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Abstract. This paper deals with a two-objective rescheduling problem
in a job shop for alteration of due date. One objective of this problem is to
minimize the total tardiness, and the other is to minimize the difference of
schedule. A genetic algorithm is proposed, and a new selection operation
is particularly introduced to obtain the Pareto optimal solutions in the
problem. At every generation in the proposed method, two solutions
are picked up as the parents. While one of them is picked up from the
population, the other is picked up from the archive solution set. Then,
two solutions are selected from these parents and four children generated
by means of the crossover and the mutation operation. The candidates
selected are not only solutions close to the Pareto-optimal front but also
solutions with a smaller value of the total tardiness, because the initial
solutions are around the solution in which the total tardiness is zero.
For this purpose, the solution space is ranked on the basis of the archive
solutions. It is confirmed from the computational result that the proposed
method outperforms other methods.

1 Introduction

Although many researchers have so far proposed various methods for solving
scheduling problems in manufacturing systems, most studies deal with the de-
termination of a schedule for conventional problems in which the condition is
given in advance. However, in real manufacturing systems, alteration of problem
condition such as change of due date and addition of job often obliges to revise
a schedule worked out previously. Vieira et al. [1] presented definition appro-
priate for most applications of such rescheduling manufacturing systems, and
reviewed various methods to solve the rescheduling problems. Moreover, genetic
algorithms (GAs) [2] were also applied to some rescheduling problems [3-5]. The
GA is an appropriate method to solve rescheduling problems, because diversity
of population in the GA is useful in tracking change of problem condition [6].
The aim of most of these methods is to optimize only an original objective
function, say the total tardiness. Consequently, the schedule obtained by such a
method may be very different from that before the alteration. The difference of
schedule incurs time and costs in re-preparing the processing for the case where
the problem condition is altered after preparation of processing. As studies con-
sidering the schedule difference, Watatani and Fujii [7] defined a problem in



which the objective function is a weighted sum of the makespan and the sched-
ule difference, and applied the simulated annealing method to this problem.
Abumaizar and Svestka [8] considered a problem for a breakdown of machine,
and obtained a schedule with a small difference by rescheduling only the opera-
tions affected by the breakdown of machine.

This paper deals with a job shop rescheduling problem of minimizing both the
total tardiness and the schedule difference in the case where the due dates of some
jobs are altered, and a GA is proposed for obtaining the Pareto optimal solutions.
Although a GA with a selection operation was applied to this problem [9] as a
preliminary study, it is ineffective in instances with many jobs. In addition,
the weight between the objective functions must be given in advance. In order
to overcome these disadvantages, a new selection operation is proposed in this
paper. In this operation, the solution space is ranked to select not only solutions
close to the Pareto-optimal front but also solutions with a smaller value of the
total tardiness.

The rest of the paper is organized as follows. Section 2 describes the reschedul-
ing problem as well as the conventional scheduling problem before the alteration.
Next, Section 3 presents the GA proposed for the rescheduling problem, and de-
scribes the new selection operation. The computational results can be found
in Section 4, and the effectiveness of the proposed GA is investigated. Finally,
Section 5 concludes the paper.

2 Problem Statement

2.1 Conventional Problem

At the beginning, a conventional problem P* before alteration is described. In
P*, a set of I kinds of jobs J; (i = 1,2,---,I) is processed by using K ma-
chines My, (k = 1,2,---, K). A machine can process at most one job at a time.
A job J; should be completed by the due date D}. Moreover, J; consists of
K operations O;; (j = 1,2,--+, K). An operation O;; is executed on Mg(; ;)
(R(i,j) € {1,2,---,K}), which is given in advance, and its processing time is
given as PT;;. No preemption of operation is allowed. There exists a precedence
constraint between operations belonging to a job, and the operations must be
executed in the order of j. This constraint is often called the technological con-
straint. The total number of operations is denoted as @ (Q = IK).

The problem P* is to determine the completion time ¢j; of O;; in such a way
that the total tardiness F;* should be minimized. The objective function F is

formulated as
I

Fy =Y max(ci - Dj, 0). (1)

i=1

By applying a GA to P*, the population at the final generation and the best
solution (schedule) S* can be obtained.



2.2 Rescheduling Problem

Consider the situation that the production has been prepared on the basis of
the best schedule S* obtained for the conventional problem P*. After the prepa-
ration, some due dates are altered. The due date of J; after the alteration is
denoted as D;. Since S* may not be optimal for D; no longer, it should be re-
vised. In this situation, the second objective function is defined as the magnitude
of difference between S* and a schedule S revised.

The rescheduling problem P coped with in this paper is to determine the
completion time ¢;; of O;; in such a way that both the total tardiness F; and
the schedule difference F5 should be minimized. The objective functions in P are
formulated as

Z ax(ciK - Di, 0)

mm_<§é>: = (2)
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where a;; and aj; are the set of operations executed before O;; on Mg ;) in
S and that after O;; on Mp(;, ;) in S*, respectively. Moreover, the symbol | |
means the number of elements. The schedule difference F5 is given on the basis
of Watatani’s definition [7]. If there exists an operation belonging to both a;;

and aj;, it means that the processing order of the operation and Oj; is reversed.

3 Application of Genetic Algorithm

GAs should be appropriately designed for respective optimization problems. In
this section, a GA is designed for solving the rescheduling problem P. The pop-
ulation size and the final generation in this GA are denoted as N and G, respec-
tively.

3.1 Individual Description

So far, many GAs have been proposed for solving job shop scheduling problems
[10-12]. Recently Gen et al. [13], Ono et al. [14] and Shi et al. [15] proposed
similar individual descriptions in which job numbers are sequenced, and obtained
good solutions with less computational consumption.

The individual description proposed by Shi et al. is used in the proposed GA.
This individual description is designed by utilizing the precedence constraint be-
tween operations effectively. The genotype is expressed by sequencing job num-
bers {i} (i = 1,2,---,I) K times. The length of the sequence is equal to the
total number @ of operations. The genotype represents basically a production
order, and the schedule of operation corresponding to a gene is determined in
turn according to the decoding procedure. The operation is uniquely determined
from the precedence constraint. The completion time c;; of each operation Oj;
is calculated from the genotype in the following way.



0 1|0 Timezlo
" 1 PR 1 "

M| 1 [ 2 | 3 |

Mp| 2 | [3] 1 |

w3 ] [+ T 2]

Fig. 1. Example of decoding genotype {213311223}

Table 1. Example of instance data (I=3,K=3)

011 O12 O13 O21 O22 023 O31 O32 O33

Step 1
Step 2

Step 3
Step 4

Step 5
Step 6
Step 7

RG,)| 1 2 3 2 1 3 3 2 1
PT; |3 5 5 3 4 3 4 2 3

Set m < 0 (Vk=1,2,---, K). The variable my, represents the comple-
tion time of the operation to be executed last on the machine My.

Set j(i) + 1 (Vi =1,2,---,I). The variable j(i) represents the operation
number to be executed next in the job J;.

Set £ < 1. The variable £ represents the locus.

The completion time of operation Oj;,;(;,) corresponding to the gene i,
at the £-th locus is given by

(3)

Cij(ie) = MAX(MR(,,j(ir))> Cir j(ie)—1) T PTigj(is)-

Note that ¢;0=0.

Set MR(ig,j(ie)) < Cigglie)-

If j(ig) < K, set j(ig) < j(ig) + 1.

If / = @, terminate this procedure. If not, set £ < £+ 1 and return to

Step 4.

The decoding procedure is explained by using an illustrative example. Figure
1 depicts the solution corresponding to genotype {213311223} in the instance
shown by Table 1. At the beginning, the schedule of Os; corresponding to the
first gene {2} is determined. Since R(2,1)=2 and PT5;=3, Oy is started at zero
on M> and is completed at three. Next, the schedule of O;; and Ogz;, which
correspond to the subsequence {13}, is determined in a similar way. Next, the
fourth gene {3} is picked up. Since it is the second time this kind of gene is
picked up (j(3)=2), the second operation O3z of J3 corresponds to the gene. Since
mo=3 and c31=4, O3z is started at four. Finally, the schedule of the remaining
operations is determined in a similar way.

3.2 Initial Population

The initial population in GAs is generated randomly for optimization problems in
general. Therefore the initial population is far from the Pareto optimal solutions,
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Fig. 2. Initial population of GA for a two-objective problem

and the population approaches them gradually by the exploration of GA, as

shown in Fig. 2. On the other hand, the final population and the best schedule

S* obtained by applying a GA to the conventional problem P* can be utilized as

the initial population for P. Since the schedule difference F5 is zero for § = S*,

one of the Pareto optimal solutions is already obtained for P. Moreover, the

other solutions in the final population are also closer to S* than the random
initial population, as shown in Fig. 2. Therefore, the final population is used
as the initial population in the proposed GA. However, the diversity for the
final population is lost, because a GA has been performed for P*. Thus, diverse
initial solutions are generated by changing some solutions in the final population.

These solutions changed are the non-dominated solutions in the final population

in order to obtain a good solution set. The detail procedure to generate the

initial population is as follows.

Step 1 Find the n' non-dominated solutions yi,y2,---,yn for P from the fi-
nal population obtained for P*, and add these solutions to the initial
population for P. Set n « 1.

Step 2 Generate a solution by shifting a gene selected randomly in y,, just be-
fore another gene selected randomly, and add the solution to the initial
population.

Step 3 If the N initial solutions are generated, terminate this procedure.

Step4 Setn <+ n+1.Ifn>n' set n <+ 1.

Step 5 Return to Step 2.

Rescheduling may be invoked during the actual processing of jobs. In this
case, the schedule of operations completed at the time is unchanged. The sched-
ule of operations which are being executed at the time is also unchanged. The
genes associated with their operations are removed from the initial population,
and the operations of GA are applied to the remaining genes.
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Fig. 3. Example of SPX

3.3 Crossover and Mutation Operation

As the crossover operation, the set partition crossover (SPX) proposed by Shi

et al. [15] is used. SPX is effective from the viewpoint of the computation time.

The procedure of SPX is explained as follows. In the following explanation, pa}

and pa? are defined as the gene at the ¢-th locus in two parents pa' and pa?,

respectively, and ch} and ch? are defined as the gene at the ¢-th locus in two

children ch! and ch?, respectively.

Step 1 Separate the set of all genes into two subsets SU, and SUj, which are
nonempty and exclusive.

Step 2 Set £+ 1, ¢; + 1 and £ + 1.

Step 3 If paj € SU,, set ch}, <+ paj and £ + £1 + 1. Go to Step 5.

Step 4 Set chj,  pay and Ly £y + 1.

Step 5 If paj € SUs, set chy, <+ paj and £y + £ + 1. Go to Step 7.

Step 6 Set chj, + paj and Ly + £y + 1.

Step 7 If £ = @), terminate this procedure. If not, set £ < £+ 1 and return to
Step 3.

Figure 3 depicts an example of SPX, where SU, = {1,2} and SU, = {3}. As

shown in this figure, SPX preserves the order of genes in each subset.

In the mutation operation, two genes are selected randomly, and each of them
is shifted just before another gene selected randomly.

3.4 Flow of GA

Most of selection operations for multiobjective optimization problems are based
on the multi-objective GA (MOGA) [16] proposed by Fonseca and Fleming. In
MOGA the rank of solution is given on the basis of the number of solutions
which dominate itself, and solutions close to the Pareto-optimal front tend to
be selected. In a GA with such a selection operation, solutions out of edge of
incumbent population are not actively explored, and the exploration progresses
in the direction of arrow (a) in Fig. 4. Even if this GA is applied to P, it is hard
to obtain Pareto optimal solutions with a smaller F; and a larger F, because
the initial solutions are around S*. In order to obtain all the Pareto optimal
solutions, the exploration must progress in the direction of not only arrow (a)
but also arrow (b).

In this paper, a new selection operation, the selection by area ranking (SAR),
is used to obtain diverse Pareto optimal solutions. In SAR, solutions are selected
by using the solution space ranked on the basis of the archive solution set X,
which is the non-dominated solution set in the solutions explored by the incum-
bent generation. The solution space is ranked as follows.
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Step 1 Find the area in which all the solutions are not dominated by any solution
of X, and set the rank of the area to one.
Step 2 Number all the solutions of X in the order of Fj, and set the score S,
of m-~th solution to m (Sp, = m).
Step 3 For the area in which the solution z is dominated by at least one archive
solution of X, and set the rank of the area to Z Sm» + 1, where
m'€Xgy
Xgub is the set of the archive solution numbers domina;ing z.
A solution with a small rank is close to the Pareto-optimal front, or has a small
Fi. An example of area ranking is shown in Fig. 5 for | X| = 4.
At every generation in the proposed GA, two solutions are picked up as the
parents. While one of them is picked up randomly from the population, the other
is picked up randomly from X in order to explore an area around X intensively.



The former solution is removed from the population. Next, four children are gen-

erated from the parents by means of the crossover and the mutation operation.

Next, the two solutions with the smallest ranks are selected from the two parents

and the four children, and then are added to the population. If the candidates

for the second solution selected are plural, the solution with the minimum value
of Fi is selected from these candidates. In this selection, the population size
increases, because only a single solution is picked up as a parent from the pop-
ulation. In order to prevent this, another solution selected randomly is removed
from the population before the selection.

The flow of the proposed GA is as follows.

Step 1 Generate the initial population, and set g +— 1. The variable g represents
the generation.

Step 2 Determine the archive solution set X from the initial population.

Step 3 As the parents, pick up a solution z; randomly from the population and
a solution zy randomly from X. Remove z; from the population.

Step 4 Generate two solutions z3 and x4 by means of the crossover operation.
The crossover operation is applied at every generation.

Step 5 Generate a solution x5 from z; by means of the mutation operation.
Similarly, generate a solution xg from z2 by means of the mutation op-
eration. The mutation operation is also applied at every generation.

Step 6 Remove a solution selected randomly from the population.

Step 7 Select two solutions from the solutions {z1, %2, - -, s} by means of SAR,
and add them to the population.

Step 8 Update X from X U {3, x4, 25,6}

Step 9 If g = G, terminate this algorithm and output X as the answer. If not,
set g + g+ 1 and return to Step 3.

The archive solution set X has no size limitation, because the size remains

relatively small for this problem.

4 Computational Result

The proposed GA is applied to forty instances in order to evaluate its effective-
ness.

4.1 Instance Data

The forty instances for the conventional problem P* are given by revising the
benchmark instances 1la01-1a40 [17]. Of the instance data, the machine number
R(i,7) and the processing time PT;; of operation O;; are the same as those

of benchmark instance. The due date D} of each job J; is given by the total
K

processing time Z PT;; times a constant d. The constant d for each instance
=1

is given in such a way that the total tardiness F}* obtained by applying a GA

to this instance is less than one hundred. The constant d, the number I of jobs,



Table 2. Instance data

Instance | d I | K| Q ||Instance| d I |K| Q
1 2.10 21 1.85
2 2.00 22 2.00
3 210|10| 5 | 50 23 1.80 | 15 | 10 | 150
4 2.20 24 1.85
5 2.10 25 1.90
6 3.00 26 2.30
7 2.90 27 2.30
8 280 |15| 5 | 75 28 2.30 | 20 | 10 | 200
9 3.00 29 2.40
10 2.90 30 2.40
11 3.40 31 3.20
12 3.40 32 3.10
13 3.30 20| 5 | 100 33 3.30 | 30 | 10 | 300
14 3.80 34 3.17
15 3.70 35 3.35
16 1.50 36 1.65
17 1.60 37 1.65
18 1.55 | 10 | 10 | 100 38 1.63 | 15 | 15 | 225
19 1.55 39 1.60
20 1.50 40 1.59

the number K of machines and the total number () of operations are shown in
Table 2.

A GA has been applied to these instances, and the final population and the
best schedule S* have been obtained. In order to generate the instances for the
rescheduling problem P, the due date is altered for a few jobs on the basis of S*.
These jobs are selected randomly from the jobs such that the tardiness is zero
in S*. The number of the jobs selected is nearly ten percent of I. The due date
D; of each of the jobs {J;} is altered to 0.9¢}, where ¢} is the completion time
for S*. Hence, the jobs become tardy for S = S*.

4.2 Comparison among Procedures to Pick Up the Parents

In the proposed GA (called PGA), one of parents is picked up from the popu-
lation, and the other is picked up from the archive solution set X. In order to
evaluate the effectiveness of this procedure, PGA is compared with the following
methods.
- GA-P : Both parents are picked up from the population.
- GA-X : Both parents are picked up from X.

In these GAs, there are two parameters: the population size N and the final
generation G. The values of these parameters are decided through a preliminary
calculation. The value of N is set to 500, and the value of G is set as shown in



Table 3. Final generation G

Instance | PGA,GA-P,GA-X,GA-M | SPEA2
1-10 10000 30
11-20 50000 40
21-30 100000 50
31-40 150000 60
1

c | O g []D o 8 He o . o °]

°© oo 5% B o o

08r o 0o o8 opb o4

- o o0 o

06 ° o o o E

L . e} o -

04 F S

- o 9 O o % 4

02r 7

1 1 1 1 1 1 1

0
0 5 10 15 20 25 30 35 40
Instance

O: C(PGA,GA-P) O:C(GA-P,PGA)

Fig. 6. Comparison between PGA and GA-P

Table 3. Each GA is performed one hundred times with various random seeds
for an instance.

The GAs are evaluated by the coverage metric [18] which means relation of
domination between the solution sets obtained by two methods. The coverage
metric of Method 1 (M1) to Method 2 (M2) is defined by

{56‘2 S X2;3x1 eXi:x = IL'2}|

C(M1,M2) = | X

(4)

where X; and X» are the solution sets obtained by M1 and M2, respectively.
Moreover, 1 > x2 means that Solution z; dominates Solution zs or has the
same objective values as x5.

Figure 6 shows the average coverage metric between PGA and GA-P. As
shown in this figure, PGA is better than GA-P, because C(PGA,GA-P) >
C(GA-P,PGA) in many instances. In particular, PGA is much better in In-
stances 1-10 and 31-35. On the other hand, PGA is worse in Instances 36—40.

Figure 7 shows the average coverage metric between PGA and GA-X. Tt
is found from this figure that PGA is better than GA-X. Since the parents are
picked up from X in GA-X, the population in fact is not used for the exploration.
The number of solutions of X is small in early generations. Therefore, the same
parents are picked up in the early generations, and similar children tend to be
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generated from them. For this reason, solutions in the solution space can not be
explored sufficiently, and a good solution set is not obtained by GA-X.

4.3 Comparison with Other Methods

In order to evaluate the effectiveness of PGA, it is compared with the following
methods.
- GA with the minimal generation gap for rescheduling problems (GA-M) [9]
Two solutions are selected from two parents and four children in this GA as
well as PGA. The first solution selected is one with the smallest value of the total
tardiness Fj in order to obtain Pareto optimal solutions with a smaller value of
Fy. The second solution selected is the closest one to the archive solution z’
with the smallest value of F} in X. The distance d,, between z' and each of six
solutions z,, (n =1,2,---,6) is defined by using the weight w as

du = \[(Fin — F)? 4+ 0*(Fou — F})?  (n=1,2,---,6) (5)

where F},, and F, (p = 1,2) are the objective value F, for z,, and 2, respectively.
The value of w must be given in advance, and is set to ten in consideration to
the balance between F; and F5.

- Strength Pareto evolutionary algorithm 2 (SPEA2) [19]

SPEA2 is a powerful MOGA-based method for conventional multiobjective
problems. In this method solutions close to the Pareto-optimal front tend to
be selected. Moreover, the distance between two solutions is calculated, and
solutions far from others tend to be selected. SPEA2 is used as one of typical
methods in the literature. SPEA2 includes no factor to explore actively an area
of smaller Fi. It may be not fair to compare SPEA2 and PGA in this sense.
The area of smaller F; can be explored by adding a weighted Fj to the original
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fitness function. The new fitness function ff5 in SPEA2 is given by

[P =ff+vF (6)

where ff is the original fitness function. The parameter w® is the weight and its
value is set to ten through a preliminary calculation. Note that a solution with
a lower fitness value is better in SPEA2. By using ff5, solutions with a smaller
F} tend to be selected.

The population size N in GA-M and SPEA2 is as large as that in PGA. The
final generation G is given in such a way that the computation time is the same,
and is shown in Table 3. SPEA2 is a generational GA, and the distance between
solutions in the population is calculated at every generation. Therefore, G in
SPEA2 is smaller than those in the other GAs.

Figure 8 depicts the average coverage metric between PGA and GA-M. Tt is
found from this figure that PGA is better than GA-M. In particular, PGA is
much better than GA-M for Instances 11-15 and 26-35 with I > 20. Figure 9
depicts the average coverage metric between PGA and SPEA2. It is found from
this figure that PGA is better than SPEA2 for almost all instances. Since the
value of G is relatively small in SPEA2, the search process may not converge
still for the value given. PGA is more applicable than SPEA2, because a solution
set should be obtained in short time for rescheduling problems.

Next, typical solution sets obtained by PGA, GA-M and SPEA2 are shown
in Fig. 10 for Instance 8. These are results in a single trial, and each computation
time is about 0.7 second by using a 2.4 GHz, Pentium IV PC, running under
LINUX. As shown in this figure, the solutions obtained by PGA are closer to the
Pareto-optimal front, and are distributed widely. A decision maker can confirm
the total tardiness and the schedule difference of each schedule by the figure, and
determine a desirable schedule in accordance with the situation at that time. The
solutions obtained by GA-M and SPEA2 in F; > 90 are the same as those by
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Fig. 10. Solution set obtained for Instance 8

PGA. Although the solutions obtained by GA-M in F; < 90 are distributed
widely, they are far from the Pareto-optimal front. In SPEA2 few solutions are
obtained in F; < 80.

Finally, Fig. 11 depicts the schedules for S*, S1 and S2 in Fig. 10. In In-
stance 8 the due date of J; becomes earlier. In order to process J; earlier, the
processing order {JsJ4J12J1J10} on M; in S* is changed to {J4J5J1J10J12} in
S1. Consequently, J; on My and M, is also processed earlier, and the completion
time ¢; of J1 becomes earlier. While S1 is similar to S*, S2 is relatively different
from S*. In order to complete J; much earlier, the idle time at about time 100
on M; and Mj in S1 is lost in S2.
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Fig. 11. Schedules obtained for Instance 8

5 Conclusion

This paper has dealt with a two-objective rescheduling problem after alteration
of due date in a job shop. The aim of this problem is to minimize the schedule
difference as well as the total tardiness. A GA has been proposed for obtain-
ing the Pareto optimal solutions in the problem. In particular, a new selection
operation by the area ranking has been proposed. In this operation the candi-
dates selected are not only solutions close to the Pareto-optimal front but also
solutions with a smaller value of the total tardiness. It is concluded from the
computational result that solutions obtained by the proposed GA are closer to
the Pareto-optimal front than those by other GAs.
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