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Abstract

In this work, we extend an improved GA (GA-SRM) to
multi-objective flowshop scheduling problem (FSP) in or-
der to obtain better pareto-optimum solutions (POS). Two
kinds of cooperative-competitive genetic operators in GA-
SRM, CM and SRM, are extended to the ones suitable
for FSP in which solutions (individuals) are represented
as permutations. Simulation results verify that GA-SRM
shows better performance for multi-objective optimization
problem (MOP), and consequently better POS are obtained
rather than conventional approaches with canonical GA.

1 Introduction

Evolutionary Algorithms (EAs) have drawn great attention
as one of the most powerful techniques to solve various
kinds of optimization problems. In particular, a number of
methods and applications using Genetic Algorithms (GAs)
have so far been developed mainly for single objective op-
timization problems (SOP). However, because many prob-
lems in real world applications, such as decision making,
include multiple objective functions in trade-off relation-
ship, the problem often becomes a multi-objective opti-
mization problem (MOP). In this case, it is required to
obtain a set of non-dominated (compromised) solutions
called pareto-optimal solutions (POS)[1]-[3]. There has
been several works that apply GA to solve MOP in order
to obtain POS[2]-[6] so far.

On the other hand, although many works that improve
the search performance of GA have been proposed, re-
cent works have pointed out that the mutation opera-
tor plays more important roles to improve the perfor-
mance of GA[7]-[11]. An improved GA (GA-SRM)[10]
introduces an adaptive mutation operator (called Self-
Reproduction with Mutation: SRM) in parallel with con-
ventional crossover with small mutation operator (called
Crossover and Mutation: CM). An extinctive selection is
applied to offspring created by both SRM and CM opera-
tors in GA-SRM to guarantee the preservation of the ben-
eficial genetic information to the next generation. Com-
pared with canonical and other enhanced GAs, GA-SRM
remarkably accelerates the search speed and shows robust
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and reliable search performance for SOP in the 0/1 multiple
knapsack problem[10] and in the image halftoning prob-
lem[11] as well.

In this work, we especially focus on solving the multi-
objective flowshop scheduling problem (FSP)[12], and try
to obtain better POS by using GA-SRM. Two kinds of ge-
netic operators in GA-SRM, CM and SRM, are extended
suitable for FSP in which solutions (individuals) are repre-
sented as permutations of job numbers. Simulation results
verify that GA-SRM shows better performance for MOP,
and consequently better POS are obtained rather than con-
ventional approaches with canonical GA.

2 Solving MOP with GA
2.1 MOP

The optimization of POS in MOP is defined as follows[5].
Here we consider the minimization problem. For a vector
evaluation function

f(m):(fl(w)afZ(m)v7fK(m)) (1)

consisted of K kinds of objective functions f;(i =
1,2,---, K), we try to minimize f;( = 1,2, -, K) with
x that is an element of the solution space ¥. It is, in
general, difficult to minirize all f;(i = 1,2,-.-, K) for
x € ¥ because there is a trade-off relationship between
objective functions. In such cases, we must try to minimize
each f;(x) by compromising them. A solution x,, € ¥ of
which evaluation vectoris u = f(z,,) = (u1,u2, -, uk)
is considered as a POS if and only if there is no dominated
solution ¢, € W. It 1s defined that a solution x,, of which
evaluation vector is v = f(x,) = (v1,vs,- -, vk ) domi-
nates a solution ., if

V’t€{1,2,,K}, viSUi (2)

and
5i€{1,2,-«-,K}, v; < U4 (3)

are satisfied. The objective of MOP is to obtain a set of
POS {z,}.
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2.2 GA Approaches

There have so far been proposed several approaches to
solve MOP by using GA[2]-[6]. In this paper we focus
on [6], which uses random weight vectors

w=(w1,w2,-~w1{) ®

and try to minimize

K
fu(z) = Zwifi(a:) (5)

as an evaluation function of Eq.(1). Here each component
wi(t =1,2,---, K) in w is calculated by
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K
Ej:l Ty

with random variables r;(j = 1,2,---, K) where w; >
0, fo__l w; = 1. In this approach, an independent selec-
tion is made by Eq.(5) with a different weight vector w
every time a new offspring is created. Since A times of se-
lection are made with A random vectors to create A new
offspring for the next generation, it is expected to search
solutions towards X kinds of direction in a solution space.
If the weight vector in Eq.(5) is fixed to a specific vec-
tor, on the other hand, the problem will become SOP. In
this case it is difficult to obtain desirable POS because it
is expected to search solutions towards a fixed direction.
Since random weight vector selection by Eq.(5) makes GA
introduce much diversity into the population, we can ex-
pect to obtain better POS with higher fitness values. The
flow of solving MOP with GA is illustrated in Fig.1, in
which a sub-population consisted with only POS is sepa-
rately preserved as well as actual population that is evolved
with GA generation by generation. An elitist strategy that
includes F individual of POS into the next actual popula-
tion is adopted similar to [6].

w; =

(6)

3 Extension of GA-SRM to Multi-objective
FSP

3.1 Multi-objective FSP

FSP (Flowshop Scheduling Problem) is well-known as one
of combinatorial problems that optimize the permutations
of job numbers[12]. There are N kinds of jobs and M
kinds of machines in a given problem. The processing
times t(k,!) for job k(1 < k < N) on machine I(1 <
I < M) are predetermined. Let us denote a solution (job
permutation) z = (J1,Ja,---,Jn) and Ji(1 < k < N)
as k-th job to be processed. Job J; must be serially pro-
cessed from machine 1 to M but cannot be in process on

current POS
subpopulation

current
population

evolution
with random _‘@!
vector selection
next
population

update

next POS
ubpopulation

Fig.1 The flow of solving MOP with GA

the next machine until the previous job Ji_1 is completed
on it. Also, let us define the time to begin J; on the ma-
chine 1 as 0, and the time when J;, is completed on the
machine ! as T'(J,1). In FSP the following relationships
are formulated.

T(Jy,1) =t(J1,1) (7)
T(Jk,l) ‘—“T(Jk_l,l)-f-t(.]k,l) (k=2,---,N) (8)
T, ) =T(J, 1 - 1) +t(J1,0) (1=2,---,M) 9)

T(Jkyl) = ma‘x{T(Jk—lal)vT(JkJ - 1)} + t('jkal) (10)
(k=2...,N;l=2-- M)

In this work, we use the following three kinds of criteria in
FSP and combine them in order to construct MOP.

(i) makespan : it is defined as the total processing time
that all machines completed all jobs.

Tm =T(In, M) an

(ii) total flowtime : it is defined as the sum of flowtime,
which is the time a job spends in process from ma-
chine 1 to machine M.

N
Ty =Y T(Ji, M) (12)

k=1

(iii) total tardiness : it is defined as the sum of tardiness,
which is the time a job is delayed for the predeter-
mined deadline.

N
T, =Y max{0,T(Ji, M) —di}, (13)
k=1
where di.(k = 1,2,---, N) denotes the deadline for
job Jk.
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An example of FSP with four jobs (/N = 4) and four ma-
chines (M = 4) is illustrated in Fig.2.
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Total Tardiness = Ji tardiness + J: tardiness + J; tardiness + Js tardiness
(J1 tardiness = 0, J3 tardiness = 0)

Fig.2 An example of FSP(N =4, M = 4)
3.2 GA-SRM

GA-SRM[10] uses two kinds of cooperative and competi-
tive genetic operators in parallel, CM and SRM, to produce
offspring and assign them specific roles. Offspring created
by both operators compete for survival through an extinc-
tive selection mechanism.

CM (Crossover and Mutation) operator creates offspring
by conventional crossover and successive mutation with
small mutation probability pﬁfM). This operator has a role
to propagate beneficial genetic information into the popu-
lation by combining segments from parent individuals. CM
creates Ay offspring.

On the other hand, SRM (Self-Reproduction with Muta-
tion) operator creates offspring by an adaptive mutation op-
erator with dynamic mutation probability pSf rM) varying
from high to low values. This operator has a role to intro-
duce diversity into the population by creating offspring that
cannot be created by CM. SRM creates Aspps offspring.
Offspring created by CM and SRM compete for survival
through (1, A) proportional selection which is widely used
in Evolution Strategy (ES)[13]. This method selects only
the best p offspring by discarding offspring with low fit-
ness value from A(= Acar + Asgra) offspring created, and
preserve them as parent individuals for the next generation.

3.3 Extension to Multi-Objective FSP

Local permutations of job numbers are important rather
than their loci on an individual in FSP. Thus the ge-
netic operators in GA-SRM originally designed for bi-
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nary representation[10],[11] are accordingly modified for
permutation representation in this work. Two-point order
crossover[14] and a shift mutation scheme[15] with small
mutation probability are used in CM. The illustration of
two-point order crossover is shown in Fig.3. The same
job number cannot appear twice in a chromosome in FSP.
Here we randomly select two crossing points and decide
which segment (parent A or B, and inside or outside of
two points) should be inherited to the offspring. In this
example, the genetic information of the segment inside ¢;
and ¢ in parent A and the remaining job numbers in par-
ent B were inherited to the offspring being created. After
the two-point crossover a shift mutation is applied to the

offspring with small probability pg,? M) as shown in Fig4.
The initial segment point and the direction of shifting are
randomly determined. This small mutation works to intro-
duce small change into a beneficial combination obtained

by crossover.
Ci C2

parentA 48 (62 1]7]10/5]3]9]

parent B

Fig.4 Shift mutation

si’ Si sitL
insert point

parent LEE

Fig.5 Extended shift mutation

On the other hand, an adaptive mutation scheme that is ex-
tended from the shift mutation in this work is used in SRM
in order to get offspring that cannot be created by CM.
The illustration of the extended shift mutation is shown
in Fig.5. The initial point of a segment s; and a segment
inserting point s;’ are randomly determined, and then the
segment is extracted and inserted at s;’. Here the segment



length L is properly reduced by controlling the mutation
probability pﬁf AM) from high to low values.

The segment length L in both shift and extended shift mu-
tation schemes is determined as the times a random valu-
able is below p&SM or pg,fRM) in n times of trial. Al-
though ps,?M) is set to a constant small value, pSfRM)
are dynamically controlled based on the normalized mu-

tant survival ratio in SRM specified by

_ bsrM A

= 14
ASRM P 14

where psgpayr denotes SRM’s offspring number that sur-
vived extinctive selection. That is, we consider the contri-
bution by SRM is no longer effective if v < 7, which is a
predetermined threshold, and reduce p,(f RM) 4 ps,f RM) /8
(B8 > 1). This adaptive mutation control preserves proper
balance between CM and SRM operators and offspring
created by SRM effectively contributes to improve the
search performance of the algorithm.

Finally, we show how to apply the extinctive selection
mechanism into MOP. Here in Eq.(5) the (i, A) propor-
tional selection is done with a random vector in order to
select two parents every time an offspring is created by CM
or SRM. )\ times of (12, A) proportional selection are totally
done by using X kinds of vectors in Eq.(5), which expects
to improve the search performance by discarding offspring
with low fitness value in A kinds of different direction.

4 Simulation Results and Discussion
4.1 Test Problems and Evaluation Method

Computer simulations were conducted for 30 jobs-10 ma-
chines FSP. Two or three criteria are selected from o, T
and T, and used with minus value as multi-objective func-
tions since these criteria should be minimized in FSP. Av-
erage results are observed for 100 random test problems
in which processing times ¢(k, ) for job k(1 < k < N)
on machine !(1 < ! < M) are randomly determined in
the range [1, 99]. Also, deadlines for each job dir(k =
1,2,---,N) are randomly determined by adding random
variables [-200, 0] to flowtimes T*(Ji, M) for a specific
job permutation * = (Jf, J3,---, Jx).

In this work, Set Quality Measure (SQM) [16] is used in
order to evaluate the obtained POS sub-population. SQM
for a population {2 is calculated by

R K
Q) =3 3 max{> wM fi(@) e €} a3)
m=1 i=1

where wgm) is an i-th element in a random weight vector

w(™) determined at m-th selection, and R is the number
of random vectors to be used.

4.2 Obtained Results and Discussion

We conducted computer simulation for test problems de-
scribed in 4.1 with parameters in Table 1. In this work,
the following comparison are done: (i) the results for MOP
(using random weight vectors in Eq.(5)) and for SOP (us-
ing a fixed vector with same weight), (ii) the results by a
canonical GA (denoted as cGA) and GA-SRM with (u, A)
proportional selection (denoted as GA-SRM(y, A)), (iii)
the results by a canonical GA with (u, A) proportional se-
lection (denoted as GA(u, A)) and GA-SRM(u, A) in order
to isolate the contribution by extinctive selection and SRM
operator. Since there is no concept of POS in SOP, so-
lutions equivalent to POS found in the search process are
preserved for SOP.

The transition of SQM and final POS obtained for K = 2
(two objective functions) and K = 3 (three objective
functions) are shown in Fig.6 and Fig.7, respectively. In
case of K = 3, POS are plotted by mapping them onto
a 2-dimensional plane. (i) All approaches, cGA(100),
GA(50,100) and GA-SRM(50,100), for MOP clearly at-
tained better results than those for SOP, which explains
random vector evaluation by Eq.(5) is effective in order
to obtain better POS in MOP. (ii) GA-SRM outperforms
¢GA in both search velocity and search reliability. In addi-
tion, GA-SRM(50,100) for SOP (a fixed weight vector was
used in Eq.(5)) attained same or better performance com-
pared with cGA(100) for MOP. These results means SRM
operator and extinctive selection effectively contributes to
search POS in MOP. (iii) Let us see the details on SQM
transition. The search velocity of GA-SRM(50,100) tends
to be inferior to GA(50,100) at the beginning of the search.
This means CM contributes more than SRM and (i, A) pro-
portional selection assists its contribution in initial gener-
ations. Therefore, it is concluded that the acceleration of
search speed in GA-SRM is mainly achieved by (u, A) pro-
portional selection mechanism. However, while the search
performance of GA(50,100) is gradually deteriorated, the
one of GA-SRM(50,100) is successively improved without
premature convergence .

This fact is verified in Fig.8, which shows the ratio of av-
erage POS number newly appeared for created offspring
number by each operator in each generation. From this fig-
ure, although SRM'’s contribution is inferior to CM’s one
at the beginning of the search process, SRM begins to in-
crease its contribution around 100-th generation, and af-
ter 200-th generation keeps superior contribution to CM in
GA(50,100). Also, it should be noted that CM’s contri-
bution in GA-SRM(50,100) is a little bit better than that
in GA(50,100), which shows the importance of synergetic
effects of two cooperative and competitive genetic oper-
ators to improve the performance of GA. Therefore, it is
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Table 1 Genetic algorithms parameters

Parameter c¢GA(100) G A(50,100) GA — SRM (50,100)
Representation permutation permutation permutation
Selection Proportional (e, A) Proportional (1, A) Proportional
Scaling Linear Linear Linear
Crossover two-point order two-point order two-point order
Mating condition (zi,z5), 1 #£ ] (i, xj), 1 #£ 5 (i, z5), 1# 7
Pe 0.8 0.8 0.8
Mutation(CM) Shift Shift Shift
pl™ 0.025 0.025 0.025
Mutation(SRM) - - Extended Shift
plS M) - - [0.5,0.025], 7 = 0.48, 3= 1.5
B - 1:2 1:2
AcM : AsrMm - - 1:1
E SOP:1, MOP:3 | SOP:1, MOP:3 SOP :1, MOP:3
R 100 100 100
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Table 2 Domination ratio of GA-SRM (MOP) for other approaches

approaches K =2 K=3 average
Thn&Ts | Tn&T: | T&T, | Thn&Ti&T,

GA — SRM(50,100) SOP 5% 84% 76% 79% 79%
GA(50,100) MOP 69% 83% 73% 80% 76%
GA(50,100) SOP 85% 89% 79% 89% 86%

cGA(100) MOP 79% 84% 81% 838% 83%
cGA(100) SOP 95% 96% 94% 100% 96%
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concluded that the robust and reliable search performance
in GA-SRM is mainly achieved by SRM operator. Con-
sequently, we could obtain better POS by GA-SRM rather
than conventional approaches with canonical GA. The ra-
tio which POS obtained by GA-SRM for MOP dominates
those obtained by other approaches are shown in Table 2.

5 Conclusions

In this work, we have extended an improved GA (GA-
SRM) to multiple-objective flowshop scheduling problem
(FSP). Two kinds of cooperative-competitive genetic op-
erators in GA-SRM, CM and SRM, could be effectively
extended for permutation representation in FSP, and con-
sequently GA-SRM achieved clearly better results in MOP
rather than conventional approaches with canonical GA for
both solution set quality (SQM) and POS. In addition, we
isolated the contribution by extinctive selection and SRM
operator in GA-SRM; the former contributes to accelerate
the search speed and the latter contributes to robust and
reliable search performance.

As future works, we are planning to improve the domina-
tion ratio of POS by GA-SRM further, and apply GA-SRM
for another kind of MOP.
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