribution shown in �gure 6.5. The errors are caused because the glint spikes occur


mostly when the radar cross section fades. The increased frequency of glint spikes


around 9km causes the mean of the sum channel signal to be arti�cially reduced.


The mean, �s, is no longer a good estimate of the noise level, z. The use of �s may


be too crude for a more sophisticated detector.


The post detection errors are worst at low ranges where the glint e�ects of the


manoeuvre seriously a�ect the tracking ability of the missile. At the end of the


manoeuvre, the missile is unable to track the target and deviates away from the


required collision course. This deviation appears as a manoeuvre and is consequently
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Figure 6.14: Detection errors with respect to range
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detected. Results at very short ranges may be biased towards tail chase engagements


as only complete manoeuvres are used. At short ranges, head-on engagements do


not last long enough for the manoeuvre to be completed before impact.


There were only two engagements out of 5,000 where the manoeuvre detector


failed to respond to the target manoeuvre. Figure 6.15 shows a histogram of the


pre-detection and post-detection failures with respect to range. Each bar of the


histogram represents the total number of failures per kilometre. The pre-detection
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Figure 6.15: Detection failures with respect to range


failures occur most frequently at long range, although less than 0.3% of the trials


were a�ected. The post-detection failures are mainly due to the missile loosing


track of the target after the manoeuvre. The high concentration of failures at very


short ranges and the peak around 10km are probably due to range-glint falsely


triggering detection. From three to six kilometres, the missile is badly a�ected by


the manoeuvre. Between six and nine kilometres, the missile performance is at


its optimum and is often able to track the target after the manoeuvre. The good


performance of the missile leads to a reduced failure rate in this region. Above


eleven kilometres, the failures are mainly due to the missile loosing track, rather


than to range-glint.
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6.8. Conclusions


The performance of the missile has had a signi�cant e�ect on the trial results.


Details of the manoeuvre termination performance are mainly related to the missile


and not the manoeuvre detector, although the turn-o� times reect the shape of the


fuzzy membership functions. If the missile were able to track the target well at all


times, only the banking manoeuvres would probably be seen. The detector would


therefore drop-out during the turn-only section of the manoeuvre. This manner of


operation is still of great bene�t in augmenting tracking algorithms. The short range


results were biased towards tail chase engagements (�rst near head-on engagement


occurred at 1.3km). The e�ects of range-glint in this region have far outweighed


any inuences of the biasing though.


The detector operated without error in over 91% of the trials. Despite the fuzzy


detector only being very roughly tuned, the detector only failed totally for 0.04%


of the trials. The average detection time of 96 milli-seconds and the high reliability


make target manoeuvre detection using glint very attractive. The main strengths


of the method are as follows:


� No a-priori target knowledge required.


� Fast response.


� E�ective for long, medium and short range engagements.


� Very reliable.


� Low processing overhead.


� Uses existing sensors.


� Low cost.


6.9. Recommendations for Future Work


The fuzzy-logic proof-of-principle target manoeuvre detector showed that the tech-


nique is e�ective and very reliable. It is suggested that an extended Kalman �lter


or fuzzy-logic/arti�cial neural network solution is investigated. The noise charac-


teristics developed for this study are only approximate. More rigorous analysis of


the system noise characteristics should be performed. If a fuzzy-logic approach is


used, tuning of the membership functions and the hold and delay times would be


necessary. The tuning may be best accomplished with an evolutionary optimisation


algorithm approach.







7. Conclusions


7.1. Introduction


This thesis has looked at the problems associated with generating realistic target


models for simulating engagements with homing guidance missiles. A point-scatterer


model approach has been taken to solve the modelling problems. The novel use of a


binary space partition tree structure allows complex model structures to be created


easily. The tree structure provides a framework that allows models of di�erent sizes


and complexities to form a single entity. The models are:


� Fast to process { Radar cross section data are simple to calculate from point


scatterer models. The tree structure allows the correct scatterer model for the


current viewing aspect to be retrieved quickly.


� High �delity { Models can be constructed that produce an accurate repre-


sentation of the source target's radar cross section pattern.


� High resolution { The point scatterer model will create realistic approxima-


tions of the radar cross section for any interpolated view aspects that were not


in the original target data.


� Correlated { The radar cross section is properly correlated to range and the


target motion.


� Low storage requirements { The point scatterer models are very compact


and have low storage requirements.


A suite of genetic algorithms have been used to create realistic point scatterer


models from ISAR data. The e�ects of reducing the �delity of the target have been


established. Limits on model reduction have been determined, allowing realistic


target models to be generated that minimise simulation times.


An e�cient, high �delity model has been applied to trials of a novel target


manoeuvre detection technique. A fuzzy-logic proof-of-principle model has been


developed to test the theory that glint can be used to detect target manoeuvres.


The results of the manoeuvre detector trials have been outstanding, showing that


the use of target glint to detect manoeuvres is:


� Fast


� Operates over wide range envelope


� Very reliable


� Has a low processing overhead


109
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� Uses existing sensors


� Cheap


The requirements for the thesis de�ned in section 1.4 (page 9) are discussed in


the conclusions below.


7.2. Item 1 { Automating model conversion


The process of generating point scatterer models from ISAR images has been auto-


mated and the processing overhead reduced when compared to existing techniques.


The conversion process may be broken into three elements. These elements have


been addressed as follows:


� A novel multi-species genetic algorithm for locating multiple scatterers in each


pass of the data. This algorithm dramatically reduces the processing overhead


involved in generating ISAR images of the model during the conversion process.


� Genetic algorithm based �ne-tune method to allow low, medium or high res-


olution images to be processed easily.


� Model reduction using a genetic algorithm to reduce the processing overhead


involved in optimising the model structure. It allows the designer to trade


between the model size and the �delity of reproduction.


The process has been applied successfully to a real two-dimensional image and a


simulated three-dimensional image.


7.3. Item 2 { Integration into engagement scenario


Two seeker models have been created for use with a synthetic missile in simulated en-


gagements. These models have been successfully integrated into the object-oriented


engagement model software (see [65] for code). Trials on the two seekers have estab-


lished that the trial miss distance distribution for the amplitude comparison seeker


is compact, while the the phase comparison seeker has a long-tailed distribution.


The miss distance distributions appear to be inuenced mostly by the e�ects of


glint. The contribution of thermal noise to the miss distance is small.


7.4. Item 3 { Establishing model �delity


The reduction factors that can be applied to models and still retain a high-�delity


representation have been established. It has been determined that reducing the


model complexity to give a K{S signi�cance of � = 0:9 for the radar cross section


pattern, will not signi�cantly a�ect the performance of the missile against the target.


The use of a signi�cance level of � = 0:9 for the image conversion process has been


justi�ed. A high-�delity reduced model has been produced to allow the target


manoeuvre detection trials to be performed with minimal computational overhead.
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7.5. Item 4 { Target manoeuvre detection using glint


The characteristics of the bore-sight error signal have been established. A method


for extracting target manoeuvre information from the patterns of glint spikes has


been proposed. A manoeuvre detector based on the theory has been implemented. A


fuzzy-logic approach was taken for its ease of application and simplicity. Trials of the


fuzzy-logic manoeuvre detector have shown that even the crude, proof-of-principle


model is capable of outstanding reliability and performance. The technique forms


a very attractive solution to the problem of target manoeuvre detection in radar


guided homing missiles.


7.6. Future Work


Important areas of work where further investigation is required have been identi�ed.


� Research into methods for tuning the evolutionary algorithms used for model


extraction. Some advances have been made towards optimally tuned PBIL


algorithms but tuning genetic algorithms can be di�cult.


� Further research into the e�ects of population size on the ability of evolutionary


algorithms to �nd global optima. It has been established that for PBIL algo-


rithms with high learning rates, the probability of �nding the global optimum


follows a binomial distribution. Genetic algorithms need to be investigated


and the general case for PBIL needs to be established.


� Investigations into glint reduction and �ltering techniques. Frequency and


angular diversity methods could be combined with fuzzy-logic and arti�cial


neural network techniques to provide an adaptive solution.


� Further research into target manoeuvre detection using target glint. The use


of extended Kalman �lters with fuzzy-logic/arti�cial neural networks for ex-


tracting manoeuvre information from the glint signal may prove fruitful. It


may be possible to use target manoeuvre information to augment the glint


�ltering process.


� Research into data fusion from multiple sensors for target manoeuvre detec-


tion. Manoeuvre detection using glint is practical for medium and long range,


but is more di�cult at short ranges. Conversely, optical detectors perform


best at short and medium ranges. A hybrid system would perform better in a


wider range of engagement scenarios and may be able to improve performance


in the presence of countermeasures such as ares or cha�.
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A. Quaternions


A.1. Introduction


Quaternions were discovered by Sir William Rowan Hamilton in October 1843. The


quaternion is a four dimensional complex number, where the complex part is de�ned


by


i2 = j2 = k2 = ijk = �1
Dot and cross products of vectors were discovered as part of the quaternion product.


The quaternion is an extension of the usual complex form a+jb, where j =
p�1,


Q = a+ ib+ jc+ kd


where i2 = j2 = k2 = �1 and ij = �ji = k, jk = �kj = i and ki = �ik = j and


a, b, c and d are real. This form of representation was referred to by Hamilton as


Standard Quadrinormal Form [83].


The quaternion may also be represented in a form analogous to Euler's Equation


for the imaginary exponential [84]


me�(i�+j�+k)


where m is the magnitude of the quaternion, � is a rotation angle and [ � �  ]


is a unit vector de�ning an axis of rotation, ie. �2 + �2+ 2 = 1. The Euler form of


the equation may also be represented by


m(cos (�) + (i�+ j� + k) sin (�))


Quaternions are normally represented as four component vectors,


[ a [ b c d ] ]


where a represents the real part of the quaternion and [ b c d ] the imaginary


parts. The components are often expressed in a vector form,


~q = [a; b]


where ~q is the notation for a quaternion1 and b represents the imaginary part of the
quaternion, expressed as a vector.


1
q and _q are sometimes used in other papers.
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A.2. Arithmetic


The following rules apply to quaternion arithmetic for the set of all quaternions,


Q [83]:


1. Addition:


1.1. Closure: if P;Q 2 Q then P +Q 2 Q
1.2. Commutativity: P +Q = Q + P for all P;Q 2 Q
1.3. Associativity: (P +Q) +R = P + (Q+R) for all P;Q;R 2 Q
1.4. Identity: There is a 0 2 Q such that 0 + P = P + 0 = P


1.5. Inverse: For any P 2 Q there exists a (�P ) 2 Q such that P + (�P ) =
(�P ) + P = 0


2. Multiplication:


2.1. Closure: If P;Q 2 Q then PQ 2 Q
2.2. Associativity: (PQ)R = P (QR) for all P;Q;R 2 Q
2.3. Identity: There is a 1 2 Q such that 1P = P1 = P


2.4. Inverse: If P 6= 0, then there is a P�1 such that PP�1 = P�1P = 1


3. Distributivity:


P (Q+R) = PQ+ PR and (Q+R)P = QP +RP for each P;Q;R 2 Q


4. No zero divisors: If PQ = 0, then either P = 0 or Q = 0.


A.3. Magnitude, Conjugate and Inverse


If we have the quaternion


~q = [a; b]


then its magnitude is given by


m = j~qj =
q
a2 + b � b =


q
~q � ~q


The conjugate is the original quaternion but with its vector part negated,


~q� = [a;�b]


and the inverse is the conjugate divided by the magnitude squared


~q�1 =
~q�


m2
=


~q�


~q � ~q
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A.4. Operators


The quaternion dot product may be de�ned for two quaternions ~q = [w; (x; y; z)]
and ~p = [a; (b; c; d)] as


~q � ~p = wa+ xb + yc+ zd


The quaternion product of two quaternions ~p = [po; p] and ~q = [qo; q] may be de�ned


by


~p~q = [poqo � p � q ; poq + pqo + p� q]


where `�' and `�' imply the vector dot and cross product operations respectively.


A.5. Rotations


Quaternion rotation of vectors is described by the transformation


[0; (x0; y0; z0)] = ~q[0; (x; y; z)]~q�


where (x; y; z) is the vector to be rotated, (x0; y0; z0) is the rotated vector and


~q = [cos (�=2) ; [�; �; ] sin (�=2)]


with j~qj = 1 and � de�ning the required rotation angle and [�; �; ] j�2+�2+2=1


de�ning the axis to rotate around. The vector (x; y; z) is e�ectively turned into


a quaternion with a zero scalar part to allow the rotation to be evaluated. The


resulting quaternion will also have a zero scalar part.


Alternatively, a unit quaternion [w; (x; y; z)] may be converted into matrix form


M =


0
B@


1� 2y2 � 2z2 2xy + 2wz 2xz � 2wy


2xy � 2wz 1� 2x2 � 2z2 2yz + 2wx
2xz + 2wy 2yz � 2wx 1� 2x2 � 2y2


1
CA


If ~q = me�(i�+j�+k), then the quaternion product
p
~q[0; (x; y; z)]fp~qg� will rotate


by an angle � about unit axis (�; �; ) and scale by a factor m.[85]







B. Truth Models


This appendix describes the single-point, 50-point and 100-point truth models. The


high-�delity 27-point model that was derived from the 50-point model is also de-


tailed. The models are designed to be used within a suite of MATLAB programmes


for radar cross section simulation. The models are held as N � 6 arrays, where each


row de�nes one of N scatterers. The format for each row is as followsh
x y z Magnitude Phase �


i


where x, y and z de�ne the scatterer position and � is de�ned by


� =


(
1 , scatterer active


2 , scatterer passive


The returned echo voltage, �, from an n{point scattering centre model may be found


using equation B.1.


� =
nX
p=1


ap
p
S


(
p
4�dp)


�p e
j


�
2��pdp


�
+�p


�
(B.1)


Where ap is the magnitude of scatterer p, S is the radar source power,


dp is the distance from the view point to scatter p, � is the wavelength


and �p is the phase of scatterer p relative to the radar.


Table B.1 de�nes the one point truth model. Distance is in metres, magnitude


is
p
� in metres and phase in radians. Tables B.2 and B.3 de�nes the 50-point truth


model, and tables B.4, B.5 and B.6 de�ne the 100-point truth model. Table B.7


de�nes the twenty seven point model that was used for the target manoeuvre detec-


tion trials in chapter 6. The model was created by the �delity reduction trials on


the 50-point model detailed in chapter 5.


x y z Magnitude Phase Ac./Pa.


0 0 0 29.77 0 2


Table B.1: 1-point truth model
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Scatterer x y z Magnitude Phase Ac./Pa.


1 10.00 0.00 0.00 1.75 0 2


2 4.80 3.15 0.20 1.94 0 2


3 2.50 9.50 0.60 3.74 0 2


4 -1.50 1.00 -0.11 4.72 0 2


5 -1.50 -1.00 -0.10 4.28 0 2


6 2.50 -9.55 0.60 4.09 0 2


7 4.80 -3.20 0.20 1.93 0 2


8 -6.40 0.00 3.60 8.54 0 2


9 -9.00 0.10 0.00 6.77 0 2


10 -6.00 -0.54 -0.10 1.88 0 2


11 10.80 -0.27 -0.57 3.08 0 2


12 4.65 2.66 0.56 6.34 0 2


13 1.78 8.77 1.42 4.22 0 2


14 -0.61 1.57 -0.61 2.93 0 2


15 -1.68 -1.09 0.62 5.50 0 2


16 1.76 -9.85 0.54 4.59 0 2


17 5.57 -3.30 0.21 4.68 0 2


18 -7.22 0.62 3.80 6.58 0 2


19 -9.68 0.96 0.64 6.36 0 2


20 -6.86 -0.24 0.41 5.68 0 2


21 9.58 0.43 -0.02 6.60 0 2


22 4.87 3.75 0.54 1.44 0 2


23 2.53 9.91 0.96 2.97 0 2


24 -2.29 1.48 -0.71 2.10 0 2


25 -1.67 -1.96 0.73 3.43 0 2


26 2.65 -8.78 1.33 5.88 0 2


27 5.55 -3.15 0.98 2.93 0 2


28 -6.52 -0.07 3.69 3.12 0 2


29 -8.54 -0.77 -0.72 5.38 0 2


30 -5.26 -0.11 -0.20 2.43 0 2


31 9.42 -0.16 0.26 1.89 0 2


32 5.80 3.51 -0.37 5.18 0 2


33 1.81 9.86 0.03 5.23 0 2


34 -1.24 0.41 -0.95 2.82 0 2


35 -1.27 -0.33 -0.32 1.88 0 2


36 1.50 -9.13 1.50 1.29 0 2


37 3.80 -2.54 1.10 0.08 0 2


38 -5.85 -0.81 3.38 1.28 0 2


39 -8.55 -0.74 -0.46 6.55 0 2


40 -6.36 -0.01 0.28 1.63 0 2


Table B.2: 50-point truth model
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Scatterer x y z Magnitude Phase Ac./Pa.


41 10.64 -0.80 0.20 4.69 0 2


42 4.07 2.59 -0.35 0.95 0 2


43 2.30 9.77 0.24 1.08 0 2


44 -1.30 1.39 0.29 3.24 0 2


45 -2.15 -0.41 -0.87 5.73 0 2


46 3.16 -9.16 1.13 5.42 0 2


47 4.12 -2.69 0.25 3.71 0 2


48 -5.42 0.34 3.71 4.93 0 2


49 -9.49 0.37 0.18 2.11 0 2


50 -6.53 -1.43 -0.44 0.90 0 2


Table B.3: 50-point truth model
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Scatterer x y z Magnitude Phase Ac./Pa.


1 4.05 -0.57 3.21 3.10 0 2


2 1.63 -0.60 1.75 2.53 0 2


3 4.57 1.27 -5.01 1.93 0 2


4 -3.41 -4.48 3.00 0.08 0 2


5 -4.53 1.93 10.50 0.60 0 2


6 1.37 2.04 3.34 0.95 0 2


7 0.20 -3.42 3.43 1.76 0 2


8 -3.81 0.14 -1.10 0.33 0 2


9 -0.27 -1.43 7.93 0.57 0 2


10 -6.74 3.40 -3.18 0.13 0 2


11 2.71 0.54 7.10 0.27 0 2


12 1.02 3.04 1.43 0.44 0 2


13 2.66 -5.91 4.36 1.94 0 2


14 4.70 0.88 -5.01 0.15 0 2


15 -2.65 -4.82 0.57 1.06 0 2


16 -1.81 0.83 -3.03 2.26 0 2


17 -0.39 -2.72 0.21 1.77 0 2


18 2.75 2.55 -1.34 1.22 0 2


19 4.26 -3.23 5.90 5.07 0 2


20 1.57 0.32 2.47 0.12 0 2


21 -0.22 0.59 10.54 0.79 0 2


22 4.60 -0.92 4.99 0.54 0 2


23 -1.61 6.72 1.32 1.09 0 2


24 5.71 4.95 0.40 1.55 0 2


25 -4.73 -2.65 -8.40 0.75 0 2


26 -0.94 -7.97 4.58 3.66 0 2


27 -1.61 -8.95 -0.58 0.34 0 2


28 -9.24 -3.44 -0.59 1.27 0 2


29 -3.02 -8.51 1.13 2.36 0 2


30 -0.56 -0.98 0.04 1.00 0 2


31 -1.85 2.60 2.62 2.35 0 2


32 3.07 5.93 -11.06 2.49 0 2


33 -2.11 2.28 -3.68 1.26 0 2


34 2.56 -2.69 -1.60 3.50 0 2


35 -1.67 -5.51 4.96 0.09 0 2


36 -4.40 4.88 1.97 1.54 0 2


37 4.49 -0.69 8.23 4.47 0 2


38 1.58 11.24 -6.12 0.19 0 2


39 -4.06 -0.26 1.59 2.28 0 2


Table B.4: 100-point truth model
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Scatterer x y z Magnitude Phase Ac./Pa.


40 1.03 -2.29 -1.36 1.30 0 2


41 -0.14 -2.15 -9.15 1.31 0 2


42 -1.60 5.76 1.23 1.16 0 2


43 -2.44 -2.76 6.23 0.56 0 2


44 2.04 1.27 -2.64 3.89 0 2


45 4.10 9.34 0.50 2.66 0 2


46 -1.40 2.40 -1.73 1.53 0 2


47 5.66 0.97 3.03 2.19 0 2


48 1.29 4.79 8.13 0.42 0 2


49 4.08 3.64 -6.02 0.54 0 2


50 -2.11 -0.65 2.71 1.03 0 2


51 2.18 1.78 -2.61 2.08 0 2


52 -7.22 -0.90 5.27 1.38 0 2


53 8.78 -0.32 8.10 2.25 0 2


54 -0.83 -3.27 -1.13 2.78 0 2


55 2.86 -0.57 -9.44 0.17 0 2


56 5.01 -0.84 -2.73 1.07 0 2


57 3.09 3.24 7.39 2.03 0 2


58 -4.48 -0.76 -1.31 0.50 0 2


59 -1.09 -0.19 0.45 1.07 0 2


60 -1.16 5.53 -0.84 2.03 0 2


61 1.54 3.88 1.16 0.46 0 2


62 0.62 -4.25 -4.20 1.20 0 2


63 0.32 9.61 2.04 3.73 0 2


64 7.83 6.59 3.10 3.84 0 2


65 7.84 -4.16 -4.38 2.43 0 2


66 8.97 0.79 0.01 2.58 0 2


67 4.55 1.79 -0.96 2.36 0 2


68 -3.56 0.35 -2.37 0.14 0 2


69 -7.00 1.59 9.26 0.47 0 2


70 -3.04 -2.70 -0.90 1.69 0 2


71 2.83 1.97 -2.81 3.22 0 2


72 -0.26 -0.16 3.05 0.54 0 2


73 -0.32 2.89 -2.96 1.59 0 2


74 -0.66 3.80 -4.34 0.62 0 2


75 5.09 1.51 3.87 0.31 0 2


76 4.10 0.67 5.05 0.85 0 2


77 -0.47 6.17 1.47 1.54 0 2


78 2.09 1.20 -0.90 0.15 0 2


79 6.22 0.60 -1.07 1.58 0 2


Table B.5: 100-point truth model







APPENDIX B. TRUTH MODELS 127


Scatterer x y z Magnitude Phase Ac./Pa.


80 -0.88 -0.34 -2.76 2.31 0 2


81 -11.46 5.96 1.79 3.34 0 2


82 4.27 -2.08 2.97 0.85 0 2


83 -12.18 1.26 5.06 0.89 0 2


84 0.74 5.14 -8.52 0.80 0 2


85 -0.33 -5.90 -8.18 0.01 0 2


86 -1.25 -3.99 -2.47 0.70 0 2


87 -2.69 2.08 0.76 0.10 0 2


88 2.41 2.54 -4.50 1.62 0 2


89 5.11 0.41 -1.98 0.15 0 2


90 2.24 2.21 3.30 1.68 0 2


91 1.74 -6.17 1.38 1.50 0 2


92 -0.60 -1.70 -2.53 2.36 0 2


93 3.97 -3.98 -1.89 0.71 0 2


94 2.31 -2.85 1.46 3.49 0 2


95 -8.56 -6.70 9.92 0.50 0 2


96 1.41 1.05 4.33 2.95 0 2


97 1.94 -1.19 3.52 4.47 0 2


98 -1.95 2.57 1.29 0.52 0 2


99 -0.24 -6.91 -3.73 2.38 0 2


100 -2.66 -3.58 -4.36 1.76 0 2


Table B.6: 100-point truth model







APPENDIX B. TRUTH MODELS 128


Scatterer x y z Magnitude Phase (Radians) Ac./Pa.


1 2.50 9.50 0.60 3.79 -0.01125 2


2 -1.50 1.00 -0.11 4.69 0.00093 2


3 -1.50 -1.00 -0.10 4.22 -0.01354 2


4 2.50 -9.55 0.60 4.05 0.00108 2


5 -6.40 0.00 3.60 8.56 0.00047 2


6 -9.00 0.10 0.00 6.78 0.00981 2


7 4.65 2.66 0.56 6.29 -0.02221 2


8 1.78 8.77 1.42 4.21 0.02974 2


9 -1.68 -1.09 0.62 5.48 0.00782 2


10 1.76 -9.85 0.54 4.58 -0.00976 2


11 5.57 -3.30 0.21 4.65 0.01484 2


12 -7.22 0.62 3.80 6.58 0.00921 2


13 -9.68 0.96 0.64 6.32 0.00587 2


14 -6.86 -0.24 0.41 5.74 0.01305 2


15 9.58 0.43 -0.02 6.80 0.00001 2


16 -1.67 -1.96 0.73 3.42 -0.03191 2


17 2.65 -8.78 1.33 5.95 -0.00636 2


18 -8.54 -0.77 -0.72 5.35 0.00530 2


19 5.80 3.51 -0.37 5.19 0.01741 2


20 1.81 9.86 0.03 5.26 0.02003 2


21 -8.55 -0.74 -0.46 6.62 0.02005 2


22 10.64 -0.80 0.20 4.71 0.00321 2


23 -1.30 1.39 0.29 3.26 -0.00696 2


24 -2.15 -0.41 -0.87 5.82 0.00420 2


25 3.16 -9.16 1.13 5.48 0.02065 2


26 4.12 -2.69 0.25 3.68 0.05130 2


27 -5.42 0.34 3.71 4.88 -0.03022 2


Table B.7: 27-point �tted model







C. Constrained Least Squares Fitting


The complex weightings of the individual scatterers in a model must be chosen so the


correct �eld pattern can be generated. If the �eld pattern describing the N target


radar cross section datum is denoted by a vector go and the M model amplitudes


and phases are described by a vector f , equation C.1 describes a linear operator T
that relates the two [86].


[T ]N�M [f ]M�1 � [go]N�1 (C.1)


Equation C.2 de�nes the standard unconstrained Least Squares solution, where T �


indicates the complex conjugate and T T indicates matrix transpose.


f = [[T �]TT ]�1[T �]Tgo (C.2)


Unfortunately, the simple least squares method can give wild over-estimates for


scatterer magnitude values in the model. A better method is to use a constrained


least squares approach [86].


If �i and �i denote the ith Eigen vector and Eigen value of the matrix [T �]TT ,
ie.


[[T �]TT ]�i = �i�i


The constrained least squares approximation of f is de�ned by equation C.3.


f =
MX
i=1


ci


(�i + �)
�i (C.3)


where


ci = [��]T [T �]Tgo


The value � may be found using the Newton{Raphson iterative method [87, Page


55]. Equation C.4 details the calculation, where C is the applied constraint. A


starting value of �0 = 1 is suggested. Care must be taken if �0 � 0 as the function


is discontinuous below zero and the results of the iterative method are unpredictable.


A possible solution is to replace negative values of �0 with a positive random number,


typically in the range [1; 100]. The algorithm will then re-start at a random position.


�1 = �0 �
0
@C �


PM
i=1


jcij
2


(�i+�0)2


2
PM
i=1


jcij2


(�i+�0)3


1
A (C.4)


The square of the norm of the vector f , as de�ned in equation C.5, is limited by


the value of the constraint C.


jjf jj2 =
MX
i=1


jfij2 (C.5)
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If the model is being used to re-construct an ISAR image, the required constraining


value for jjf jj2, ie. C, is found by calculating the squared norm of the image. Equa-


tion C.5 is applied to the image with fi representing each picture element. As the


image intensity is determined by scatterer amplitudes, the squared norm should be


approximately the same as the squared norm of the model.







D. Statistical Tests


D.1. Introduction


The purpose of both statistical tests is to determine whether two independent groups


of data have been drawn from the same distribution.


D.2. Kolmogorov-Smirnov Statistical Test


The Kolmogorov-Smirnov (K{S) statistical test [88, Pages 472{475] gives a �gure of


merit for the similarity between the cumulative distribution functions of two sets of


data. The K{S number, �KS, may be related to a probability that the sets of data


are drawn from the same distribution.


Taking two Cumulative Distribution Functions S1 and S2 of size N1 and N2


respectively, the Kolmogorov{Smirnov statistic is as shown in equation D.1.


�KS =


s
N1N2


N1 +N2


�
max


�1<x<1
jS1(x)� S2(x)j


�
(D.1)


In the case of the null hypothesis `sets of data drawn from the same distribution',


the distribution of the K{S statistic can be calculated giving the signi�cance of any


observed non-zero value of �KS.
The signi�cance may be calculated using equation D.2, which is monotonic with


limiting values QKS(0) = 1 and QKS(1) = 0.


QKS(�) = 2
1X
j=1


(�1)j�1e�2j2�2 (D.2)


In terms of this function, the signi�cance level of an observed value of �KS (as


disproof of the null hypothesis) is given approximately by


Prob(�KS > observed) = � = QKS(�KS)


The approximation becomes asymptotically accurate as N becomes large. Typically


N > 20 is acceptable. Table D.1 summarises some commonly used signi�cance levels


(�) and their K{S number equivalents. The signi�cance levels are the probability of


a type one error, ie. the null hypothesis is rejected erroneously.


D.3. Mann-Whitney Statistical Test


The Mann-Whitney test (sometimes called Wilcoxon Test) uses ranking methods to


produce an indication of how the sets of data overlap. The test statistic is normally
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% Signi�cance, � K{S number, �KS


99% 0.4410


95% 0.5196


90% 0.5712


10% 2.2239


5% 1.3580


1% 1.6720


Table D.1: Typical Kolmogorov{Smirnov test signi�cance levels


distributed for su�cient numbers of observations. The test is performed on the two


sets of data as follows.


1. Label the two sets of data X and Y , having n and m members respectively.


Set X should be the smallest set, ie. n � m.


2. Put the two sets of data together to form a single X + Y group with (n+m)


members.


3. Rank the (n + m) data with rankings 1 to (n + m), with the smallest value


getting rank 1 and the largest rank (n +m).


4. If R(Xi) denotes the rank of Xi, equation D.3 gives the test statistic.


U =
nX
i=1


R(Xi)� n(n + 1)


2
(D.3)


Thus, if the population X lies totally below population Y , U = 0. While if X


lies totally above Y , U = nm. If n;m > 20, the test statistic asymptotically


approximates the normal distribution with the mean and standard deviation shown


in equation D.4.


Uz =
U � �


�


� =
nm


2


� =


s
nm(n +m + 1)


12
(D.4)


Table D.2 summarises some commonly used signi�cance levels (�) and their Mann-


Whitney Uz equivalents. The signi�cance levels are the probability of a type one


error, ie. the null hypothesis is rejected erroneously.
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% Signi�cance, � Mann-Whitney Statistic, Uz


10% 1.283


5% 1.645


1% 2.327


Table D.2: Typical Mann-Whitney test signi�cance levels







E. Population Based Incremental


Learning


E.1. Introduction


This appendix covers advances in tuning the search parameters of Population Based


Incremental Learning (PBIL) algorithms. The basic PBIL algorithm has been en-


hanced to include automatic run termination and optimum setting of some control


parameters. In many cases, only one parameter now needs to be tuned for e�cient


operation of the algorithm. A simple binary-tree structure is also described for


storing past chromosomes, giving around a 30% processing reduction for complex


objective functions. The enhanced PBIL algorithm may be more easily applied to


a wide range of engineering applications. Example MATLAB routines are included


to demonstrate the simplicity of the algorithms.


Population based incremental learning algorithms are considered to be among


the simplest evolutionary optimisation techniques currently available. They are


able to �nd optimum solutions to problems which are multi-modal or lack gradient


information. They have been shown to outperform conventional deterministic and


stochastic optimisation techniques on a wide range of problems and yet are simple


to code [89, 90].


The algorithmwas �rst described in 1994 [89] and has been improved recently [91].


This algorithm has three control parameters; population size (p), learning rate (l)


and forgetting factor (f). The algorithm presented here has been enhanced further


by automatically terminating the run when the process has converged on a single


solution. One new operating parameter has been introduced into the algorithm to


control the algorithm termination. This parameter has been called the termination


factor and is denoted by � . The forgetting factor is now calculated from a more intu-


itive parameter that allows the analysis of the algorithm operation to be simpli�ed.


This parameter has been called the search rate and is denoted by s.


Empirical values have been derived for two of the four parameters and empirical


conditions for optimality have been established for a third. The remaining parameter


of population size is used to control the search. Small populations yield rapid but


crude results, large populations will give more accurate results but at a processing


cost. The processing overheads can be reduced by storing previous chromosome


structures and their objective values. A simple technique based on binary space


partition trees is described.
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E.2. Algorithm operation


The PBIL algorithm is a stochastic guided search process that obtains its direc-


tional information from the previous best solutions. The problem parameters are


represented as a binary chromosome of total length b bits. Each variable is coded in


a binary form and then concatenated to any previous parameters to form a single


chromosome.


A prototype vector (P) is used to bias the generation of bits in a population


of chromosomes. The prototype vector has b elements, one for each bit location.


At each location, the prototype vector holds the probability that the corresponding


bit is a `1'. Each location is initially set to 0:5 which corresponds to unbiased bit


generation. A population of candidate solutions is generated using the prototype


vector to bias the generation of bits. For each chromosome in the population, the


bits are selected by generating a uniformly distributed random number in the range


[0,1] for each bit. The chromosome bit is set to one if the random number is less than


the corresponding prototype vector element, zero otherwise. All the chromosomes


are then evaluated by the objective function and the best identi�ed.


Equation E.1 is then applied to the prototype vector to incorporate the direc-


tional information of the best chromosome. This equation is a variant of the process


described in [91].


Pn+1 = ((1� l)Pn + l �CB)(1� f) +
f


2
(E.1)


Where CB is the best chromosome and consists of a pattern of ones and zeros.


Figure E.1 shows the changes in the prototype vector during a typical opti-


misation run. The learning mechanism in equation E.1 leads to a change in each


prototype vector element level, that follows an exponential pro�le. In order to inves-


tigate the algorithm further, the nature of the exponential function must be known.


To establish the function characteristics, if we take the speci�c case of CB = 0, the


rate of fall of each prototype vector element, P , is given by equation E.2.


Pn =
1


2


 
f(1� an)


1� a
+ an


!
(E.2)


where


a = (1� l)(1� f)


and n is the generation number


The level to which each element of the prototype vector converges is found by


taking the limit of equation E.2 at n = 1 to give equation E.3, which de�nes the


search rate, s. As the pattern of convergence is symmetrical about P = 0:5, the


convergence properties for CB = 1 may be determined by observation as 1 � Pn.


The search rate, s, is shown graphically on �gure E.1. The search rate may also


be considered as the probability of selecting a one instead of a zero element after


an in�nite number of generations. Equation E.4 is used to calculate the forgetting


factor, f for any given value of s.


s = P1 =
f


2(1� a)
(E.3)
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Figure E.1: Typical prototype vector plot (9 bits in P)
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f =
2sl


1� 2s(1� l)
(E.4)


If the search rate is set to zero, the elements of the prototype vector can converge


to either 0 or 1. Once this terminal value has been reached, if the element has


converged in the wrong direction, there is no way for it to be corrected. Increasing


the search rate prevents the prototype vector elements converging exactly to 0 or 1.


The search rate is analogous to mutation rate in genetic algorithms. The higher the


value of s, the less likely the algorithm is to get stuck in local optima.


The algorithm is allowed to run until all the elements are within a bound t of the


�nal convergence level of s or (1�s) as appropriate. The bound t is shown graphically
in �gure E.1. If we de�ne t as shown in equation E.5, t varies dynamically with s. We


can now calculate the minimum number of generations required for the algorithm


to terminate, nmin, shown in equation E.6.


t = (0:5� s)� (E.5)


Pn = s+ t
f(1�an)


2(1�a)
+ an


2
= f


2(1�a)
+
�
0:5� f


2(1�a)


�
�


f + an((1� a)� f) = f + ((1� a)� f)�
an = �


nmin = log(�)


log(a)


(E.6)


Equation E.7 gives the minimum number of function evaluations, Fmin.


Fmin = pnmin (E.7)


The termination condition may be summarised as shown in equation E.8.


max(0:5� jP� 0:5j) < s+ (0:5� s)� (E.8)


A convenient empirical setting for � is � = 0:1. Reducing � will extend the


length of the run and increasing � will increase the risk of false termination. If � is


increased, at most nmin generations can be cut from the runtime.


Trials have shown that the �nal convergence phase occurs most often in the region


where there should be, on average, at least one copy of the optimum chromosome


in the population. This conditions are met when equation E.9 is satis�ed.


p
Y
P > 1 (E.9)


It must be noted that for the PBIL algorithm to converge on a �nal solution, each


gene should inuence the objective function. If inverting a gene value has no e�ect,


the associated prototype vector element will drift randomly around the 0:5 aver-


age value. It has been demonstrated that given the condition of every gene having


inuence, the algorithm will eventually converge on a solution [92]. As the �nal con-


vergence level of the prototype vector is limited by s, the condition in equation E.10
therefore has to be satis�ed for algorithm convergence.


p >
1


(1� s)b
(E.10)
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It has been found through trials and observations that the minimum number of


function evaluations required to reach convergence is governed by the probability of


a chromosome being better than average, the search rate, and the number of bits.


This probability, P (Chrom. > Aver.), appears to be approximately 0:5 for most


real-world problems.


The `sum of bits' problem (demonstrated in section E) with an even number of


bits has a probability P (Chrom. > Aver.) < 0:5. The lower probability only has


signi�cant inuence for low numbers of bits. The probability may be related to


population size as described in equation E.11.


popt =
1


P (Chrom. > Aver.)(1� s)b
(E.11)


This e�ect is demonstrated graphically in �gure E.2. The minimum number of


function evaluations for any given value of s occurs at Popt. If s is increased, Popt
will increase, following the linear portion of the curve. Thus an optimum value of s


may be found for any population size and thus the corresponding forgetting factor


calculated. Using this philosophy, as population size is increased, s increases and so


the chances of converging on a local optima reduces. The lines in �gure E.2 are an


average of 100 trials at each population size under the values of s shown and using


the source code in section E.


Thus we may operate the algorithm by choosing a population size and then cal-


culating the maximum value of s that minimises the number of function evaluations.
Equation E.12 details this.


sopt = 1� (2=p)1=b (E.12)


A population size of 5 with an optimum value for s (0 < s < 0:5) is often a


good starting point. It is wise to start with low population sizes to assess how many


function evaluations are required and then increase p to achieve su�ciently accurate


results. By combining equations E.4, E.6, E.7 and E.12, equation E.13 gives the


minimum number of function evaluations required for operation with s = sopt.


Fmin = p �


2
66666


log(�)


log


�
1� l


1�2(1�l)(1�(2=p)1=b)


�
3
77777


��������
s=sopt


(E.13)


where dxe denotes the smallest integer � x


Figure E.3 shows the results of proving trials for a 7 bit sum of chromosome


problem, where the theoretical minimum is denoted by ` .. ', actual minimum by ` -


- ', mean by ` { ' and maximum by ` .- '. The results were generated from a PBIL


algorithm with � = 0:1, l = 0:1 and s = sopt and 1000 trials run at each population


size. The data for the minimum number of function evaluations match the theory


well but it is unknown how the other curves are related. In practice, the algorithm


will be operating in the region p� 2b where the curve is almost linear. The details


of this near linear portion of the curve are speci�c to the objective function used.


The learning rate (l) determines the �nal accuracy of the solution. The lower


the learning rate, the less likely it is that the algorithm will converge on a local


optimum. Baluja [89, Page 17] observed that:
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If the learning rate is high, the initial populations generated will largely


determine the focus of the search, without enabling the algorithm to


explore the function space. If the function space does not contain local


optima, a high learning rate may work well. However, if local minima


could be a problem, lower learning rates allow greater exploration.


Changing the learning rate directly a�ects the gradient of the near linear por-


tion of the curves. Doubling l will approximately halve the gradient etc. (following


equation E.6 as the gradient). Therefore as l is increased, the number of func-


tion evaluations reduces but the probability of premature algorithm convergence


increases. An empirical range of 0:1 � l � 0:4 has been found satisfactory for most


problems.


E.3. Binary Space Partition Tree for Chromosome Storage


By their very design, evolutionary algorithms can be ine�cient with objective func-


tion calculations. In the �rst few generations of the algorithm, all of the chromo-


somes evaluated are likely to be di�erent. As the population of chromosomes con-


verge toward a solution, a small set of chromosomes may be evaluated repeatedly. If


the objective function has heavy processing requirements, much processor time can


be wasted. A variant of the binary space partition tree described in Foley et. al. [62,


Pages 675{680] may be used to reduce the number of wasted calculations. The


following algorithm may be applied to most evolutionary algorithm techniques.


The tree is used to store chromosome patterns and their corresponding objective


values. In this variant of the standard tree, the chromosomes themselves are used as


the partitioning structures. The tree is generated by inserting each new chromosome


as its objective value is required by the evolutionary algorithm. The very �rst


chromosome is treated as a special case and simply inserted into the �rst location


in the tree. Its objective value is then calculated and stored in the tree too. Two


extra data values are held along with each chromosome and objective. Initially, the


data items are both zero, but are intended for storing pointers to the left and right


branches of the tree.


Subsequent chromosomes are added to the tree only if they are not already


present. The new chromosome is compared to the �rst chromosome in the tree.


Because the number of bits in the chromosome may be much larger than the machine


precision, the chromosomes are compared gene by gene. Starting from the left,


each gene in the new chromosome is compared to the corresponding gene of the


chromosome in the tree. If these genes are the same, the next pair of genes are


tested. The �rst test that �nds a di�erence in the chromosomes is used as the


decision variable. If the gene in the new chromosome is less than the gene in the


tree, the new chromosome is classed as being less than the tree chromosome. This


algorithm is demonstrated in �gure E.4. If the new chromosome is classed as smaller,


the left branch of the tree is investigated. If it is greater, the right branch is chosen.


The tree is descended in a recursive fashion until either a matching chromosome is


found or a chromosome with no sub-tree to follow is encountered. If a match is found,


the previously recorded objective value is returned to the evolutionary algorithm.
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Figure E.4: Example chromosome comparison


If no match is found before the tree ends, an objective value is calculated for the


chromosome. The objective is inserted into the tree along with the chromosome,


and the index to the storage location recorded in the appropriate pointer of the


last chromosome found in the tree. This process is demonstrated in �gure E.5. If


the same chromosome is generated by the evolutionary algorithm again, it can be


retrieved quickly from the tree.


The tree structure is suited to both binary and integer chromosomes. Real


valued chromosomes are di�cult to store e�ectively as a tiny deviation in one gene


is enough to prevent the chromosome being matched. Generating the tree by using


the chromosomes as the partitioning structures may not lead to a very e�cient tree


structure though. A balanced tree has a uniform distribution of branches following


each node. The trees generated using this method will not be balanced and therefore


some look-up operations may be much more rapid than others. However, as the


evolutionary algorithm is stochastic in nature, the spread of the tree unlikely to


become excessively unbalanced.


If the objective is quick to calculate, it may be better not to use the tree. If


the objective is computationally expensive or requires heavy disk usage, in a typical


evolutionary algorithm, one third of the objective values may be returned from the


tree. Example MATLAB code for implementing the tree structure in the PBIL


algorithm is presented in section E.5


E.4. Conclusions


The enhancements to the algorithm reduce the tuning burden normally associated


with stochastic optimisation techniques. In most cases, only the population size


needs to be adjusted to trade repeatability against number of function evaluations.


The simplicity of the algorithm allows it to be applied to new problems rapidly and


can give excellent results with little or no tuning. The MATLAB code in section E.5


is a complete PBIL example where the function being optimised is the sum of the


bits in the chromosome. This function is multi-modal in nature. The whole pro-


gramme consists of 20 lines without the comments and should take approximately


180 generations to complete. Trials have shown that with a population of 10 in the
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example, the correct answer can be obtained about 95% of the time.


E.5. MATLAB example


% Enhanced Population Based Incremental Learning


% E.J.Hughes 14/11/97


%% user control parameters


maxgen=3000; % maximum no. of generations


b=101; % no. of bits in chromosome


l=0.1; % learning rate


p=10; % population size


%% set other control parameters


tau=0.1; % termination factor


s=1-(2/p)^(1/b); % search rate


f=2*s*l/(1-2*s*(1-l)); % forgetting factor


%% initialise


pv=0.5*ones(1,b);


pvx=zeros(maxgen,b);


%% main loop


for n=1:maxgen


%% generate population


chrom=rand(p,b)<(ones(p,1)*pv);


%% put objective here


obj=sum(chrom')'; % calculate sum of bits


[a,i]=max(obj); % i=index of best chromosome


%% update prototype vector and stop if converged


pv=((1-l)*pv+l*chrom(i,:))*(1-f)+f/2;


pvx(n,:)=pv;


if max(0.5-abs(pv-0.5))<(s+(0.5-s)*tau)


break; end


end


%% output results


[(pv>0.5) a]


plot(1:n,pvx(1:n,:)); % plot prototype vector


% Population Based Incremental Learning


% With Binary Space Partition Tree Enhancement


% for Objective Calculations


% E.J.Hughes 10/2/98


%% user control parameters


maxgen=3000; % maximum no. of generations


b=101; % no. of bits in chromosome


l=0.1; % learning rate


p=10; % population size


%% set other control parameters


tau=0.1; % termination factor


s=1-(2/p)^(1/b); % search rate


f=2*s*l/(1-2*s*(1-l)); % forgetting factor
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%% initialise


pv=0.5*ones(1,b);


pvx=zeros(maxgen,b);


%% Initialise BSP tree


bsp=zeros(maxgen*p,3+b);


curr_pos=1;


hit_cnt=0;


%% main loop


for n=1:maxgen


%% generate population


chrom=rand(p,b)<(ones(p,1)*pv);


%% To calculate objective:


obj=zeros(p,1);


for k=1:p


%% Check BSP tree first


ck=chrom(k,:);


pos=1;next=0;


objt=[];


while(isempty(objt))


kk=sign(ck-bsp(pos,4:3+b));


tst=kk(min(find(kk~=0)));


if isempty(tst)


objt=bsp(pos,3); %Chromosome exists


hit_cnt=hit_cnt+1;


tst=0;


end


next=bsp(pos,1+(tst==1)); % get next node


if(~next)&isempty(objt) % not found


%% put objective here


objt=sum(chrom(k,:)); % calculate sum of bits


bsp(curr_pos,3:3+b)=[objt ck];


if(curr_pos~=1)


bsp(pos,1+(tst==1))=curr_pos; % add to tree


end


curr_pos=curr_pos+1;


end


pos=next;


end


obj(k,1)=objt;


end


[a,i]=max(obj); % i=index of best chromosome


%% update prototype vector and stop if converged


pv=((1-l)*pv+l*chrom(i,:))*(1-f)+f/2;


pvx(n,:)=pv;


if max(0.5-abs(pv-0.5))<(s+(0.5-s)*tau)


break; end


end


%% output results


[(pv>0.5) a]


plot(1:n,pvx(1:n,:)); % plot prototype vector







F. Noise Approximations


F.1. Introduction


This appendix covers the derivation of the approximation used to divide two Gaus-


sian noise signals. A survey of existing literature and mathematical texts failed to


provide a solution to the problem and so an empirical approximation was found.


F.2. Derivation


An attempt was made to derive an analytical proof of the division of the two Gaus-


sian noise sources detailed in equation F.1. Where N(�; v) describes a Gaussian


source with mean � and variance v.


N(�1; v1)


N(�2; v2)
(F.1)


The following properties of noise distributions may be found from standard texts


(for example [93]); where D1(�; v) and D2(�; v) etc. describe noise sources with


an arbitrary distribution and mean � and variance v (the distribution D0 is not


necessarily the same as D).


1. D1(�1; v1)�D2(�2; v2) = D3(�1 � �2; v1 + v2)


2. �+D1(0; v) = D1(�; v)


3. aD1(�; v) = D1(a�; a
2v)


The property


D1(�1; v1)D2(�2; v2) = D4(�1�2; �
2
1v2 + �22v1 + v1v2)


may be derived from the above results.


The assumption that there exists an inverse that satis�es equation F.2 was made.


This assumption is obviously awed as the noise cannot be cancelled out by another


random distribution but it does provide a useful mathematical construction.


D(�; v)D(�; v)�1 = D(1; 0) (F.2)


The theoretical inverse shown in equation F.2 was calculated and is shown in


equation F.3.


D(�; v)�1 = D


 
1


�
;


�v
�2(�2 + v)


!
(F.3)


146







APPENDIX F. NOISE APPROXIMATIONS 147


The negative variance is nonsense as it would represent imaginary noise. Empirical


trials indicate that if the negative sign is removed, the equation does closely approx-


imate the reciprocal of a noise source, as long as all of the noise samples lie to one


side of zero, ie. j�j is large with respect to the variance v. Observations of the noise


distribution show that the noise is approximately Gaussian for large �.


Using equation F.3 with positive variance will yield equation F.4.


N(�1; v1)


N(�2; v2)
� N


 
�1


�2
;
�21v2 + �22v1 + 2v1v2


�22(�
2
2 + v2)


!
(F.4)


Empirical trials show that equation F.4 gives a good approximation to the quo-


tient of the two noise sources. Observations and trials have shown that equation F.5


gives an even better approximation to the noise. Figure F.1 shows a histogram


for the example equation N(0; 1)=N(10; 1) demonstrating that the result is approx-


imately Gaussian. The overlaid curve is for a normal distribution N(0; 0:01), as
provided by equation F.5. As �2 decreases, the distribution becomes very long-


tailed with large outliers. The region where �2 is low is also the region where glint


spikes occur. A proper solution to the quotient problem may provide an insight into


the probability distribution of the glint noise.


N(�1; v1)


N(�2; v2)
� N


 
�1


�2
;
�21v2 + �22v1 + v1v2


�22(�
2
2 + v2)


!
(F.5)
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Figure F.1: Example noise histogram (50 bins)







G. Target Manoeuvre Detection


Software


G.1. Introduction


This appendix details the MATLAB fuzzy-logic inference system modules and in-


cludes the software used for target manoeuvre detection. The source code is designed


using the MATLAB Fuzzy Logic Toolbox [82]. The following source code is detailed


in this appendix.


� Initialisation Code


� Detector Main Function


� Fuzzy Pre-Processor Module


� Fuzzy Combiner Module


� Fuzzy Detector Module


� Fuzzy Con�dence Module


G.2. Detail of the Stage-1 Pre-Processor module


Figure G.1 shows the top-level structure of the stage-1 module. The module is a


Sugeno type fuzzy inference system, where the outputs are functions of the input


variables. Figure G.2 shows the membership function for the range input. There


are no membership functions associated with the sn and sr inputs. There are four


rules in the system. They are as follows:


1. If (range is long) then (out = sn)


2. If (range is short) then (out = 100sr)


3. If (range is close) then (out = 30sr)


4. If (range is end) then (out = 10sr)


The membership function for the range and the levels of the gains in rules 2,3 & 4


have been chosen empirically by observation.
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Figure G.1: Block diagram of Stage-1 module
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Figure G.2: Membership function for the Stage-1 module range input
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Figure G.3: Block diagram of Stage-2 module


G.3. Detail of the Stage-2 Combiner module


Figure G.3 shows the top-level structure of the stage-2 module. The module is


a Mamdani type fuzzy inference system, where the outputs are membership func-


tions. Figure G.4 shows the membership function for the normal signal inputs and


�gure G.5 shows the membership function for the di�erentiated signals. Figure G.6


shows the membership function for the outputs.


There are eight rules in the system. They are as follows:


1. If (h is hi) or (v is hi) or (dh is hi) or (dv is hi) then (xl is no)


2. If (h is not hi) and (v is not hi) and (dh is not hi) and (dv is not hi) then (xl


is yes)


3. If (dh is not hi) and (dv is not hi) then (xh is no)


4. If (h is not hi) and (v is not hi) then (xh is no)


5. If (v is hi) and (dv is hi) then (xh is yes)


6. If (h is hi) and (dh is hi) then (xh is yes)


7. If (h is hi) and (dv is hi) then (xh is yes)


8. If (v is hi) and (dh is hi) then (xh is yes)


The membership functions have been chosen empirically by observation.
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Figure G.4: Membership function for the Stage-2 module normal inputs
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Figure G.5: Membership function for the Stage-2 module di�erentiated inputs
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Figure G.6: Membership function for the Stage-2 module outputs


G.4. Detail of the TMD Detector module


Figure G.7 shows the top-level structure of the TMD, target manoeuvre detector


module. The module is a Sugeno type fuzzy inference system. Figures G.8 and G.9


show the membership functions for the signal inputs. Figures G.10 and G.11 show


the membership functions for the feedback signals to control the hold and delay


times. Figure G.12 shows the membership function for the range input. There are


sixteen rules in the system. They are as follows:


1. If (xh is trip) and (holdi is o�) and (range is long) then (delay = 0:5)


2. If (xh is trip) and (range is long) then (hold = 10)


3. If (xh is trip) and (holdi is o�) and (range is med) then (delay = 1)


4. If (xh is trip) and (range is med) then (hold = 6)


5. If (xh is trip) and (holdi is o�) and (range is short) then (delay = 1:75)


6. If (xh is trip) and (range is short) then (hold = 4)


7. If (xh is trip) and (holdi is o�) and (range is close) then (delay = 2:5)


8. If (xh is trip) and (range is close) then (hold = 2)


9. If (holdi is o�) then (tmd = 0)(delay = 0) (hold = 0)


10. If (delayi is not o�) and (holdi is not o�) then (tmd = 0)


11. If (delayi is o�) and (holdi is not o�) then (tmd = 1)(delay = 0)
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Figure G.8: Membership function for the TMD module xl input
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Figure G.9: Membership function for the TMD module xh input
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Figure G.10: Membership function for the TMD module delayi input
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Figure G.11: Membership function for the TMD module holdi input
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Figure G.12: Membership function for the TMD module range input
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12. If (xl is not hi) and (delayi is not o�) then (delay = delayi � 1)


13. If (xl is hi) and (holdi is not o�) then (hold = holdi � 1)


14. If (xl is not hi) and (xh is not trip) and (delayi is o�) then (hold = holdi)


15. If (xl is hi) and (holdi is o�) then (delay = 0)(hold = 0)


16. If (xl is hi) and (delayi is not o�) then (delay = 0) (hold = �holdi)
The membership functions and the levels for the turn-on delay and hold have been


chosen empirically by observation.


G.5. Detail of the TMC Con�dence module


Figure G.13 shows the top-level structure of the TMC, target manoeuvre con�dence


module. The module is a Sugeno type fuzzy inference system. Figures G.14 and G.15
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Figure G.13: Block diagram of TMC module


shows the membership functions for the tmd and range inputs. There are no mem-


bership functions associated with the xl and xh inputs. There are three rules in


the system. They are as follows:


1. If (range is not good) then (tmc = 0)


2. If (tmd is not hi) and (range is good) then (tmc = 0:5xl � 0:5xh+ 0:5)
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Figure G.14: Membership function for the TMC module manoeuvre detect input
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Figure G.15: Membership function for the TMC module range input
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3. If (tmd is hi) and (range is good) then (tmc = �0:5xl + 0:5xh + 0:5)


The membership function for the range and the output functions have been chosen


empirically by observation.
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G.6. Initialisation Code


% Target Manoeuvre Detect Software


%


% E.J.Hughes 20/3/98


%


%% Initialisation


%% Load Fuzzy inference system modules


global stage1 stage2 tmdfuzz tmcfuzz k tmx


stage1=readfis('stage1');


stage2=readfis('stage2');


tmdfuzz=readfis('tmd1');


tmcfuzz=readfis('tmc1');


%% correction for source pwr and noise range


k=sqrt(100)/4/pi/(10000^2);


tmx=[0 0 0];


G.7. Detector Main Function { tmdetect.m


% Target Manoeuvre Detect Software


%


% E.J.Hughes 20/3/98


%


%% Detector Function


%


% inputs berr_h and berr_v are a frame of


% bore-sight error samples (typ. 10).


%


% s_rcs is the corresponding frame of the


% radar cross section sum signal (complex).


%


% range is the mean range of the frame.


%


% Output tmd is the detection signal,


% zero no manoeuvre, one is manoeuvre.


%


% Output tmc is a confidence measure and


% lies in the range [0,1].


function [tmd,tmc]=tmdetect(berr_h,berr_v,s_rcs,range)


global stage1 stage2 tmdfuzz tmcfuzz k tmx


fsize=length(berr_h); % frame size


frame=[berr_h' berr_v' s_rcs'];


curr=frame(:,1:2); %berr signals


s=abs(frame(:,3)); %sum signal


s=mean(s);
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currx=curr*s; %correct for RCS


currx=(currx-ones(fsize,1)*mean(currx))/sqrt(2)/k;%normalise


df=curr(2:fsize,:)-curr(1:(fsize-1),:);


dfx=currx(2:fsize,:)-currx(1:(fsize-1),:); % differentials


ss=std(curr);


sp=std(df);


ssx=std(currx);


spx=std(dfx); % std deviations


dx=[ssx' ss';spx' sp'];


dx=dx.*(dx<4.9)+4.9*(dx>=4.9); %crop


dat1=evalfis([dx ones(4,1)*range],stage1); % fuzzy pre-process


dx=dat1.*(dat1<4.9)+4.9*(dat1>=4.9); %crop


dat=evalfis(dx',stage2); % fuzzy combine


tmx=evalfis([dat tmx(2:3) range],tmdfuzz); % detect (tmd)


tmd=tmx(1);


tmc=evalfis([dat tmx(1) range],tmcfuzz); % confidence (tmc)


G.8. Pre-Processor Module { stage1.�s


[System]


Name='stage1'


Type='sugeno'


NumInputs=3


NumOutputs=1


NumRules=4


AndMethod='prod'


OrMethod='probor'


ImpMethod='min'


AggMethod='max'


DefuzzMethod='wtaver'


[Input1]


Name='s_n'


Range=[0 5]


NumMFs=0


[Input2]


Name='s_r'


Range=[0 5]


NumMFs=0


[Input3]


Name='range'


Range=[0 20000]


NumMFs=4


MF1='end':'trapmf',[-500 0 500 1000]


MF2='close':'trimf',[500 1000 3000]


MF3='short':'trimf',[1000 3000 5000]
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MF4='long':'trapmf',[3000 5000 20000 30000]


[Output1]


Name='out'


Range=[0 1]


NumMFs=4


MF1='a_long':'linear',[1 0 0 0]


MF2='b_short':'linear',[0 100 0 0]


MF3='b_close':'linear',[0 30 0 0]


MF4='b_end':'linear',[0 10 0 0]


[Rules]


0 0 4, 1 (1) : 1


0 0 3, 2 (1) : 1


0 0 2, 3 (1) : 1


0 0 1, 4 (1) : 1


G.9. Combiner Module { stage2.�s


[System]


Name='stage2'


Type='mamdani'


NumInputs=4


NumOutputs=2


NumRules=8


AndMethod='prod'


OrMethod='probor'


ImpMethod='prod'


AggMethod='sum'


DefuzzMethod='centroid'


[Input1]


Name='h'


Range=[0 5]


NumMFs=1


MF1='hi':'trapmf',[1.5 3 5 6]


[Input2]


Name='v'


Range=[0 5]


NumMFs=1


MF1='hi':'trapmf',[1.5 3 5 6]


[Input3]


Name='dh'


Range=[0 5]


NumMFs=1


MF1='hi':'trapmf',[3 4.5 5 6]
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[Input4]


Name='dv'


Range=[0 5]


NumMFs=1


MF1='hi':'trapmf',[3 4.5 5 6]


[Output1]


Name='xl'


Range=[-1 2]


NumMFs=2


MF1='no':'trimf',[-1 0 1]


MF2='yes':'trimf',[0 1 2]


[Output2]


Name='xh'


Range=[-1 2]


NumMFs=2


MF1='no':'trimf',[-1 0 1]


MF2='yes':'trimf',[0 1 2]


[Rules]


1 1 1 1,1 0 (1) 2


-1 -1 -1 -1,2 0 (1) 1


0 0 -1 -1,0 1 (1) 1


-1 -1 0 0,0 1 (1) 1


0 1 0 1,0 2 (1) 1


1 0 1 0,0 2 (1) 1


1 0 0 1,0 2 (1) 1


0 1 1 0,0 2 (1) 1


G.10. Detector Module { tmd1.�s


[System]


Name='tmd1'


Type='sugeno'


NumInputs=5


NumOutputs=3


NumRules=16


AndMethod='prod'


OrMethod='probor'


ImpMethod='min'


AggMethod='max'


DefuzzMethod='wtsum'


[Input1]


Name='xl'


Range=[0 1]
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NumMFs=1


MF1='hi':'trapmf',[0.25 0.75 1 2]


[Input2]


Name='xh'


Range=[0 1]


NumMFs=1


MF1='trip':'trapmf',[0.25 0.251 1 2]


[Input3]


Name='delay_i'


Range=[0 15]


NumMFs=1


MF1='off':'trapmf',[-1.5 0 0.5 0.55]


[Input4]


Name='hold_i'


Range=[-15 15]


NumMFs=1


MF1='off':'trapmf',[-20 -15 0.5 0.55]


[Input5]


Name='range'


Range=[0 20000]


NumMFs=4


MF1='close':'trapmf',[-1000 0 1000 5000]


MF2='short':'trimf',[1000 5000 10000]


MF3='med':'trimf',[5000 10000 15000]


MF4='long':'trapmf',[10000 15000 20000 30000]


[Output1]


Name='tmd'


Range=[0 1]


NumMFs=3


MF1='off':'constant',0


MF2='on':'constant',1


MF3='def':'constant',0


[Output2]


Name='delay'


Range=[0 5]


NumMFs=7


MF1='off':'constant',0


MF2='short':'constant',0.5


MF3='med':'constant',1.75


MF4='long':'constant',2.5


MF5='dec':'linear',[0 0 1 0 0 -1]


MF6='def':'constant',0


MF7='shortish':'constant',1.0
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[Output3]


Name='hold'


Range=[-15 15]


NumMFs=9


MF1='off':'constant',0


MF2='short':'constant',4


MF3='med':'constant',6


MF4='long':'constant',10


MF5='dec':'linear',[0 0 0 1 0 -1]


MF6='coast':'linear',[0 0 0 1 0 0]


MF7='v_short':'constant',2


MF8='def':'constant',0


MF9='force':'linear',[0 0 0 -1 0 0]


[Rules]


0 1 0 1 4, 3 2 8 (1) : 1


0 1 0 0 4, 3 6 4 (1) : 1


0 1 0 1 3, 3 7 8 (1) : 1


0 1 0 0 3, 3 6 3 (1) : 1


0 1 0 1 2, 3 3 8 (1) : 1


0 1 0 0 2, 3 6 2 (1) : 1


0 1 0 1 1, 3 4 8 (1) : 1


0 1 0 0 1, 3 6 7 (1) : 1


0 0 0 1 0, 1 1 1 (1) : 1


0 0 -1 -1 0, 1 6 8 (1) : 1


0 0 1 -1 0, 2 1 8 (1) : 1


-1 0 -1 0 0, 3 5 8 (1) : 1


1 0 0 -1 0, 3 6 5 (1) : 1


-1 -1 1 0 0, 3 6 6 (1) : 1


1 0 0 1 0, 3 1 1 (1) : 1


1 0 -1 0 0, 3 1 9 (1) : 1


G.11. Con�dence Module { tmc1.�s


[System]


Name='tmc1'


Type='sugeno'


NumInputs=4


NumOutputs=1


NumRules=3


AndMethod='prod'


OrMethod='probor'


ImpMethod='min'


AggMethod='max'


DefuzzMethod='wtsum'


[Input1]
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Name='xl'


Range=[0 1]


NumMFs=0


[Input2]


Name='xh'


Range=[0 1]


NumMFs=0


[Input3]


Name='tmd'


Range=[0 1]


NumMFs=1


MF1='hi':'trimf',[0 1 2]


[Input4]


Name='range'


Range=[0 30000]


NumMFs=1


MF1='good':'trapmf',[300 3000 10000 20000]


[Output1]


Name='tmc'


Range=[0 1]


NumMFs=3


MF1='off':'constant',0


MF2='wait':'linear',[0.5 -0.5 0 0 0.5]


MF3='lock':'linear',[-0.5 0.5 0 0 0.5]


[Rules]


0 0 0 -1, 1 (1) : 1


0 0 -1 1, 2 (1) : 1


0 0 1 1, 3 (1) : 1






