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ABSTRACT 

An important dispersion-related characteristic of waves propagating through periodic materials 
is the existence of stop bands, that is, ranges of frequencies over which a medium effectively 
attenuates all incident waves. The width of these bands, and their location in the frequency 
domain, depend on the layout of contrasting materials and the ratio of their properties. In this 
work, a multi-objective genetic algorithm (GA) is utilized to design layered material topologies 
in such a way as to form frequency band structures that result in maximum wave attenuation. 
Subject to size and manufacturing constraints, Pareto optimal designs are obtained that 
illustrate the trade-off between the number of layers in a periodic unit cell and the 
corresponding wave attenuation capacity. Attention is focused on the longitudinal wave 
propagation in one-dimensional models for cases involving incident time harmonic waves as 
well as general transient pulses. The presented method has potential use in the development of 
shock and vibration isolation devices, among other applications. 
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1. INTRODUCTION 
Wave propagation in heterogeneous media is dispersive, i.e. the shape of a pulse changes as it 
propagates through a medium. In materials with periodic heterogeneity there are ranges of 
frequencies, known as stop bands or band gaps, over which all incident waves are effectively 
attenuated. This attenuation phenomenon is attributed to a mechanism of destructive 
interference among the scattered wave field. In a previous work [1] dealing with longitudinal 
plane wave propagation, one-dimensional infinite periodic structures were optimized to have 
the width of stop bands maximized across frequency ranges of interest, thereby enhancing their 
shock and vibration isolation capability. The unit cell of the periodic structures consisted of 
sub-layers of alternating material types with different thicknesses. The frequency ban structure 
(the size and location of stop bands) was controlled by varying the configuration of the unit 
cell (the number and thicknesses of sub-layers in a unit cell). 
 
For a given maximum limit on the number of layers, the optimal design was found by 
exhaustively searching over all possible cell configurations, under the restriction that layers 
only could have thicknesses that are multiples of a minimum size. While the exhaustive search
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guarantees finding a global optimum, it is prohibitively expensive because the number of 
possible combinations of layer thicknesses increases exponentially with the number of layers.  
Although a larger number of cell layers and a wider range of admissible layer thicknesses 
would provide more precise control of the frequency band structure, they will also entail 
higher manufacturing costs. It is therefore desirable to efficiently quantify the trade-off 
between the number of layers and the wave attenuation capacity. As such, the present paper 
poses the problem as a multi-objective optimization where the number of cell layers and their 
thicknesses are optimized for maximum wave attenuation capacity with minimum number of 
layers, subject to the constraints on the minimum layer thickness and the total cell length. 
Two alternative formulations are developed. In the first (mixed-integer programming 
formulation), the number of layers and the thicknesses of each layer are represented as an 
integer and continuous variables, respectively. In the second (zero-one integer programming 
formulation), the unit cell is divided into a fixed number of imaginary divisions and the 
material type of each division is represented by a binary variable, thereby representing the 
number and thicknesses of the actual layers. Both formulations are solved using a multi-
objective genetic algorithm [2], a heuristic algorithm capable of efficiently generating Pareto 
optimal (non-inferior) solutions. Examples are shown for the cases involving incident time 
harmonic waves as well as general transient pulses. 
 
The rest of the paper is organized as follows. Section 2 describes the mathematical 
formulation of a Transfer Matrix method for computing the frequency spectra (i.e., the 
frequency versus wave number dispersion curves). In Section 3, the two alternative 
formulations of the cell design problem are presented, with a brief description of a multi-
objective genetic algorithm. Section 4 presents the results of the two case studies, and 
conclusions are drawn in Section 5. 
 

2. DISPERSIVE WAVE MOTION IN LAYERED MEDIA 

Consider a general multi-layered structure (as depicted in Fig. 1) where an arbitrary layer j is 
shown to be positioned between an adjacent layer j-1 at its left and an adjacent layer j+1 at its 
right. The jth layer has thickness d(j), density ρ(j), Young’s modulus E(j), and longitudinal and 
transverse velocities, ( )j

pc  and ( )j
sc , respectively. For this one-dimensional model of a multi-

layered structure, the elastodynamic response is determined using the Transfer Matrix 
method, which provides an exact elasticity solution [1, 3-4]. The governing equation for 
longitudinal wave propagation in the x1 direction is: 
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where 1u  is the displacement field, and t denotes time. The boundary conditions that must be 
satisfied at the layer interfaces are (i) the continuity of the displacement u1 and (ii) the 
continuity of the 11σ  component of the stress tensor σ . The solution of Eq. (1) in the jth layer 
can be written as a superposition of forward and backward traveling waves with harmonic 
time dependence: 
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where 1i = − , ( ) ( )/j j

p pk cω=  and ω is the time frequency. The stress component is given by 
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Let 1
jLx  and 1

jRx  be used to denote the position along the x1-axis of the left and right 
boundaries of layer j, respectively. From Eqs. (2) and (3), and using the relation 

( )
1 1
jR jL jx x d= + , the values of the displacement u1 and stress component 11σ  at 1

jLx  are related 
to those at 1

jRx . Through a transfer matrix Tj, this connection can be repeated in a recursive 
manner to relate the displacements and the stresses across several layers. For the n layered 
system shown in Fig. 1, a cumulative transfer matrix = n n-1 1T T T TL  is constructed: 
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For an infinite periodic layered medium consisting of repeated unit cells, each of width           
d = d(1) + d(2) + …+ d(n), Floquet’s theory is used to relate the time harmonic response at a 
given cell to that at the adjacent cell: 
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Coupling Eq. (4) with Eq. (5) results in the eigenvalue problem: 
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which is solved for the dispersion curves. Furthermore, the displacement mode shapes can be 
obtained using Eqs. (2-6). The reader should refer to [1] for a step-by-step procedure for 
computing the time-dependent mode shape corresponding to any point in the frequency 
spectrum of an infinite structure. 
 
 
 
 
 
 
 
 
 
 
 

For purpose of demonstration, let us consider plane time harmonic wave propagation in a 
periodic layered medium with an arbitrarily chosen unit cell design, as shown in Fig. 2. The 
unit cell is composed of two parallel layers of stiff (fiber) and compliant (matrix) materials, 
Using ‘f’ and ‘m’ to denote fiber and matrix, respectively, the dimensions are d(f)/d = 0.8, and 
the ratio of material properties are ρ(f)/ρ(m) = 3 and E(f)/E(m) = 12. 
 
The frequency spectrum for longitudinal waves propagating in the direction normal to the 
layering are computed and plotted in Fig. 3. The non-dimensional frequency mmEdΩ ρω=  
and the non-dimensional wave number k dξ = ×  define the ordinate and abscissa, 
respectively. The solid lines represent the real part of the dispersion relation, and these appear 

Fig. 1. Unit cell consisting of n layers. The layer number is indicated in parenthesis. 
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as multiple branches of pass band modes of wave propagation. The dotted lines represent the 
imaginary part of the dispersion relation, and these too appear as multiple branches, but of 
stop band modes. Within stop band frequencies all incident waves are localized and 
attenuated in space thus ‘forbidding’ the effective transmission of energy across the medium. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3. MULTI-OBJECTIVE GENETIC ALGORITHM FOR UNIT CELL DESIGN 

3.1. Cell Design Problem Formulations 

Varying the number of layers of alternating materials and their thicknesses allows for 
“shaping” the frequency spectrum of the periodic medium. With this capability, a design can 
be generated such that stop bands are widened and centered near desired frequencies to 
enhance the medium’s wave attenuation capacity at a specific frequency or a frequency range 
of interest. The details of such capacity measures are given in Section 4. Let the number and 
thicknesses of cell layers be n and u = (u1, u2, …, un), respectively, where ui is the thickness of 
layer i.  Since the unit cell is periodic (i.e., repeated infinite times in the composite medium), 
it is assumed, without loss of generality, that the first layer in the unit cell is always a fiber ‘f’ 
and that n is an even number. Using the integer variable n and continues variable u, the 
problem can be formulated as mixed-integer programming, which shall be refered to as mixed 
formulation:  
 

Minimize:  { 1 ( ( , ))f Pen C n= u , 2f n= } (7)

Subject to: 
1

1
n

i
i

u
=

=∑  (8)

iu a≥  for i = 1, 2, .., n (9)

max2 n n≤ ≤ , n is an even number. (10)
,  n n∈ ∈R Zu  (11)

 

 
 
 
where: 

Fig. 2. Infinite layered medium (three 
unit cells are shown). 

Fig. 3. Dispersion curves for longitudinal 
wave propagation normal to the layers in 
the infinite periodic structure in Fig. 2. 
Stop band regions are shaded. 
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1f : performance objective function, defined as a penalty on the deviation of the wave 
attenuation capacity of the medium at a specified frequency (or frequency range) from a 
target value. 

2f : manufacturability objective function, defined as the number of layers in the unit cell. 
C : measure of wave attenuation capacity of the medium at a specified frequency (or 

frequency range) as a function of n and u.  
a :  minimum thickness of a layer given as a fraction of unity. 

maxn : maximum number of layers. 
 
It should be noted that the total cell length is unity by definition. It is assumed that a and nmax 
are imposed by manufacturing limitations. 
 
In the above formulation, the dimension of vector variable u depends on another variable n, 
which often causes a difficulty in optimization algorithms. Alternatively, the problem can be 
formulated in terms of a vector of binary variables b = (b1, b2, …, bl) with a constant 
dimension l, by assuming a unit cell is divided into l imaginary “slots,” each of which can be 
filled with either fiber ‘f’ or matrix ‘m’ [1]: 
 

0 if slot  is filled with fiber  
1 if slot  is filled with matrix j

j f
b

j m


= 


 (12)

 
Contiguous slots filled with the same material form a continuum and are regarded as one cell 
layer, whose total number is given as 
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where s = (s1, …, sl-1), sj = XOR(bj, bj+1). The thickness ui of layer i can take only discrete 
values with the multiple of 1/l, which can be expressed as: 
 

1
1( )i i iu l l
l−= − ×  (14)

 

where l = (l0, 11, …, ln) are the indices of si with si = 1, sorted in the ascending order with l0 = 
0 and ln = l.  For example, if l = 10 and b = (0,0,0,1,1,1,1,0,0,1), then s = (0,0,1,0,0,0,1,0,1) 
and l = (0, 3, 7, 9, 10), and hence n = 4 and u = (0.3, 0.4, 0.2, 0.1), starting with the first layer 
being ‘f’ and alternate thereafter. 
 
Using b as an independent design variable, the problem can now be formulated as zero-one 
integer programming, which shall be refered to as binary formulation: 
 
 
 
 
 
 
 

Minimize:  { 1 ( ( , ))f Pen C n= u , 2f n= } (15)
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Subject to: 
1

1

l

j
j

n s
−

=

= ∑ , sj = XOR(bj, bj+1) for j = 1, 2, …, l-1 (16)

1
1( )i i iu l l
l−= − × , li for i = 0, .., n are as defined above.  (17)

iu a≥  for i = 1, 2, .., n (18)

max2 n n≤ ≤ , n is an even number (19)
{0,1}l∈b  (20)

 
In the previous work [1], the cell design problem was tackled using the binary formulation 
with l = 10, and this small value allowed for an exhaustive search of 210 alternatives. Since ui 
can only be the multiple of 1/l, the resulting optimal cell design could be further improved 
with a larger l, which makes exhaustive search totally impractical. In the present paper, a 
multi-objective genetic algorithm is chosen due to its efficiency for global optimization of 
discrete and/or continuous variables as described in the next section. 
 

3.2. Multi-Objective Genetic Algorithm 

A multi-objective genetic algorithm (GA) employed in the following case studies is a variant 
of Non-dominated Sorting Genetic Algorithm (NDSGA-II) [2, 5, 6], whose steps are outlined 
below. 
 
1. Create a population P of p random designs and evaluate their objective function values.  

Also create empty set Q and O.  
2. Rank each design c in P according to the number of other designs dominating1 c (rank 0 is 

Pareto optimal in P).  
3. Store the designs with rank 0 into set O. Update O by removing any designs dominated by 

others in O. If the size of O reaches a pre-specified number, remove the designs that are 
similar to others to maintain the size.  

4. Select two designs ci and cj in P with probability proportional to p-rank(ci) and p-rank(ci). 
5. Crossover ci and cj to generate new design(s) with a certain probability. 
6. Mutate the new design(s)  with a certain probability. 
7. Rapair the new design(s) to maintain their feasibility.  
8. Evaluate the objective function values of the new design(s) and store in Q. If the size of Q 

is less than p, go to 4. 
9. Replace P with Q, empty Q, and increment the generation counter. If the generation 

counter has reached a pre-specified number, terminate the process and return O. 
Otherwise go to 2. 

 
Due to the differences in the design variables, the two formulations of the cell design problem 
require different implementations of crossover, mutation, and repair at steps 6, 7, and 8.  For 
the mixed formulation, a design is represented as a pair (n, v), where v is a vector of constant 
size nmax with vi = ui for i = 1, 2, …, n. The values of vi for i > n is simply ignored during the 
evaluation of the objective functions.  
The crossover operator produces one new design ( 'n , v' ) from two “parent” designs (n1, v1) 
and (n2, v2), implemented as a combination of arithmetic and heuristic crossovers [7]: 
                                                 
1 For a vector-valued function f = (f1,f2,..,fn) to be minimized, a point x dominates y if fi(x) < fi(y) for all i = 
1,2,…,n. 
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1 2 1' 2 ( )n n n nα= + − ,  (21) 

 
1 2 1' 2 ( )α= + −v v v v  (22) 

 
where α  is a random number between 0 and 1. This type of crossover is reported to work 
well with continuous variables [7], hence it is applied to v with a high probability.  However, 
it is applied to n  with a very low probability to reduce its destructive effects. Then, the 
mutation operator randomly changes every variable to some value within its allowed range, 
with a low probability. The repair operator sets all 'iv  for i > n to zero, then performs a linear 
scaling such that 1 2' ' ' 1nv v v+ + + =L  and  'iv a≥  for i = 1, 2, .., n. 
 
For the binary formulation, a design is simply represented as binary vector b, to which classic 
multi-point crossover [8] and bit-flip mutation are applied. Similar to the mixed formulation, 
only even numbers of layers starting with ‘f’ are considered without loss of generality. As 
such, the repair operator rotates the bits in vector b until b1 = 0 and bl = 1, thereby making the 
number of layers even and starting with ‘f’. 
 

4. CASE STUDIES: CELL DESIGN FOR DESIRED FREQUENCY SPECTRA 

4.1. Case 1: Creation of a Wide Stop Band Centered at a Specified Frequency 

The objective is to design a cell consisting of ‘f’ or ‘m’ (same material properties as in Section 
2), whose frequency spectrum has a stop band that i) is centered at a predetermined 
frequency, and ii) has the maximum width (i.e., ∆ω ). From a practical perspective, a finite 
structure composed of several cells of such a design could be used to attenuate the 
propagation of a single harmonic wave. Inspection of Fig. 3 and the band diagrams of other 
designs show that at the center of a stop band, the value of the wave number (which is 
imaginary) is directly proportional to the width of the band. Furthermore, it is known that the 
strength of spatial attenuation of an incident wave at a stop band frequency is exponentially 
related to the value of the corresponding imaginary wave number. On this basis, the value of 
the imaginary wave number at a predetermined frequency will be taken as the performance 
objective function 1f  for the design problem. 
 
This design problem is investigated in [1], using the target frequency Ω = 20. The optimal 
design for the binary formulation with l =10 obtained by exhaustive enumeration is shown as 
a reference point in Fig. 4. The number of layers of the design is 10, and the imaginary value 
of the wave number at the specified frequency was -8.01. Pareto plots generated by the multi-
objective genetic algorithm are shown in Fig. 4. The values of maxn = 16 and l = 30 are used 
for the mixed and binary formulations, respectively. Both values are chosen to allow a larger 
design freedom than the case in [1]. It should be noted that l = 30 makes an exhaustive search 
highly impractical since it would require 230 (≈109) function evaluations. 
 
The Pareto plot in Fig. 4 shows that the multi-objective genetic algorithm found improved 
designs (imaginary wave number value of about -8.33) using the same number of layers as in 
[1] as well as even better designs using 12 layers. The unit cell layouts of the best designs are 
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shown in Fig. 5. No better designs were found by increasing the number of layers beyond 12. 
The run-time parameters of the genetic algorithm are given in Appendix. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.2. Case 2: Minimization of Transmissibility across a Specified Frequency Range 

The objective in this case study is to minimize the transmission of an incident general 
transient pulse. Transient pulses typically have broad frequency content, and in most practical 
cases it is unlikely that a stop band can be synthesized with enough width to cover the whole 
frequency range of the pulse. For this reason, an alternate performance measure, 
transmissibility, is employed; which is defined as the percentage of the sum of frequency 
ranges where a pass band exists, to the total frequency range of interest. The Pareto plots in 
Fig. 6 show the performances of the designs optimized for frequency range of 0 50≤ ≤Ω , 
obtained using the mixed formulation, binary formulation with  l = 30, as well as the previous 
design found in [1] (which employed exhaustive search with l = 10). Again, the multi-
objective genetic algorithm found superior designs with the same number of layers as in [1] (6 
layers), and even better designs using more layers. The unit cell layouts of the best designs 
are shown in Fig. 7. No better designs were found with more than 10 layers. The run-time 
parameter values for the genetic algorithm are the same as in Case 1. 
 
In both case studies, the multi-objective genetic algorithms could find better designs, since the 
solved optimization problems are the relaxation of the ones in [1]. Although the mixed 
formulation is also a relaxation of the binary formulation, the dependency of the size of u on n 
decreases the efficiency of the genetic algorithm, a phenomenon known as epistasis [8]  This 
is a likely reason why the binary formulation found better designs for a small number of cell 
layers (4 to 6), than the mixed formulation. Furthermore, from a practical perspective, the 
binary formulation has an advantage since the optimized layer thickness values require no 
truncation. On the other hand, for a fixed length binary string, an increase in the number of 
cell layers implies a loss of resolution because fewer bits are allocated per layer. This in turn 
limits the performance of the designs with a large number of layers in the binary formulation. 
 
This paper discussed the application of a multi-objective genetic algorithm to the design of 
material distributions within repeated unit cells of periodic layered structures for maximum 
wave attenuation and minimum number of cell layers. This was achieved by controlling the 
size and location of stop bands within the medium’s frequency spectrum. Attention was 
focused on longitudinal wave motion for cases involving incident time harmonic waves as 
well as general transient pulses. Two alternative formulations of the design problem were 

-10
-9
-8

-7
-6
-5
-4

-3
-2
-1

Number of Layers

Im
ag

in
ar

y 
Va

lu
e 

of
 W

av
e 

N
um

be
r

Result in [1]

Mixed Encoding

Binary Encoding

2                4                6               8              10              12 
Number of Layers 

Fig. 5. Case 1 – Best Cell Designs  Fig. 4. Case 1 – Pareto Plot  



MDP-8 Cairo University Conference on Mechanical Design and Production Cairo, Egypt, January 4-6, 2004                           Hussein, et al. 
 

 

49 
 

presented. In the mixed-integer programming formulation, the number of layers and the 
thicknesses of each layer are represented as an integer and continuous variables, respectively. 
In the zero-one integer programming formulation, the unit cell is divided into a fixed number 
of imaginary divisions and the material type of each division is represented by a binary 
variable. Two case studies are presented on the maximum attenuation of incident time 
harmonic waves and of general transient pulses. In both cases, the obtained Pareto plots 
indicated the increase in the number of cell layers improves the wave attenuation 
performance. Further, multi-objective genetic algorithm found better unit cell designs than 
previously reported in the literature. The results also show that the relevant measure of wave 
attenuation saturated at approximately 12 layers for composite materials designed to stop a 
time harmonic wave, and 10 layers for isolation of transient pulses spanning a wide frequency 
range. 
 
 
 
 
 
 
 
 

5. CONCLUSIONS 
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APPENDIX 
 

Run-time parameters of Genetic Algorithm use in the case studies 
 

 Mixed formulation Binary formulation 
Population Size 120 100 
Number of Generations 80 100 
Crossover Probability 0.90 0.90 
Mutation Probability 0.02 0.02 

 


