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Abstract. This paper examines how the search ability of evolutionary multi-objective 
optimization (EMO) algorithms can be improved by the hybridization with local 
search through computational experiments on multi-objective permutation flowshop 
scheduling problems. The task of EMO algorithms is to find a variety of non-
dominated solutions of multi-objective optimization problems. First we describe our 
multi-objective genetic local search (MOGLS) algorithm, which is the hybridization 
of a simple EMO algorithm with local search. Next we discuss some implementation 
issues of local search in our MOGLS algorithm such as the choice of initial (i.e., 
starting) solutions for local search and a termination condition of local search. Then 
we implement hybrid EMO algorithms using well-known EMO algorithms: SPEA 
and NSGA-II. Finally we compare those EMO algorithms with their hybrid versions 
through computational experiments. Experimental results show that the hybridization 
with local search can improve the search ability of the EMO algorithms when local 
search is appropriately implemented in their hybrid versions. 

 
 
1. Introduction 
 
 Since Schaffer’s work [1], evolutionary algorithms have been applied to various multi-
objective optimization problems for finding their Pareto-optimal solutions. Evolutionary 
algorithms for multi-objective optimization are often referred to as EMO (evolutionary 
multi-objective optimization) algorithms. For review of this field, see [2], [3]. The task of 
EMO algorithms is to find Pareto-optimal solutions as many as possible. It is, however, 
impractical to try to find true Pareto-optimal solutions of large-scale combinatorial 
optimization problems. Thus non-dominated solutions among examined ones are presented 
to decision makers as a result of the search by EMO algorithms. In this case, EMO 
algorithms try to drive populations to true Pareto-optimal solutions as close as possible for 
obtaining a variety of near Pareto-optimal solutions.  
 One promising approach for improving the search ability of EMO algorithms to find 
near Pareto-optimal solutions is the hybridization with local search. The hybridization of 
evolutionary algorithms with local search has already been investigated in many studies for 
single-objective optimization problems [4], [5]. Such a hybrid algorithm is often referred to 
as memetic algorithms. A hybrid evolutionary algorithm with local search for multi-
objective optimization was first implemented in [6], [7] as a multi-objective genetic local 



search (MOGLS) algorithm. Jaszkiewicz [8] improved the performance of the MOGLS 
algorithm by modifying the selection mechanism for choosing parent solutions for 
crossover in its EMO part. The performance of the MOGLS algorithm was also improved 
by introducing a selection mechanism into its local search part for choosing good solutions 
to which local search is applied in each generation [9], [10]. Knowles & Corne [11] 
combined their Pareto archived evolution strategy (PAES [12]) with a crossover operation 
for designing a memetic PAES (M-PAES). In their M-PAES, the Pareto-dominance relation 
and the grid-type partition of the multi-dimensional objective space were used for 
determining the acceptance (or rejection) of new solutions generated in genetic search and 
local search. The M-PAES had a special form of elitism inherent in the PAES.  
 Generic frameworks of hybrid EMO algorithms are shown in Fig. 1. The two 
frameworks in Fig. 1 are the same except for the order of genetic search and local search. 
Genetic operations are first applied to an initial population in Fig. 1 (a). On the other hand, 
genetic operations are applied after an initial population is improved by local search in Fig. 
1 (b). The two frameworks are executed in the same manner after the second generation: 
the EMO part and the local search part are iterated for finding Pareto-optimal solutions. 
Emphasis is implicitly placed on the local search part in Fig. 1 (b) while the EMO part is 
implicitly viewed as the main part in Fig. 1 (a). In this paper, we use the framework in Fig. 
1 (a) for describing hybrid EMO algorithms. In Fig. 1 (a), the local search part can be also 
viewed as a special kind of mutation in EMO algorithms. 
 

      (a)           (b) 

Fig. 1. Two generic frameworks of hybrid EMO algorithms. In (a), local search is applied to new solutions 
generated by the EMO part. In (b), genetic operations are applied to an improved population generated by the 
local search part. 
 
 

 In this paper, we first rewrite the MOGLS algorithm in our former studies [9], [10] by 
introducing a new parameter: local search probability LSP . Local search is probabilistically 
applied to each solution with the local search probability LSP  in our MOGLS algorithm. 
Next we discuss some implementation issues of local search in our MOGLS algorithm such 
as the choice of initial (i.e., starting) solutions for local search and a termination condition 
of local search. In the local search part of our MOGLS algorithm, good solutions are 
selected from the current population as initial solutions for local search. Then local search 
is probabilistically applied to each of the selected solutions. For decreasing the CPU time 
spent by local search (i.e., for striking a balance between genetic search and local search 
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[10]), we use an early termination strategy where local search is terminated before finding a 
locally optimal solution. The probabilistic application of local search and its early 
termination are for preventing a possible negative effect of local search: It may cause a 
premature convergence to local solutions. Then we implement hybrid versions of well-
known EMO algorithms: SPEA (strength Pareto evolutionary algorithm [13]) and NSGA-II 
(revised non-dominated sorting genetic algorithm [14]). The SPEA and the NSGA-II are 
combined with local search in the framework shown in Fig. 1 (a). Finally we compare those 
EMO algorithms with their hybrid versions through computational experiments on multi-
objective permutation flowshop scheduling problems. 
 
 
2. Multi-Objective Genetic Local Search Algorithm 
 
 Let us consider the following n-objective minimization problem: 

  Minimize ))(...,),(),(( 21 xxxz nfff= ,        (1) 
  subject to Xx ∈ ,             (2) 

where z is the objective vector, )(xif  is the i-th objective to be minimized, x is the decision 
vector, and X is the feasible region in the decision space. 
 The EMO part of our MOGLS algorithm is a simple multi-objective genetic algorithm 
with the roulette wheel selection based on a scalar fitness function. It has a secondary 
population for elitism [15]. As in standard single-objective genetic algorithms, first an 
initial population of popN  solutions is randomly generated where popN  is the population 
size. Non-dominated solutions in the initial population are identified, and a secondary 
population is constructed from their copies. The fitness value of each solution in the current 
population is evaluated using the following scalar fitness function (to be minimized): 

  )()()()( 2211 xxxx nn fwfwfwf +⋅⋅⋅++= ,       (3) 

where iw  is a normalized non-negative random weight for the i-th objective function 
)(xif : =+⋅⋅⋅++ nwww 21 1 and ≥iw 0 for i∀ . A pair of parent solutions is selected from 

the current population using the roulette wheel selection scheme with the linear scaling: 
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where )(S xP  is the selection probability of the solution x, Ψ  denotes the current population, 
and )(max Ψf  is the largest (i.e., worst) fitness value )(xf  in the current population Ψ  
under the current weight vector )...,,,( 21 nwww=w . For finding a variety of non-
dominated solutions (i.e., for realizing various search directions in the n-dimensional 
objective space), the weight vector is randomly specified whenever a pair of parent 
solutions is to be selected. That is, the selection of each pair of parent solutions is governed 
by a different weight vector. A pre-specified number of pairs of parent solutions are 
selected in this manner. New solutions are generated by crossover and mutation in the same 
manner as standard single-objective genetic algorithms. Then a pre-specified number of 
non-dominated solutions are randomly selected from the secondary population as elite 
solutions, and their copies are added to the newly generated solutions. In this manner, a 
new population is constructed from the solutions generated by the genetic operations and 
the copies of non-dominated solutions randomly selected from the secondary population. 



 Next the local search part receives the new population generated in the EMO part. In 
our MOGLS algorithm, an initial (i.e., starting) solution for local search is selected from the 
current population (i.e., population generated in the EMO part) using the scalar fitness 
function in (3) with random weight values. Weight values are randomly specified whenever 
an initial solution is to be selected for local search. That is, each initial solution is selected 
based on a different weight vector. Local search for the selected initial solution is governed 
by the scalar fitness function with the weight vector used in its selection. The tournament 
selection with the tournament size five is used in our computational experiments for the 
selection of an initial solution for local search. Local search is probabilistically applied to a 
copy of the selected initial solution with the local search probability LSP . When local 
search is not applied, a copy of the selected initial solution is added to the next population. 
When local search is applied, a neighbor of the current solution is randomly selected. If the 
neighbor is superior to the current solution with respect to the scalar fitness function with 
the current weight vector, the current solution is immediately replaced with the neighbor. 
That is, we use the hill-climbing algorithm with the first improvement strategy in the local 
search part instead of the best improvement (i.e., steepest hill-climbing) strategy. For 
preventing the local search part from spending almost all the available CPU time, we 
restrict the number of successive fails of local move to k where k is a user-definable 
parameter. This means that local search for the current solution is terminated when a better 
solution is not found among k neighbors randomly selected from the neighborhood of the 
current solution. Of course, when a better neighbor is found, we can examine k neighbors of 
the new current solution again. When local search is terminated, the current solution is 
added to the new population. The selection of an initial solution from the current population 
and the probabilistic application of local search are iterated popN  times for generating the 
new population with popN  solutions (i.e., for improving the population generated by the 
EMO part). 
 The outline of our MOGLS algorithm can be written as follows: 

MOGLS Algorithm 
Step 0) Initialization: Randomly generate an initial population of popN  solutions. 

[EMO Part] 
Step 1) Evaluation: Calculate the n objectives for each solution in the current population. 

Then update the secondary population where non-dominated solutions are stored 
separately from the current population. 

Step 2) Selection: Repeat the following procedures to select ( elitepop NN − ) pairs of 
parent solutions where eliteN  is the number of elite solutions. 
(a) Randomly specify the weight values nwww ...,,, 21 . 
(b) Select a pair of parent solutions using the scalar fitness function in (3). The 

roulette wheel scheme in (4) is used for the selection of parent solutions. 
Step 3) Crossover and mutation: Apply a crossover operation to each of the selected 

( elitepop NN − ) pairs of parent solutions. A new solution is generated from each 
pair. Then apply a mutation operation to each of the generated new solutions.  

Step 4) Elitist strategy: Randomly select eliteN  solutions from the secondary population. 
Then add their copies to the ( elitepop NN − ) solutions generated in Step 3 to 
construct a population of popN  solutions. 

[Local Search Part] 
Step 5) Local search: Iterate the following three steps popN  times. Then replace the 



current population with popN  solutions obtained by the following steps. 
(a) Randomly specify the weight values nwww ...,,, 21 . 
(b) Select a solution from the current population using tournament selection with 

replacement based on the scalar fitness function in (3) with the current weight 
vector specified in (a). A copy of the selected solution is used in (c). Thus no 
solution is removed from the current population. 

(c) Apply local search to a copy of the selected solution using the current weight 
vector with the local search probability LSP . When local search is applied, the 
current solution after local search is included in the next population. As 
mentioned above, local search is terminated when no better solution is found 
among k neighbors randomly generated from the current solution. On the other 
hand, when local search is not applied, a copy of the selected solution in (b) is 
added to the next population. 

Step 6) Return to Step 1. 

This algorithm is terminated when a pre-specified stopping condition is satisfied. In this 
paper, we use the number of examined solutions as the stopping condition for comparing 
different algorithms under the same computation load. 
 Let us demonstrate how the performance of the EMO algorithm can be improved by 
the hybridization with local search in our MOGLS algorithm. As test problems, we 
generated eight flowshop scheduling problems in the same manner as [7]. The processing 
time of each job on each machine was specified as a random integer in the interval [1, 99]. 
The due date of each job was specified by adding a random integer in the interval [-100, 
100] to its actual completion time in a randomly generated schedule. All the eight test 
problems have 20 machines. Using the number of objectives (n) and the number of jobs (N), 
we denote each of the eight test problems as n/N where =n 2, 3 and =N 20, 40, 60, 80. 
Four test problems have two objectives (i.e., =n 2): to minimize the makespan and to 
minimize the maximum tardiness. The other four test problems are three-objective 
problems (i.e., =n 3) with an additional objective: to minimize the total flow time.  
 In our computational experiments of this paper, we used the same genetic operations 
as [7]: the two-point order crossover and the shift change mutation. The shift change 
mutation is the same as the insertion operation: remove a randomly selected job and insert it 
into another position. The shift change mutation was also used in the local search part for 
generating a neighbor from the current solution as in [7]. We used the following parameter 
specifications in the EMO part: 

   Population size ( popN ): 60, 
   Crossover probability: 0.9, 
   Mutation probability per string: 0.6, 
   Number of elite solutions (eliteN ): 10, 
   Stopping condition: Evaluation of 100,000 solutions. 

Several different specifications were examined for the two parameters LSP  and k.  
 A solution set obtained by our MOGLS algorithm was evaluated by the average 
normalized distance from each reference solution (i.e., approximate Pareto-optimal 
solution) to the nearest solution in the obtained solution set. This performance criterion can 
measure the proximity of the obtained solution set to the Pareto front and the quality of the 
distribution of solutions in the obtained solution set. The reference solutions were found 
from ten independent runs of the MOGLS algorithm, the SPEA, and the NSGA-II for each 



test problem with much longer CPU time (i.e., five million solutions were examined in each 
run of each algorithm). We compared 30 solution sets, which were obtained from ten runs 
of the three algorithms, with each other for finding non-dominated solutions. All the non-
dominated solutions were used as reference solutions for each test problem. The objective 
space of each test problem was normalized so that the minimum and maximum values of 
each objective among the reference solutions became 0 and 100, respectively.  
 Using the reference solutions of each test problem with the normalized objective space, 
we evaluated solution sets obtained by the MOGLS algorithm with various specifications of 
the two parameters in the local search part: LSP  and k. We also evaluated the performance 
of the EMO part of the MOGLS algorithm. Average results over 50 independent runs are 
summarized in Table 1. From this table, we can see that the performance of the simple 
EMO algorithm was significantly improved by the hybridization with local search. We can 
also see that the performance of our MOGLS algorithm strongly depended on the two 
parameters: k and LSP . The best result for each test problem in each table is indicated by 
“*”. The best result for each test problem among all tables in this paper is underlined.  
 The performance of the MOGLS algorithm is significantly deteriorated when we 
remove the selection mechanism (i.e., selection of initial solutions for local search) from 
the local search part. We performed the same computational experiments as Table 1 using 
the MOGLS algorithm without the selection mechanism in the local search part. In this case, 
local search was probabilistically applied to every solution in the current population with 
the local search probability LSP  independent of their fitness values. When local search was 
applied to a solution x, the local search direction for x (i.e., weight vector in the scalar 
fitness function) was specified using the concept of pseudo-weight vector [2]. The pseudo-
weight iw  for the i-th objective )(xif  was defined for the solution x as  
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where max
if  and min

if  are the maximum and minimum values of the i-th objective )(xif  in 
the current population, respectively. It should be noted that the local search direction for 
each initial solution was specified by the weight vector used in the selection of that initial 
solution in the MOGLS algorithm with the selection mechanism in Table 1. Table 2 shows 
average results over 50 independent runs of the MOGLS algorithm without the selection 
mechanism. From the comparison between Table 1 and Table 2, we can see that the 
performance of the MOGLS algorithm was significantly deteriorated in Table 2 by 
removing the selection mechanism. That is, we can see that the selection of initial solutions 
for local search plays a significant role in the MOGLS algorithm. When the local search 
probability is very small (e.g., =LSP 0.01), the selection of initial solutions for local search 
can be viewed as the selection of good solutions from the current population for 
constructing the next population. The effect of such selection may be twofold: the 
improvement in the convergence speed to Pareto-optimal solutions and the decrease in the 
variety of solutions. Since our MOGLS algorithm uses a very simple EMO algorithm with 
the parent selection scheme based on the roulette wheel, the positive effect (i.e., the 
improvement in the convergence speed) dominates the negative effect (i.e., the decrease in 
the variety of solutions) in our computational experiments. As a result, the selection of 
initial solutions for local search significantly improved the performance of the MOGLS 
algorithm from Table 2 to Table 1 even when the local search probability was very small.  



Table 1. Performance of the MOGLS algorithm with the selection mechanism in the local search part. 

=LSP 0.01 =LSP 0.05 =LSP 0.1 =LSP 1 Test 
Problem k = 1 10 100 k = 1 10 100 k = 1 10 100 k = 1 10 100 

EMO 
Part 

2/20 5.85 5.59 4.92*  6.14 5.67 4.94 6.23 5.97 4.93 5.89 5.75 5.39 42.61 
2/40 22.11 20.65 18.68 21.17 19.27 19.01 20.15 18.50 19.43 18.01* 20.27 26.26 109.76 
2/60 24.46 24.08 20.56 24.10 22.16 20.02*  23.64 21.88 20.89 22.55 23.41 27.69 107.52 
2/80 110.28 89.50 70.67*  96.73 84.41 71.72 97.84 74.52 74.42 83.18 89.79 127.13 610.29 
3/20 8.99 9.13 7.96*  8.96 8.66 8.25 9.05 8.44 8.42 9.45 9.14 9.50 50.06 
3/40 22.07 21.15 20.19*  21.67 21.70 21.30 21.70 21.56 20.86 21.25 22.92 26.51 109.91 
3/60 32.19 30.72 26.84 31.96 29.29 26.82*  30.35 29.00 27.18 30.52 32.23 35.91 130.88 
3/80 36.93 35.00 33.18 35.98 34.93 33.93 34.17 34.91 32.84*  35.83 38.90 47.49 173.60 

 

Table 2. Performance of the MOGLS algorithm without the selection mechanism in the local search part. 

=LSP 0.01 =LSP 0.05 =LSP 0.1 =LSP 1 Test 
Problem k = 1 10 100 k = 1 10 100 k = 1 10 100 k = 1 10 100 

EMO 
Part 

2/20 38.94 22.80 9.89 29.37 19.91 9.21 26.39 19.10 9.29 22.65 12.80 7.33*  42.61 
2/40 100.28 66.53 39.13 80.56 56.47 37.64 67.54 53.76 37.70 47.41 43.64 34.69*  109.76 
2/60 95.33 61.87 35.52 76.88 52.22 34.41 67.90 50.99 33.81*  46.30 41.09 33.97 107.52 
2/80 565.8 390.5 181.3 479.4 338.0 170.3 428.9 305.9 161.6*  277.3 247.7 185.9 610.29 
3/20 45.57 23.25 12.68 34.88 19.53 11.80 27.47 18.43 12.04 17.92 13.38 10.48*  50.06 
3/40 101.15 60.13 32.68*  78.58 52.59 33.08 68.16 49.84 33.50 42.70 40.74 33.20 109.91 
3/60 119.40 73.24 43.84 97.68 65.01 42.29 82.92 62.56 41.95 58.32 53.36 41.12*  130.88 
3/80 161.62 97.92 54.98*  131.53 86.58 55.03 114.66 82.98 55.03 74.79 70.15 59.42 173.60 

 
 
3. Hybrid SPEA and Hybrid NSGA-II 
 
 Since the local search part (i.e., Step 5 of our MOGLS algorithm) is independent of the 
EMO part, it can be combined with other EMO algorithms. In the hybridization with local 
search, we do not have to modify EMO algorithms. When EMO algorithms have a 
secondary population, it is updated after the current population is improved by local search. 
We implemented a hybrid SPEA and a hybrid NSGA-II by replacing the EMO part of the 
MOGLS algorithm with the SPEA and the NSGA-II, respectively. The hybridization was 
implemented in the framework of Fig. 1 (a). In those hybrid EMO algorithms, local search 
was applied to solutions in the primary population (i.e., it was not applied to the secondary 
population) as in the MOGLS algorithm. 
 In the same manner as Table 1, we applied the hybrid SPEA and the hybrid NSGA-II 
to the eight test problems. Average results over 50 independent runs are summarized in 
Table 3 and Table 4. In the computational experiments in Table 3 and Table 4, the selection 
mechanism was used in the local search part as in Table 1. In these tables, boldface shows 
that better results were obtained by the hybrid versions than the non-hybrid EMO 
algorithms. From Table 3, we can see that the performance of the SPEA was improved by 
the hybridization with local search for the two-objective test problems. On the other hand, 
we can see from Table 4 that the performance of the NSGA-II was improved by the 
hybridization for all test problems when the parameter specification was appropriate (e.g., 

=LSP 0.1 and =k 100). It is very interesting to observe that the hybrid SPEA in Table 3 
and the hybrid NSGA-II in Table 4 do not always outperform the MOGLS algorithm while 
their EMO parts clearly outperform the EMO part of our MOGLS algorithm in Table 1. 



Table 3. Performance of the hybrid SPEA with the selection mechanism in the local search part. 

=LSP 0.01 =LSP 0.05 =LSP 0.1 =LSP 1 Test 
Problem k = 1 10 100 k = 1 10 100 k = 1 10 100 k = 1 10 100 

SPEA 

2/20 7.16 7.27 5.22*  6.65 6.73 5.39 7.19 6.72 5.40 6.69 6.46 5.49 6.05 
2/40 17.24 17.60 14.94*  17.14 17.01 16.67 17.11 16.93 18.24 16.83 19.01 26.64 18.01 
2/60 23.63 22.47 21.17*  23.00 23.42 21.59 22.33 23.19 21.27 23.03 24.93 27.45 22.09 
2/80 80.02 76.38 52.84*  80.38 71.04 54.78 76.22 66.85 62.99 76.92 72.87 125.99 81.18 
3/20 8.16 8.01 7.96 8.23 8.40 8.14 7.98 8.42 8.23 8.35 8.62 8.90 7.02*  
3/40 19.17 18.26 19.10 18.90 19.42 19.53 18.74 19.70 19.79 19.41 21.60 25.03 15.81*  
3/60 25.79 24.72 24.32 25.14 24.93 25.45 25.19 26.37 26.35 26.46 30.05 34.55 24.10*  
3/80 32.21 31.91 30.85 31.91 33.12 31.63 31.81 32.99 32.25 33.64 37.02 46.57 28.10*  

 

Table 4. Performance of the hybrid NSGA-II with the selection mechanism in the local search part. 

=LSP 0.01 =LSP 0.05 =LSP 0.1 =LSP 1 Test 
Problem k = 1 10 100 k = 1 10 100 k = 1 10 100 k = 1 10 100 

NSGA- 
II 

2/20 17.21 15.34 13.88 17.90 15.17 9.90 17.29 13.61 8.33 14.52 9.53 5.60*  9.25 
2/40 38.84 38.94 35.72 37.66 36.20 24.65 37.24 34.54 19.83*  33.18 21.23 27.44 21.54 
2/60 28.02 26.70 25.05 27.30 25.05 21.60 26.65 25.10 21.24*  25.80 24.15 28.47 22.04 
2/80 101.69 91.51 81.67 90.49 81.24 70.19 101.34 82.83 68.78*  85.93 81.34 128.42 78.43 
3/20 26.26 26.51 23.42 25.89 24.33 17.82 26.74 23.62 16.01 23.82 15.10 9.63*  21.12 
3/40 44.48 44.56 34.57 44.94 40.14 28.79 44.24 38.83 25.50*  36.96 27.62 26.22 43.26 
3/60 50.07 48.04 36.57 48.89 44.87 31.46 49.47 41.61 29.25*  40.78 33.29 35.48 46.35 
3/80 49.32 46.28 39.98 47.92 43.37 35.25 46.59 41.64 33.68*  41.80 38.41 48.13 44.59 

 
 
 While the performance of the EMO part in the MOGLS algorithm was significantly 
improved by the hybridization, the improvement was not large in Table 3 and Table 4. One 
possible cause of the limited improvement is the negative effect of the selection mechanism 
in the local search part (i.e., the decrease in the variety of solutions). Thus we examined the 
performance of the hybrid SPEA and NSGA-II with no selection mechanism in the local 
search part as in Table 2. Average results are summarized in Table 5 and Table 6. From the 
comparison of Table 5 with Table 3, we can see that the performance of the hybrid SPEA 
for the three-objective problems was improved by removing the selection mechanism while 
the performance for the two-objective problems was deteriorated. This may be because the 
variety of solutions is more important in the three-objective problems with much more 
Pareto-optimal solutions. On the other hand, the performance of the hybrid NSGA-II was 
improved for both the two-objective and three-objective problems in many combinations of 

LSP  and k . Since the NSGA-II does not have a secondary population, the negative effect of 
the decrease in the variety of solutions may be more severe than the SPEA.  
 In the above computational experiments, we always used the scalar fitness function in 
the local search part. We also examined the use of the dominance relation based on the n 
objectives. In this case, a local move to a neighbor was accepted only when the current 
solution was dominated by the neighbor. As in Table 5 and Table 6 (i.e., without the 
selection mechanism in the local search part), we examined the performance of the hybrid 
SPEA and the hybrid NSGA-II with the acceptance criterion of a local move based on the 
dominance relation. Average results are summarized in Table 7 and Table 8. From Table 5 
~ Table 8, we can see that the use of the dominance relation as the acceptance criterion did 
not improve the performance of the hybrid algorithms in our computational experiments.  



Table 5. Performance of the hybrid SPEA without the selection mechanism in the local search part. 

=LSP 0.01 =LSP 0.05 =LSP 0.1 =LSP 1 Test 
Problem k = 1 10 100 k = 1 10 100 k = 1 10 100 k = 1 10 100 

SPEA 

2/20 6.21 5.93* 5.99 6.13 6.48 6.20 6.45 6.59 6.28 6.72 7.59 6.32 6.05 
2/40 17.13* 18.39 19.50 18.77 18.64 22.13 18.78 20.35 23.45 19.82 28.74 30.09 18.01 
2/60 22.56 21.26* 21.75 23.02 22.67 23.70 22.40 24.18 23.96 24.75 29.96 29.56 22.09 
2/80 81.04 76.07* 76.41 76.12 76.29 92.11 79.39 81.12 102.28 87.43 125.00 153.24 81.18 
3/20 6.93* 7.09 7.19 6.98 7.23 8.03 7.18 7.21 8.43 7.33 8.52 9.51 7.02 
3/40 15.86 16.72 20.48 16.54 17.80 22.82 16.19 18.76 23.84 18.90 28.24 29.02 15.81*  
3/60 22.70* 23.23 26.32 23.26 24.42 29.50 24.17 26.77 30.26 26.98 38.94 38.92 24.10 
3/80 27.15 26.72* 32.12 28.20 28.71 36.09 28.44 30.82 38.86 31.79 46.65 53.20 28.10 

 

Table 6. Performance of the hybrid NSGA-II without the selection mechanism in the local search part. 

=LSP 0.01 =LSP 0.05 =LSP 0.1 =LSP 1 Test 
Problem k = 1 10 100 k = 1 10 100 k = 1 10 100 k = 1 10 100 

NSGA- 
II 

2/20 9.37 9.04 8.67 8.63 9.18 7.36 8.80 9.13 7.00 8.96 7.80 6.24*  9.25 
2/40 22.84 20.81 19.94*  21.48 21.37 21.17 21.72 20.94 21.77 20.77 26.85 30.76 21.54 
2/60 21.69 21.88 20.95*  21.55 21.46 22.26 21.93 22.39 23.10 21.74 27.62 30.76 22.04 
2/80 77.69 75.40 74.58 74.27* 75.16 90.20 83.14 81.51 98.04 85.18 128.85 163.79 78.43 
3/20 22.84 21.55 17.03 22.11 19.86 12.20 21.39 17.97 11.48 19.98 11.74 9.44*  21.12 
3/40 44.08 39.83 27.83 43.48 36.26 24.88 45.21 34.37 24.69*  36.31 30.85 29.70 43.26 
3/60 43.01 42.52 30.44 43.78 37.66 30.03*  44.23 37.56 31.14 39.12 39.71 40.29 46.35 
3/80 44.00 42.07 34.61*  43.90 39.59 36.28 43.10 39.76 39.67 39.53 46.91 54.32 44.59 

 

Table 7. Performance of the hybrid SPEA without the selection mechanism in the local search part. The local 
move to a neighbor was accepted only when the current solution was dominated by the neighbor.  

=LSP 0.01 =LSP 0.05 =LSP 0.1 =LSP 1 Test 
Problem k = 1 10 100 k = 1 10 100 k = 1 10 100 k = 1 10 100 

SPEA 

2/20 5.85* 5.93 6.60 6.06 6.07 7.87 6.18 6.95 8.37 7.08 8.60 10.59 6.05 
2/40 17.94 18.04 21.39 18.74 19.85 28.64 17.65* 19.82 31.09 21.14 31.33 46.01 18.01 
2/60 22.10 23.24 25.24 22.69 24.30 28.14 22.12 24.83 30.32 25.43 31.73 42.11 22.09*  
2/80 79.90* 82.41 97.35 82.27 88.03 135.08 80.86 96.36 164.78 96.51 144.53 316.44 81.18 
3/20 7.15 7.18 7.93 7.06 7.32 9.97 7.06 7.69 10.99 7.71 10.12 14.39 7.02*  
3/40 16.27 17.20 19.87 16.35 18.57 26.82 16.28 18.30 29.10 19.50 28.61 39.31 15.81*  
3/60 22.96* 24.73 28.44 23.41 25.12 34.04 23.61 27.40 37.94 28.09 38.87 50.61 24.10 
3/80 27.40 27.26* 33.19 27.65 29.45 40.37 28.27 32.33 45.38 32.33 46.12 65.85 28.10 

 

Table 8. Performance of the hybrid NSGA-II without the selection mechanism in the local search part. The 
local move to a neighbor was accepted only when the current solution was dominated by the neighbor. 

=LSP 0.01 =LSP 0.05 =LSP 0.1 =LSP 1 Test 
Problem k = 1 10 100 k = 1 10 100 k = 1 10 100 k = 1 10 100 

NSGA- 
II 

2/20 9.52 9.30 8.64 8.80 8.52 8.45 9.38 9.00 8.17*  8.98 9.16 10.99 9.25 
2/40 21.74 21.53 21.18 20.08* 20.77 26.45 21.06 22.45 28.76 21.37 27.90 48.46 21.54 
2/60 21.63 21.84 23.28 22.02 22.21 27.53 21.50* 22.41 30.82 23.35 29.59 43.10 22.04 
2/80 82.14 82.02 97.92 75.19* 83.71 150.30 82.15 95.09 194.08 92.72 152.54 322.61 78.43 
3/20 22.44 21.30 20.11 22.45 20.20 15.71 22.08 19.92 13.86 20.71 14.37 13.73*  21.12 
3/40 44.99 42.99 30.49 43.08 37.07 27.56*  42.52 35.37 29.34 35.60 29.99 40.49 43.26 
3/60 45.05 42.41 33.75 45.57 40.07 33.71*  44.07 38.00 36.90 39.76 39.90 52.33 46.35 
3/80 43.59 44.28 36.89*  44.01 42.13 40.87 44.36 40.95 44.64 41.13 45.96 67.95 44.59 



4. Conclusion 
 
 In this paper, we examined how the performance of EMO algorithms can be improved 
by the hybridization with local search. We showed through computational experiments on 
multi-objective permutation flowshop scheduling problems that the performance of the 
EMO part of our MOGLS algorithm was improved by the hybridization with local search 
while the performance of the MOGLS algorithm strongly depended on the choice of the 
parameter values in the local search part (i.e., k and LSP ). We also implemented hybrid 
versions of the SPEA and the NSGA-II. The hybridization with local search improved the 
performance of the SPEA and the NSGA-II when k and LSP  were appropriately specified. 
The best results for the two-objective test problems were obtained by our MOGLS 
algorithm and the hybrid SPEA with the selection mechanism of initial solutions in the 
local search part. On the other hand, the best results for the three-objective test problems 
were obtained by the non-hybrid SPEA and the hybrid SPEA with no selection mechanism 
of initial solutions in the local search part. One potential advantage of hybrid algorithms 
over pure EMO algorithms is the decrease in the CPU time. This is because local search can 
be much more efficiently executed than genetic search in many application problems. 
 This study is partially supported by Japan Society for the Promotion of Science (JSPS) 
through Grand-in-Aid for Scientific Research (B): KAKENHI (14380194). 
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