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Abstract. The following paper describes a cooperative coevolutionary
algorithm which incorporates a novel collaboration formation mecha-
nism. It encourages rewarding of components participating in successful
collaborations from each sub-population. The successfulness of the col-
laboration is measured by a non-dominated sorting procedure. The algo-
rithm has demonstrated it can perform comparably with the NSGA-II
on some multiobjective function optimization problems.

1 Introduction

In nature, coevolution is the process of reciprocal genetic change in one species,
or group, in response to another. This process can also be utilised within evolu-
tionary algorithms, and recently there has been a growing interest in the applica-
tion of coevolution within multiobjective evolutionary algorithms. The reciprocal
change observed in coevolution can be considered either as a competitive arms
race, such as the coevolution of test cases for a problem (predators) with the
solutions (prey) [1], or more recently, cooperative approaches where separate
sub-populations evolve components of the solution [2, 3].

The cooperative coevolutionary algorithm (CCA) [3], which was utilised in
this work, separates the components of a problem solution into sub-populations,
where each sub-population is subject to an evolutionary process. Solution com-
ponents are rewarded in terms of their participation within good candidate so-
lutions. In principle, the process of rewarding components of candidate solutions
should also improve convergence towards the global Pareto front on particular
multiobjective problems.

The CCA has already demonstrated benefits in a number of single objec-
tive optimization problem domains such as inventory control [4] and learning
sequential decision rules [5]. Typically in this kind of algorithm, one picks the
best collaborators from each sub-population to form a candidate solution, how-
ever this greedy approach can sometimes lead to premature convergence. We have
proposed a new collaborator selection mechanism for the multiobjective domain;
components of a solution can have the same rank if they belong to the same non-
domination level. For example, a solution component of non-domination level 1



has participated in complete solutions which are non-dominated. Similarly, so-
lution components of non-domination level 2 have participated in collaborations
which are dominated by rank 1 collaborations, but are non-dominated with re-
spect to all other levels. Because there can be more than one solution component
in a non-domination level, the selection process is no longer a single ‘best’ com-
ponent but a randomly selected component from the best non-domination levels
in each sub-population. This collaborator selection process is quite different from
other MOEAs implementing the CCA [6, 7]. We will discuss the implications of
this in more detail in section 4.

The second aspect of this work is the rewarding of collaborators from their
contribution to non-dominated solutions. Some of the more robust and success-
ful multiobjective evolutionary algorithms (MOEAs) use a dominance ranking
mechanism [8], however there is a potential problem with this approach; there is
no mechanism which awards a ranking based on the contribution of the solution
components. Without such a mechanism, potentially good components are lost
because they may participate with poor components in a candidate solution.
This observation provides our motivation to build upon existing approaches to
multiobjective evolutionary optimization, and to provide a rewarding mechanism
for the components of solutions.

We will begin with an introduction to multiobjective optimization in section
2. Section 3 provides a review on coevolution and some work which has been
done applying coevolution to multiobjective problems, section 4 will describe
the proposed algorithm, followed by a description of the performance metrics,
parameter settings, and experiments in section 5 and 6. In section 7 and 8 we
discuss the results of these preliminary experiments and some future directions
for this work.

2 Multiobjective Optimization

We are interested in solving problems which are formulated with some or possibly
all of the objectives in conflict with each other. The problem can be described
as a vector of objectives f(x) = (f1(x), f2(x), .., fn(x)) subject to a vector of
parameters x = (x1, x2, ..., xm) ∈ X, where x is an input parameter vector
from the parameter vector space X, n is the number of objectives, and m is the
number of parameters. A solution x = (x1, x2, ..., xn) dominates a solution y =
(y1, y2, ..., yn) if objective function fi(x) is no worse than objective function fi(y)
for all n objectives and there exists some objective j where fj(x) is better than
fj(y). The non-dominated solutions in a population are those solutions which
are not dominated by any other individual in the population. Multiobjective
evolutionary optimization is typically concerned with finding a diverse range of
solutions close to the Pareto-optimal front, which is the globally non-dominated
region of the objective space.

A number of evolutionary multiobjective algorithms have been developed
since the late 80s, and NSGA-II [9], amongst others, is typically regarded as the
current state of the art.



3 Previous Work

A number of approaches have been proposed which incorporate both competitive
or cooperative coevolutionary methods to improve the performance of multiob-
jective EAs. We will present a brief overview of these approaches in this section.

3.1 Cooperative Coevolution

MOCCGA [7] integrates cooperative coevolution [3] with MOGA [10]. It uses
a dominance rank for individuals where a count of the number of individuals
dominating an individual is the fitness criterion. In the MOCCGA objectives are
evaluated twice for each individual; with the best ranked individuals from each
sub-population, as well as randomly selected individuals, which is the approach
described by Potter and De Jong to minimise premature convergence on some
test problems [11]. The better of the two collaborations can then be determined.
In the MOCCGA sub-components were apparently ranked only within the same
‘species’ or sub-population. Ranking components in this way could potentially
limit the assessment of an individual. The number of evaluations used was also
not reported.

The Distributed Cooperative Coevolutionary Multiobjective Evolutionary
Algorithm (DCCEA) [6] used a similar ranking technique however the domina-
tion count was against individuals maintained in an archive. A relatively large
number of evaluations were used on the test functions in order to demonstrate
improvements over NSGA-II and other algorithms.

Coello has also demonstrated a cooperative coevolutionary algorithm for mul-
tiobjective optimization which subdivides the decision variable space [2]. This
approach determines which portions of the decision variables intervals are being
used and discards portions of the intervals that it deems are not being used by
the search process. It also subdivides intervals so separate sub-populations can
operate on the portions of these intervals which are deemed to contribute to the
search. Sub-populations which are not making contributions are eliminated from
the search.

Another cooperative genetic algorithm which has been developed, utilises
symbiosis parameters which can affect the fitness of individuals before they are
ranked [12]. These parameters enable the modification of an individual’s fitness
based on its interaction between objective functions and between individuals.

3.2 Competitive Coevolution

Barbosa and Barreto have demonstrated a competitive algorithm which coe-
volves a weight vector which weights the objective functions [13]. Both popula-
tions are coupled with a fitness evaluation. Assigning weights to favour particular
solutions is difficult, and coevolution helps in this regard.

Another competitive approach is applied to the design of airframes. In this
approach two and three objectives are coevolved in separate sub-populations [14].



Lohn et. al. have also devised a competitive algorithm with solutions in one popu-
lation and another population containing a population of target objective vectors
(TOVs). These vectors contain targets for the trial population to overcome [15,
16].

4 The Non-dominated Sorting Cooperative
Coevolutionary Genetic Algorithm (NSCCGA)

In the following section we will describe the NSCCGA. The algorithm begins
with a random initialization of all individuals across all sub-populations. Each
sub-population is responsible for a particular parameter, xi, from the decision
space. If there are n decision variables there will be n sub-populations according
to a natural decomposition of the problem.

4.1 Method

In the first generation random collaborations are formed and evaluated. This
step is similar to the procedure outlined in Figure 1 step 1, except that we
select random individuals from the complete set of components in each of the
other sub-populations. Once these collaborations are formed, they are evaluated
on the objectives, and the results from the evaluation are assigned back to the
individual undergoing evaluation. In the first generation there will be only the
current sub-populations, and the non-dominated sorting will only be over entirely
random collaborations formed by this first generation of sub-populations. This
is the only difference between collaboration formation in the first generation and
following generations.

After the first generation, the resulting child sub-populations Q1 to Qn are
evaluated (where Qi is the child sub-population dealing with variable xi) by
forming collaborations with randomly selected components from the ‘best’ no-
domination levels in the previous generation’s sub-populations, P1 to Pn (Fig-
ure 1 step 1). This collaboration formation is explained in more detail in section
4.2.

Following collaborator formation and evaluation, we perform a fast non-
dominated sorting procedure [9] in step 2, over all collaborations from Q1 to
Qn and the parent sub-populations P1 to Pn (The parents have been assigned
evaluations from their participation in collaborations in the previous generation).
The sorting occurs on the values resulting from the evaluation on the objective
functions. This will assign a front membership (non-domination level) F , to each
of the individuals from the child sub-populations and parent sub-populations.
F1 contains the best candidates, F2 the next best, and so on.

In step 2 the crowding distance [9] is calculated for each of the collabora-
tions as well, just as it is for the NSGA-II. If two solutions are of the same
non-domination level, the crowding distance sort determines which is better. So-
lutions with a higher crowding distance are preferred because they contribute



to a more uniform non-dominated front. Both the non-dominational level and
crowding distance are assigned back to the individual undergoing evaluation.

Step 3 applies the elitism operator which removes a number of the worst in-
dividuals from each sub-population which is in proportion to the number of chil-
dren that were added. This allows the sub-population sizes to remain constant,
while preserving good components. Good candidate components from the pre-
vious generation will have an opportunity to continue participating as well. The
resulting sub-populations are the new parent sub-population P t+1

1 to P t+1
n . The

elitism operator is the same as NSGA-II except it operates on sub-populations.
Using the tournament selection operator, individuals are selected for mat-

ing from each sub-population and inserted into their respective mating pools.
Crossover and mutation are then performed for each mating pool producing chil-
dren for each of the sub-populations. The tournament operator rule we use for
selection [9] states that a solution i wins a tournament against solution j if any
of the following conditions are true:

– If solution i has a better non-domination level.
– If they have the same non-domination level but solution i has a better crowd-

ing distance than solution j.

After generating the new child sub-populations, the algorithm iterates un-
til some termination condition is met. For further details regarding the elitism
and non-dominated sorting procedures, including mechanisms for maintaining
a diverse set of solutions, the reader is referred to the following paper on the
NSGA-II [9]. The NSCCGA is implemented as a real coded GA, therefore the
simulated binary crossover [17, 18] and mutation operators [19] were used for
recombination. These operators were also used in the NSGA-II.

4.2 A Novel Collaboration Formation Mechanism

Previous work with the CCA on single objective problems has primarily selected
the current ‘best’ components from each sub-population to merge into a collab-
oration, or performed a tournament with candidate solutions formed with the
current ‘best’ and randomly selected components. In a multiobjective scenario
there may be a number of individuals in each sub-population which are parts of
overall solutions that are non-dominated in relation to each other, so we cannot
favour one over the other. In this case, we have proposed a novel collaboration
formation mechanism where we select collaborators randomly from the ‘best’
non-domination level in each sub-population (Step 1 in Figure 1). The non-
dominated sorting procedure sorts the collaborations into a number of separate
non-dominated fronts. Individuals from the best non-dominated front, F1, are
given a non-domination level of 1, followed by 2 for the second front, F2, and so
on. By selecting randomly from the collaborators with the ‘best’ non-domination
level in each sub-population we increase the chances of finding more diverse so-
lutions. Early on in the search, there may be only a few individuals from the
‘best’ non-domination level, so the random selection of collaborators is from a
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Fig. 1. Outline of the NSCCGA procedure. Qt
i are the child sub-populations and P t

i

are the parent sub-populations at time t. There are n sub-populations where n is the
number of decision variables.

small set in each sub-population. Over successive generations, the number of
components from the ‘best’ non-domination level increases, and as a result, the
number of collaborators we can choose from in each sub-population increases
significantly. The ranking approaches that were previously used in the multi-
objective CCAs (Section 3) are either too exploitive because they only allow
the selection of the single ‘best’ individual for collaboration [6], or they imple-
ment a tournament with ‘best’ and randomly selected collaborators which can
potentially waste evaluations [7].

5 Performance Metrics

We use the following performance metrics introduced by Zitzler et al. [20]:

M∗
1(Y

′) :=
1
|Y ′|

∑

p′∈Y ′
min{||p′ − p̄||∗; p̄ ∈ Ȳ} (1)

M∗
2(Y

′) :=
1

|Y ′ − 1|
∑

p′∈Y ′
|{q′ ∈ Y ′; ||p′ − q′||∗ > σ∗}| (2)

M∗
3(Y

′) :=

√√√√
n∑

i=1

max{||p′i − q′i||∗;p′,q′ ∈ Y′} (3)



where Y ′ is the set of objective vectors corresponding to the non-dominated
solutions found, and Ȳ is a set of uniform Pareto-optimal objective vectors.
A niche neighbourhood size, σ∗ > 0, is used in equation (2) to calculate the
distribution of the non-dominated solutions. M∗

1(Y
′) gives the average distance

from Y ′ to Ȳ . M∗
2(Y

′) describes how well the solutions in Y ′ are distributed.
M∗

2(Y
′) should produce a value between [0, |Y ′|] as it estimates the number of

niches in Y ′ based on σ∗. The higher the value, the better the distribution is
according to σ∗. M∗

3(Y
′) measures the spread of Y ′.

6 Experiments

6.1 Function Optimization

For the purposes of this comparative study we have selected five well known prob-
lems from the literature; ZDT1, ZDT2, ZDT3, ZDT4, ZDT6, and one rotated
problem proposed by Deb [9]. These test problems are two-dimensional multidi-
mensional minimization problems. ZDT1 is a 30 decision variable problem with
a convex Pareto front which is continuous and uniformly distributed. ZDT2 is
also a 30 dimensional problem, but has a non-convex Pareto front. ZDT3 is a
30 dimensional problem with 5 discontinuous non-convex fronts. ZDT4 is a 10
decision variable problem with 100 Pareto optimal fronts, only one of which is
the global front. ZDT6 is a 10 dimensional problem with a non-uniform mapping
between the objective space and parameter space.

6.2 Parameter Settings

We intend to compare NSCCGA’s performance with the current state of the
art, NSGA-II algorithm, therefore, we have used exactly the same real-coded
recombination and selection processes as NSGA-II [9]. For each test function the
NSGA-II executed 80,000 solution evaluations each run, where a single solution
evaluation involves the calculation of all objective values for the individual. To
make the comparison fair we attempted to use approximately the same number
of solution evaluations for the NSCCGA. For the 30 and 10 dimensional prob-
lems we performed 80,240 evaluations and 80,080 evaluations respectively for
each run of the NSCCGA. 30 runs of each algorithm were performed to acquire
the necessary statistical significance for the performance metrics. The crowded
tournament selection operator used a tournament size of 2.

A mutation rate of 1
n was used for the NSGA-II, where n is the number of

parameters. This mutation rate was chosen because it is typically used within the
literature reporting on the performance of this algorithm. ηc and ηm control the
distribution of the crossover and mutation probabilities respectively and were
assigned values of 20 each.

High mutation rates can disrupt smaller populations. The collaboration for-
mation within the NSCCGA produces a relatively large number of candidate
solutions each generation. Therefore, we might expect significant improvements



in performance with a higher mutation rate at the sub-population level, by ex-
ploring more of the search space without significant disruption to the exploitation
process. Therefore, we also conducted experiments with relatively high mutation
rates with the NSCCGA, and a mutation rate of 0.6 was found to demonstrate
generally good performance across the ZDT test problems. We have not explored
the optimality of control parameters further because this paper is primarily con-
cerned with demonstrating the utility of a new collaborator selection mechanism.

A population size of 100 was used for the NSGA-II, where 100 children were
added each generation. The NSCCGA used a population size of 200 individuals
for the sub-population evolving x1, and added 200 children to this population
each generation. For each of the other populations 40 individuals were used,
with 40 new individuals added to each population each generation. A constant
sub-population size is maintained through an elitism operator which culls a pro-
portion of the least fit individuals from each sub-population. A crossover rate of
0.9 was used for both the NSCCGA and NSGA-II. For the M∗

2 metric, σ∗ was
set to 0.01.

7 Results and Discussion

Figure 2 shows the typical non-dominated fronts, and Table 1 tabulates the
results acquired using the performance metrics M∗

1, M∗
2, and M∗

3. From this
table it is apparent that the NSCCGA is comparable in performance to the
NSGA-II upon the ZDT test functions. The NSCCGA also has the advantage of
being able to acquire a large number of diverse non-dominated solutions for an
equivalent number of evalutions of the NSGA-II (MetricM∗

2 in Table 1) when the
mutation rate is sufficiently high. This is by virtue of the collaboration formation
mechanism within the NSCCGA, where n populations with m individuals can
potentially form nm solutions through collaboration.

Table 1. M∗
1, M∗

2, M∗
3, and the number of evaluations (averaged over 30 runs).

Metric Algorithm ZDT1 ZDT2 ZDT3 ZDT4 ZDT6

M∗
1

NSCCGA 1.15E-03 8.66E-04 3.27E-04 1.39E-03 2.58E-03
±3.54E-05 ±5.35E-05 ±9.50E-05 ±2.63E-04 ±7.76E-04

real-coded 1.06E-03 6.76E-04 2.80E-04 1.26E-03 7.02E-02
NSGA II ±1.46E-04 ±2.76E-04 ±3.09E-05 ±3.21E-04 ±7.24E-03

M∗
2

NSCCGA 1.34E+03 1.33E+03 1.21E+03 5.53E+02 5.52E+02
±8.71E+00 ±9.01E+00 ±1.32E+01 ±1.96E-01 ±4.82E-01

real-coded 9.94E+01 8.61E+01 9.81E+01 9.62E+01 9.91E+01
NSGA II ±7.70E-02 ±3.44E+01 ±5.14E-01 ±1.82E+01 ±8.16E-02

M∗
3

NSCCGA 1.42E+00 1.42E+00 1.62E+00 1.42E+00 1.29E+00
±3.97E-03 ±2.08E-02 ±4.39E-03 ±1.67E-02 ±1.51E-02

real-coded 1.41E+00 1.23E+00 1.60E+00 1.37E+00 1.25E+00
NSGA II ±2.26E-05 ±4.89E-01 ±5.10E-02 ±2.58E-01 ±3.11E-03
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Fig. 2. From top to bottom are the typical non-dominated fronts of ZDT1, ZDT2,
ZDT3, ZDT4, and ZDT6 for the NSGA-II and NSCCGA.



The M∗
1 metrics demonstrate comparable performance between the algo-

rithms on all but the ZDT6 function, where the NSCCGA was able to converge
closer to the Pareto-optimal front than the NSGA-II. It is also apparent that
the NSCCGA was able to achieve a slightly better measure of spread across all
the functions from the M∗

3 metric. This can be understood in terms of the much
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Fig. 3. The left and right plots respectively show 30 runs of the NSCCGA and the
NSGA-II algorithm on the rotated problem after 80,000 evaluations. A crossover and
mutation rate of 0.9 and (1/n) was used for the NSGA-II, and a crossover and mutation
rate of 0.9 and 0.6 was used with the NSCCGA.

larger number of collaborations which are formed within the NSCCGA, resulting
in a greater likelyhood of good coverage across the front, including the extreme
end points of the front.

7.1 Rotated Problems

Rotated problems introduce significant parameter interactions [21]. On the ro-
tated problem, we have observed that the NSCCGA performed much worse than
the NSGA-II. This is understandable because the NSCCGA assumes a problem
that is decomposable, and can be solved by breaking it down into components.
The CCA this work is based on has difficulties converging to good solutions with
these types of problems (Figure 3). We have also observed that high mutation
rates with the NSCCGA on the rotated problem improved the performance a
little, because it increases the chance of simultaneous improvements in parame-
ters [21], thereby enabling better solutions to be found more often.

8 Conclusions

This paper has demonstrated a novel collaboration formation mechanism within
a cooperative coevolutionary algorithm, which utilises the unique aspects of mul-
tiobjective optimization. Through the cooperative coevolution of components
which participate in candidate non-dominated solutions it is possible to find col-
laborators which cooperate in good solutions. This paper has demonstrated that



the NSCCGA compares well with the NSGA-II on a variety of test problems
exhibiting diverse characteristics. However, the NSCCGA experienced difficulty
in handling the rotated problem. More work is necessary on the NSCCGA in
order to apply it to difficult real world problems, which may have significant
parameter interactions. Two areas which we are considering to explore in the
future are problem decomposition [22] and self-adaptation of control parame-
ters [23]. Preliminary work in these areas has suggested that they are effective
techniques.
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