

Data Mining Rules Using Multi-Objective Evolutionary Algorithms

Beatriz de la Iglesia, Mark S. Philpott,Anthony J. Bagnall and Vic J. Rayward-Smith
University of East Anglia,

Norwich NR4 7TJ,
England

(bli,m.s.philpott,ajb,vjrs)@sys.uea.ac.uk

Abstract- In data mining, nugget discovery is the dis-
covery of interesting classification rules that apply to
a target class. In previous research, heuristic meth-
ods (Genetic algorithms, Simulated Annealing and Tabu
Search) have been used to optimise a single measure
of interest. This paper proposes the use of multi-
objective optimisation evolutionary algorithms to allow
the user to interactively select a number of interest
measures and deliver the best nuggets (an approxima-
tion to the Pareto-optimal set) according to those mea-
sures. Initial experiments are conducted on a number
of databases, using an implementation of the Fast Eli-
tist Non-Dominated Sorting Genetic Algorithm (NSGA),
and two well known measures of interest. Compar-
isons with the results obtained using modern heuristic
methods are presented. Results indicate the potential of
multi-objective evolutionary algorithms for the task of
nugget discovery.

1 Introduction

1.1 Defining a nugget

Classification is a common task for data mining. In classi-
fication, a model is sought which can assign a class to each
instance in the dataset. Classification algorithms often use
overall classification accuracy as the guiding criteria to con-
struct a model. Partial classification [2], also termed nugget
discovery, seeks to find patterns that represent a description
of a particular class. This data mining task is particularly
relevant when some of the classes in a database are minor-
ity classes, i.e. those with few representative instances in
the database, as in those cases high overall classification
accuracy can be achieved even when minority classes are
misclassified by the model induced.

A nugget, or partial description, is often presented as a
simple conjunctive rule, α ⇒ β, where the precondition or
antecedent of the rule, α, represents a conjunction of tests
on the attributes or fields, AT1, . . . , ATn, of the database,
D, and the postcondition or consequent of the rule, β, rep-
resents the class assignment. Association rules are of a sim-
ilar format, but the consequent is not fixed to be a particular
attribute-value pair. Also, in association rule induction [1]
the target of the discovery is to generate all rules that meet
certain constraints.

In the case of conjunctive rules, the antecedent is of the
following form:

α = α1 ∧ α2 ∧ . . . ∧ αm.

For a categorical attribute a conjunct, αl, is a test that
can take the following forms:

Simple value: ATj = v, where v is a value from the do-
main of ATj , Domj , for some 1 ≤ j ≤ n. A record
x satisfies this test if x[ATj] = v.

Subset of values: ATj ∈ {v1, . . . , vk},1 ≤ j ≤ n, where
{v1, . . . , vk} is a subset of values in the domain of
ATj , for some 1 ≤ j ≤ n. A record x satisfies this
test if x[ATj] ∈ {v1, . . . , vk}.

Inequality test: ATj �= v, for some 1 ≤ j ≤ n. A record
x satisfies this test if x[ATj] �= v.

For a numeric attribute, a conjunct, αp, is a test that can
take the following form:

Simple value: ATj = v, 1 ≤ j ≤ n, as for categorical
attributes.

Binary partition: ATj ≤ v or ATj ≥ v, for some 1 ≤
j ≤ n, v ∈ Domj . A record x satisfies these tests if
x[ATj] ≤ v or x[ATj] ≥ v respectively.

Range of values: v1 ≤ ATj ≤ v2 or ATj ∈ [v1, v2], for
some 1 ≤ j ≤ n and v1, v2 ∈ Domj . A record x
satisfies this test if v1 ≤ x[ATj] ≤ v2.

A record x satisfies a conjunction of tests, α1∧α2∧. . .∧
αm, if x satisfies all the tests, α1, α2, . . . , αm.

The consequent of the rule is just the specification of the
class that the rule is describing, chosen from a set of pre-
defined classes.

Note that other rule formats can be defined, however this
would represent an increase in the size of the search space
and also the rules found may be more complex. It is as-
sumed in this research that conjunctive rules are sufficient
for a class description.

Note also that although the rules described use a rela-
tively simple syntax, the introduction of numeric attributes
without pre-discretisation and the use of disjunction of nom-
inal attribute values increases the complexity of the problem
dramatically. Many of the commonly proposed algorithms
for rule induction (e.g.[1, 3, 4]) can only discover rules us-
ing simple value tests.

For such a simple rule, we can define some measures
based on the cardinalities of the different sets defined by the
rule. Each conjunct defines a set of data points (or records)
for which the test specified by the conjunct is true, and the
intersection of all those sets, or the set of points for which

all the conjuncts are true defines the applicability of the rule
in the database. We will refer to this set as A, and |A| = a.
The set of data points for which the consequent of the rule
is true, or, in other words, the set of data points that belong
to the class specified by the rule will be referred to as B,
and |B| = b. Finally, the set of points for which both the
antecedent and consequent of the rule are true will be called
C, and |C| = c. In summary,

A = {x ∈ D|α(x)},

B = {x ∈ D|β(x)} and

C = {x ∈ D|α(x) ∧ β(x)}.

Note that c ≤ a and c ≤ b, as C ⊆ A and C ⊆ B. Also
a ≤ d and b ≤ d, since A,B ⊆ D. In nugget discovery,
both b and d are fixed.

1.2 Measuring Interest

In order to assess the quality of a nugget the following prop-
erties are often examined.

Accuracy (Confidence): Acc(r) = c
a

This measure represents the proportion of records for
which the prediction of the rule (or model in the case
of a complete classification) is correct, and it is one of
the most widely quoted measures of quality, specially
in the context of complete classification.

Coverage: Cov(r) = c
b

This measure is defined here as the proportion of the
target class covered by the rule. Since b is fixed in
nugget discovery, coverage is proportional to c.

There are other measures proposed and used by data
mining algorithms, and they can often be presented in terms
of a, b, c, and d.

It is intuitive that we wish to find nuggets that maximise
both accuracy and coverage. We can define a partial order-
ing with respect to accuracy and coverage,≤ca, such that
if two rules had the same accuracy, the more covering rule
would be preferred. Equally, if two rules had the same cov-
erage, the more accurate rule would be preferred. Such a
partial ordering is discussed in [7]. A similar ordering was
also proposed in [3] in the context of association rules. The
partial ordering would define an upper accuracy/coverage
border which contains potentially interesting rules. Nugget
discovery algorithms should be able to sample this front ef-
fectively looking for accurate rules or for general rules.

We propose to use multi-objective metaheuristic meth-
ods for the problem of nugget discovery from classification
databases with nominal and numerical attributes. For the
bi-objective problem of discovering nuggets of high accu-
racy/coverage, the multi-objective treatment should allow
the algorithm to return an approximation to the upper accu-
racy/coverage border, containing solutions that are spread
across the border. Other objectives, such as simplicity, can
be incorporated in the search if the approach proves effec-
tive.

2 Modern Heuristics for Nugget Discovery

In previous research [6, 14] we presented an interest mea-
sure, the fitness measure

f(r) = λc− a, where λ ∈ �

which was capable of partially ordering rules according to
accuracy and coverage under certain constraints. The λ pa-
rameter establishes an accuracy threshold, defined by 1

λ
,

above which the fitness measure orders rules correctly with
respect to the ≤ca partial ordering. Importantly, when two
rules cannot be compared under the partial ordering, the λ
parameter can be used to establish a preference for more
accurate rules or more widely covering rules. At low val-
ues of the λ parameter, accurate rules will be fitter than
widely covering rules, whereas at high values of the λ pa-
rameter, widely covering rules will be fitter than highly ac-
curate rules. Generally, the λ range we experiment with
are between (1, d/b]. Hence, by running modern heuristics
techniques such as Simulated Annealing (SA), Tabu Search
(TS) and Genetic Algorithms (GAs) to search for nuggets
that maximise the fitness measure with different levels of
λ we are able to approximate the upper accuracy/coverage
border for a particular nugget discovery problem.

Results of applying the modern heuristic algorithms
across a range of datasets from the UCI repository showed
that interesting nuggets could be obtained at different levels
of accuracy/coverage.

We now propose to extend this research by using
Multi-objective Evolutionary Algorithms (MOEA)[5]. This
should allow us to deliver a set of rules that lie in the Pareto
optimal front, or in the upper accuracy/confidence border if
we choose those as the measures to be optimised, in one sin-
gle run of the algorithm. Additionally, if MOEA proves to
be more successful than the standard GA/SA/TS approach,
then other measures of interest could be introduced in the
search as additional objectives.

The disadvantages to the modern heuristics approach
that we may wish to overcome by using other type of
MOEAs are the following. First, we need to run the al-
gorithm several times with varying levels of λ as it is not
known in advance what kind of nuggets may be obtainable
by a particular λ value, and it is generally not known in ad-
vance what are the preferences of the decision maker. Sec-
ond, only accuracy and coverage can be taken into consid-
eration with the present approach. To optimise nuggets in
terms of simplicity, for example, we run a post-processing
algorithm which removes conjuncts in a greedy manner
choosing the one that produces no deterioration in accu-
racy, one at a time. Hence, there is no simple way to in-
troduce other interest criteria, other than by replacing the
fitness measure by a different measure which encapsulates
the alternative criteria. Also, there is no real encouragement
for the algorithm to produce different rules along the upper
coverage/accuracy border, hence many copies of the same
rule may be produced even with variations in the λ parame-
ter.

3 MOEAs for Nugget Discovery

In order to create a nugget discovery system that is more
flexible, we propose to use Pareto-based MOEA to deliver
nuggets that are in the Pareto optimal set according to some
measures of interest which can be chosen by the user.

The proposed system will present to the user a number
of measure of interest from which some measures can be
selected. As well as those presented in section 1.2, mea-
sures of the simplicity of a nugget, based for example on
the Minimum Description Length Principle [13], or simply
on the number of conjuncts of the nugget may also be used.
The system will represent nuggets using the same approach
as in [6, 7]. The process of nugget evaluation may also be
similarly conducted. The main difference is that the over-
all objective of the MOEA will be to find a set of diverse
non-dominated solutions, which should constitute a good
approximation to the Pareto optimal front. Note that in most
cases we do not know the exact composition of the Pareto
optimal front.

We expect that there may be some merit in evaluating the
performance of various Pareto-based MOEA approaches for
this problem, for example: the Niched Pareto Genetic Algo-
rithm [9]; the Pareto Archive Evolution Strategy (PAES) al-
gorithm proposed by Knowles and Corne [11] and the Fast
Elitist Non-Dominated Sorting Genetic Algorithm (NSGA)
proposed by Deb et al. [8]. However, in this paper we
limit ourselves to the evaluation of one of the MOEA, the
NSGA (version II) algorithm [8], against the conventional
GA/SA/TA algorithms. Hence we are trying to establish the
benefit of using a Pareto-based approach, against the aggre-
gating function approach.

In this paper we also limit ourselves to the use of accu-
racy and coverage as our measures of interest. Since results
are encouraging we plan to extend the research by using
other measures.

4 Implementation of the NSGA II for Nugget
Discovery

The NSGA II algorithm [8] is a variation of the original
NSGA algorithm proposed in [15]. The new algorithm ad-
dresses some of the criticisms of the previous version in-
cluding: the lack of elitism; the need for specifying a shar-
ing parameter to ensure diversity in the population; and, the
high computational complexity of non-dominated sort.

The NSGA II algorithm is fully explained in [8]. The
initial population is created by the initialisation procedure
described in a later section. The first iteration is slightly dif-
ferent to the rest. In the main function, a child population
is created at each stage using binary tournament selection,
single-point cross-over and mutation. Both populations are
combined and the resulting population of size 2N (where
N is the size of the initial population) is then sorted ac-
cording to non-domination into different fronts. Hence so-
lutions that belong to the first front are non-dominated so-
lutions. Those are then discounted to find the second front,

and so on. Within each front, solutions are sorted accord-
ing to crowding distance. The crowding distance specifies
the size of the largest cuboid enclosing a point in the pop-
ulation i, but not including any other points in the popula-
tion. A new population is then created by taking solutions
from the combined population in terms of rank first, and
crowding distance as a secondary sorting criterion, until the
new population is of size N . The process goes back then to
the creation of a child population and continues through an
specified number of generations.

In the following sections we discuss some of the de-
tails of the implementation that are necessary to adapt the
NSGA II algorithm to solve the nugget discovery problem
as presented before. Most of these implementation details
are shared with the modern heuristic algorithms.

4.1 Representing a Solution

The solution to be represented is a conjunctive rule or
nugget following the syntax described previously. A binary
string is used for this as follows.

The first part of the string is used to represent the nu-
meric fields or attributes. Each numeric attribute is rep-
resented by a set of Gray-coded lower and upper limits,
where each limit is allocated a user-defined number of bits,
p (p = 10 is the default). There is a scaling procedure that
transforms any number in the range of possible values using
p bits [0, 2p − 1] to a number in the range of values that the
attribute can take. The procedure works as follows. When
the data is loaded the maximum value, maxi, and minimum
value, mini, for each attribute i are stored. A weight for
each attribute is then calculated as

wi =
maxi −mini

2p − 1
.

When the string representing a nugget is decoded, the upper
and lower limit values for each attribute are calculated by

limiti = (ss ∗ wi) + mini,

where ss represents the decimal value of an p bit Gray-
coded substring extracted from the binary string, which cor-
responds to one of the limits.

The second part of the string represents categorical at-
tributes, with each attribute having v number of bits, where
v is the number of distinct values (or the number of labels)
that the categorical attribute can take. If a bit assigned to a
categorical attribute is set to 0 then the corresponding label
is included as an inequality in one of the conjuncts.

4.2 Initialising the Population

The initial approach to this problem was to initialise each
solution randomly, with the help of a random number gen-
erator. This however proved to be ineffective, as many of the
solutions obtained were of very poor quality, and NSGA II
was unable to produce good results. A similar problem was
encountered in the implementation of the modern heuristics.

A more effective initialisation procedure was to use mu-
tated forms of the default rule as initial solutions. The de-
fault rule is the rule in which all limits are maximally spaced
and all labels are included. In other words, it predicts the
class without any pre-conditions. For the initialisation, all
solutions in the population pool were initialised to be copies
of the default rule and then some of the bits were mutated
according to a parameter representing the probability of mu-
tation. Experimentation was carried out to establish a good
setting for this parameter.

4.3 Evaluating a Solution

To evaluate a solution, the bit string is first decoded, and the
data is scanned through.

When a bit string is decoded as a nugget it will acquire
the following format:
IF
l1 ≤ AT1 ≤ u1 AND
l2 ≤ AT2 ≤ u2 AND
. . .
li ≤ ATi ≤ ui AND
ATp �= labelX AND
ATr �= labelY
THEN Classj

where l1 is given by the first p bits of the binary string,
u1 is given by the following p bits, etc. If a lower limit for
any attribute i is set to its lowest possible value for the at-
tribute, mini, or the upper limit is set to its highest possible
value maxi, then there is no need to include that limit in
the decoded nugget. If both limits are excluded in that way,
then the attribute is obviously also excluded. Equally, if a
categorical attribute has a value of 1 for all the bits allocated
to its labels, then there is no need to include the attribute. In
this way the algorithm can perform its own feature selection
by ignoring some attributes.

For each record the values of the fields are compared
against the nuggets, and the class is also compared. The
counts of c and a are updated accordingly. The counts of b
and d are known from the data loading stage.

Once all the data has been examined the measures of in-
terest, in this case the coverage and accuracy, are calculated
for each nugget. In the modern heuristic approach, at this
stage the fitness of the rule would be calculated.

5 Parameter Experimentation

In this section we introduce the parameters that were ex-
perimented with in order to improve the performance of the
NSGA II algorithm, and their effect on the quality of solu-
tions. We also discuss the parameters that were used to run
the modern heuristic algorithms.

5.1 Parameters for the Modern Heuristics

In our previous work [7], three different algorithms, a Ge-
netic Algorithm, Simulated Annealing and Tabu Search
(TS), were used to solve the nugget discovery problem. It

was found that the three algorithms performed similarly,
with Tabu Search slightly outperforming the others in some
occasions, even though only a simple implementation was
produced. In the experiments that follow, therefore, we will
focus on the Tabu Search algorithm to produce the set of
results to be compared to those of NSGA II.

The TS used included very simple recency and frequency
memory structures and aspiration criteria. No intensifica-
tion or diversification techniques, or any other TS enhance-
ments were implemented for this algorithm.

At each step, all neighbours of a solution can be gener-
ated, or alternatively, a subset of x neighbours can be gen-
erated, where x is set by the user as a parameter.

Various neighbourhood operators were tested (including
flip-one-bit, flip-two-bits, swap, reverse and move opera-
tors) and the algorithm performed well with all those in
terms of the quality of solutions produced. If efficiency
is considered (measured by the number of evaluations re-
quired to reach the best solution) along with quality of so-
lutions, the flip-one-bit or move operators seem to give best
results.

The neighbourhood operators were tested using recency
memory with a tabu tenure of 10 iterations, and a subset of
20 neighbours generated. The recency memory was imple-
mented by recording previously visited solutions (i.e. the
whole solution) in a list of size n, where n is the tabu tenure,
and disallowing a visit to any solution in the tabu list.

After this, frequency memory was tested on the best
three operators: flip-one-bit, flip-two-bits and move. Fre-
quency memory used a threshold of 20, that is a single el-
ement (or, in a binary representation, a bit) can only be
changed 20 times before further changes on that element
are disallowed. For all three neighbourhood operators there
was no marked improvement in the quality of solutions, but
there was an improvement in the average number of evalua-
tions to reach a good solution when frequency memory was
used.

Next, different tabu tenures were tried in the context of
recency memory. Tenures of 15 and 20 were tried in com-
bination with the three neighbourhood operators previously
chosen. The solution quality or efficiency of the search did
not improve markedly with greater tabu tenure.

An extra set of experiments was carried out to observe
the effect of increasing the size of the subset of neighbours
produced, and it was found that this did not produce any
clear gains. Increasing the threshold that controls the fre-
quency memory produced no clear gains either.

The final parameters chosen and used in our experiments
are:

• Neighbourhood operator: flip-one-bit

• Recency memory with a tabu tenure of 10

• Frequency memory with a threshold of 20

• A subset of 20 neighbours generated

• Stopping after 250 iterations without change in the
best solution value.

5.2 Parameters for the MOEA algorithms

The parameters that were experimented with in this case
were:

• Cross-over rate: This was varied from 60% to 90% in
steps of 10%.

• Stopping condition: in this algorithm the stopping
condition was implemented as a prefixed number of
generations set by the user. This was varied from 50
to 100 in steps of 10.

• Population size: This was varied from 100 to 160 in
steps of 10.

• Initial mutation rate: This affects the mutation of in-
dividual bits when solutions are created initially. Mu-
tation also occurs when solutions are reproduced to
form new solutions. It was varied between 0% and
4% in steps of 1%.

In terms of parameter experimentation, it was found for
all the databases that the mutation rate had the most pro-
found effect on solution quality. A rate of 2% produced the
best results in each case consistently. Other values had a
marked effect on the quality of the fronts produced. For
example, with mutation rate of 4% the quality of solutions
was distinctly inferior in each case. This may be due to the
use of mutation in the initialisation procedure, in which var-
ious copies of the default rule are altered according to it. It
may point to the importance of a strong initial population,
hence the performance of the algorithm may be improved in
the future by introducing some known “good” rules in the
initialisation process.

The other parameters did not seem to affect the quality of
solutions as dramatically, hence the algorithm was found to
be robust to changes on those parameters. Best results were
obtained with cross-over rates that varied between 60% and
80%; stopping criteria between 80 and 100 generations, and
a population of about 120 solutions.

6 Results

The databases used for this experiments were extracted
from the UCI repository. Table 1 represents their main char-
acteristics, including number of classes, and number of nu-
merical and categorical attributes (for more details see [12]).
Both the TS and the NSGA II algorithms were used to ex-

Table 1: Description of standard databases
Name Records Class Num Cat
Adult 45,222 2 6 8
Mushroom 8,124 2 0 21
Contraception 1,473 3 2 7

tract knowledge from the databases of Table 1.
The TS algorithm was run using the parameters de-

scribed in the previous section with a range of λ values for
each dataset. This was done in order to compare the spread
and quality of solutions obtainable by varying the λ value
with those obtainable using NSGA II. For each dataset, λ
was set at the value of 1.01 initially (equivalent to an accu-
racy threshold of 99%) and incremented in small steps (of
0.05 in most cases) to the value of d

b
, and in some occasions

to higher values in order to obtain widely covering solutions
of higher accuracy than the default rule. For each λ value, 5
runs of the algorithm were performed and the accuracy and
coverage of the best rule obtained in each run was recorded.
The modern heuristics can, at times, get stuck in inferior so-
lutions, so in past experiments the best of 5 runs was chosen
as the best nugget obtainable with a particular λ value. For
this exercise, however, we include all the solutions in order
to observe the overall quality and spread of the solutions
produced. No attempt has been made to prune any of the
inferior or suboptimal solutions obtained. It is worth not-
ing that, as quite often the algorithm returns copies of the
same solution, even at different values of λ, the number of
distinct solutions may be low, and, in the visualisation of
results, overlapping solutions are not noticeable.

For the NSGA II algorithm the solutions plotted are
those that form the first non-dominated front at the end of
the execution of the algorithm, that is, all those solutions
that are non-dominated in the final population.

We choose to evaluate the performance of our algorithms
by using visualisation. This seems quite intuitive when
there is just two dimensions to visualise. As the true Pareto
front is not known, it is not possible to compare to it in
order to evaluate performance. Throughout this section,
we present the results of both algorithms in 2-dimensional
graphs, plotting accuracy of the rules found in the y-axis and
coverage in the x-axis. Each graph contains a series labeled
MOMH (Multi-objective Meta Heuristic) which represents
the results for the NSGA II algorithm, and a series labeled
TS which represents the Tabu Search Results. Note that the
scales of the y-axis varies in some graphs where the solu-
tions found lie in a reduced accuracy range. This is to allow
for improved visualisation of results. However, all solutions
are always presented in the graphs.

The results presented in the graphs are those of the train
data for both algorithms. Checks on the test data have
shown no marked signs of overfitting for either algorithm,
except in the case of some of the very accurate and specific
patterns.

The Adult database contains census information from
adults in the USA. Any records with missing values were re-
moved from this database prior to the algorithm application.
The database has two classes: one of them corresponds to
“Income> 50K” with 24% default accuracy on the training
data; the other corresponds to “Income≤ 50K” with 76%
default accuracy on the training data. The results for the
class “Income > 50K” are shown on Figure 1. The fronts
generated by both algorithms are very similar in terms of

Figure 1: Adult database, class “> 50 K”

Figure 2: Adult database, class “≤ 50 K”

the quality of solutions obtained. However TS generates a
higher proportion of solutions which are dominated by both,
other TS solutions as well as NSGA II solutions. Also the
spread of solutions in the front is better with the NSGA II
algorithm, although this may be expected as it is a feature
of the search in this particular algorithm.

The results for the class “Income ≤ 50 K”are shown
on Figure 2. Again the results of the two algorithms are
of similar quality, but in this case TS marginally outper-
forms NSGA II in general. Only a very small proportion of
the TS solutions are dominated. The TS solutions are clus-
tered in small areas of the front, with some regions being
un-represented, hence the NSGA II algorithm has a better
spread of solutions over the front.

The mushroom dataset was obtained by mushroom
records drawn from The Audubon Society Field Guide to
North American Mushrooms [10]. This data set includes
descriptions of hypothetical samples corresponding to 23
species of gilled mushrooms in the Agaricus and Lepiota
Family. The Mushroom database has two classes: the “Poi-
sonous”class with a default accuracy of 48% and the “Edi-
ble”class with a default accuracy of 52%. For this database,
rules can be found that are nearly 100% accurate with nearly
100% coverage, hence we have some information about the
Pareto front: it is expected to be small and concentrated on
the right and upper border of the graph. Results for the “Poi-
sonous”class are given in Fig. 3. The TS algorithm finds

Figure 3: Mushroom database, class “Poisonous”

Figure 4: Mushroom database, class “Edible”

a number of dominated solutions. The best accurate rule is
found by both algorithms. The NSGA II algorithm finds a
cluster of rules of high coverage, which are not found by
the TS. Hence, despite the Pareto front for this problem be-
ing confined to a small region, the NSGA II is successful in
finding distinct solutions in the front.

The results for the “Edible”class are presented in Fig.
4. The accuracy of solutions in the non-dominated front is
within a very small range (less than 1%). In this class, both
algorithms produce similar quality solutions. The NSGA II
algorithm produces more varied solutions in the front.

The contraceptive database is a subset of the 1987 Na-
tional Indonesia Contraceptive Prevalence Survey. The
samples are married women who were either not pregnant or
do not know if they were at the time of interview. The prob-
lem is to predict the current contraceptive method choice of
a woman (no use, long-term methods, or short-term meth-
ods with default accuracies of 43%, 22% and 35% respec-
tively) based on her demographic and socio-economic char-
acteristics.

Results for the class “no use”are given in Fig. 5.
Both algorithms produce non-dominated solutions, in dif-
ferent areas of the Pareto front, although the spread of non-
dominated solutions across the front is better for the NSGA
algorithm.

Figure 5: Contraception database, class “no use”

Figure 6: Contraceptive database, class “Long-term”

Results for the class “long-term use”are presented in
Fig. 6. In these results TS produces more non-dominated
solutions, and the spread of solutions in the front is reason-
able, except for those of high coverage (greater than 65%)
where NSGA II finds a large number of solutions.

Results for the class “short-term use”are presented in
Fig. 7. In the Pareto front area of high accuracy (above
65%) and low coverage (below 25%) the NSGA II algo-
rithm finds all but one of the non-dominated solutions.
However, in the other area the algorithms perform very sim-
ilarly both in terms of solution spread and quality.

6.1 Efficiency Comparisons

To compare the execution time of both algorithms is not
straightforward in terms of computing time, since they were
run on different machines. However, one method of com-
parison is to establish the number of evaluations that each
algorithm performed to arrive to a particular set of solu-
tions. This is possible because both algorithms use the
same underlying evaluation function for a solution. This
can only give a rough approximation as both algorithms per-
form other operations. However, evaluation is the dominat-
ing operation in both algorithms, so it can be an initial point
of comparison.

The comparison was established using the Adult

Figure 7: Contraceptive database, class “Short-term”

database. For this database, the TS required approximately
5000 evaluations on average to find one of the solutions,
that is, to find a single rule which is represented as one
point in the graphs above. The algorithm was run 5 times
per λ value, with a range of λ values previously described.
This means that 138 experiments were run to get the set
of solutions shown in Figure 2. Hence the total number of
evaluations performed is nearly 700,000. Even if only one
run per λ value was performed, which may deteriorate the
quality of the front obtained, approximately 140,000 eval-
uations would have to be performed. On the other hand,
the NSGA II algorithm evaluates a population of 2n solu-
tions, in this case n = 120, at each generation, and the ex-
periments shown on graph 2 were run for 100 generations.
Hence the total number of evaluations performed by this al-
gorithm is 24,000. Therefore, we can conclude that the TS
algorithm is a much less efficient way to achieve a set of
results of similar quality, in terms of the number of evalua-
tions performed.

7 Conclusions and further work

In this paper, we propose the use of Pareto-based MOEA
in the extraction of rules from databases. This is novel and
complements previous research in nugget discovery using
heuristic techniques. The ability to present the user with
a number of interest measures which may be selected, and
then to search for a set of solutions which represent an ap-
proximation to the Pareto optimal front for those measures
is desirable for a partial classification algorithm.

We have implemented the NSGA II Pareto-based MOEA
and compared it to the TS algorithm. We have performed
parameter experimentation for the former, and having found
a range of suitable parameters we have applied the algo-
rithm to a range of well known classification databases.
The results have shown that, in terms of quality of indi-
vidual solutions, both algorithms are comparable. However,
the spread of solutions across the approximated Pareto-front
found by the NSGA II algorithm was always better. Also,
in terms of efficiency, the NSGA II algorithm significantly
outperforms the TS approach. Therefore, we can conclude

that in order to find an approximation to the Pareto front, it
is best to use the NSGA II algorithm.

Given our results, the potential of NSGA II for nugget
discovery is clear. The flexibility of this algorithm will
make it advantageous for solving this type of data mining
problem.

As the subject of further research, the first step is to com-
pare the performance of the NSGA II algorithm with the
true Pareto optimal front. We are already working in this
area and results will be reported shortly. It may be interest-
ing to introduce more objectives into the search, such as the
simplicity of a rule. It may also be worth while to compare
the performance of other Pareto-based algorithms against
NSGA II for this particular problem.

Bibliography

[1] R. Agrawal, T. Imielinski, and A. Swami. Database
mining: A performance perspective. In Nick Cercone
and Mas Tsuchiya, editors, Special Issue on Learning
and Discovery in Knowledge-Based Databases, num-
ber 6 in 5, pages 914–925. Institute of Electrical and
Electronics Engineers, Washington, U.S.A., 1993.

[2] S. Ali, K. Manganaris and R. Srikant. Partial clas-
sification using association rules. In D. Heckerman,
H. Mannila, D. Pregibon, and R. Uthurusamy, editors,
Proceedings of the Third Int. Conf. on Knowledge Dis-
covery and Data Mining, pages 115–118. AAAI Press,
1997.

[3] R. J. Bayardo and R. Agrawal. Mining the most inter-
esting rules. In S. Chaudhuri and D. Madigan, editors.
Proceedings of the Fifth ACM SIGKDD Int. Conf. on
Knowledge Discovery and Data Mining, pages 145–
155. New York, USA, 1999. ACM.

[4] R. J. Bayardo, R. Agrawal, and D. Gunopulos.
Constraint-based rule mining in large, dense datasets.
In Proc. of the 15th Int. Conf. on Data Engineering,
pages 188–197, 1999.

[5] C.A. Coello Coello. A comprehensive survey of
evolutionary-based multiobjective optimization tech-
niques. Knowledge and Information Systems,
1(3):129–156, 1999.

[6] B. de la Iglesia, J. C. W. Debuse, and V. J.
Rayward-Smith. Discovering knowledge in commer-
cial databases using modern heuristic techniques. In
E. Simoudis, J. W. Han, and U. M. Fayyad, edi-
tors, Proceedings of the Second Int. Conf. on Knowl-
edge Discovery and Data Mining, pages 44–49. AAAI
Press, 1996.

[7] B. de la Iglesia and V. J. Rayward-Smith. The discov-
ery of interesting nuggets using heuristic techniques.
In H. A. Abbass, R. A. Sarker, and C. S. Newton, ed-
itors, Data Mining: a Heuristic Approach, pages 72–
96. Idea group Publishing, USA, 2002.

[8] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan. A
fast elitist non-dominated sorting genetic algorithm for
multi-objective optimization: NSGA-II. In Proceed-
ings of the Parallel Problem Solving from Nature VI
Conference, Lecture Notes in Computer Science, No.
1917, pp 849–958,2000. Springer.

[9] J. Horn, N. Nafpliotis, and D. E. Goldberg. A Niched
Pareto Genetic Algorithm for Multiobjective Opti-
mization. In Proceedings of the First IEEE Conference
on Evolutionary Computation, IEEE World Congress
on Computational Intelligence, volume 1, pages 82–
87, Piscataway, New Jersey, 1994. IEEE Service Cen-
ter.

[10] A. A. Knopf. The Audubon Society Field Guide to
North Americal Mushrooms. G. H. Lincoff, New York,
1981.

[11] J. Knowles and D. Corne. The Pareto archived evo-
lution strategy: A new baseline algorithm for Pareto
multiobjective optimisation. In Peter J. Angeline,
Zbyszek Michalewicz, Marc Schoenauer, Xin Yao,
and Ali Zalzala, editors, Proceedings of the Congress
on Evolutionary Computation, volume 1, pages 98–
105, Mayflower Hotel, Washington D.C., USA, 6-9
1999. IEEE Press.

[12] C. J. Merz and P. M. Murphy. UCI repos-
itory of machine learning databases. Uni-
versity of California, Irvine, Dept. of In-
formation and Coumputer Sciences, 1998.
http://www.ics.uci.edu/∼mlearn/MLRepository.html.

[13] J. R. Quinlan and R. L. Rivest. Inferring decision trees
using the minimum description length principle. Infor-
mation and Computation, 80:227–248, 1989.

[14] V. J. Rayward-Smith, J. C. W. Debuse, and B. de la
Iglesia. Using a genetic algorithm to data mine in
the financial services sector. In A. Macintosh and
C. Cooper, editors, Applications and Innovations in
Expert Systems III, pages 237–252. SGES Publica-
tions, 1995.

[15] N. Srinivas and Kalyanmoy Deb. Multiobjective op-
timization using nondominated sorting in genetic al-
gorithms. Evolutionary Computation, 2(3):221–248,
1994.

[16] X. Yang and M. Gen. Evolution program for bicriteria
transportation problem. In M. Gen and T. Kobayashi,
editors, Proceedings of the 16th International Confer-
ence on Computers and Industrial Engineering, pages
451–454, Ashikaga, Japan, 1994.

