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Abstract. This paper examines how the search ability of evolutiomanti-objective
optimization (EMO) algorithms can be improved by the Hikation with local
search through computational experiments on multi-objectisaytation flowshop
scheduling problems. The task of EMO algorithms is to findariety of non-
dominated solutions of multi-objective optimization geshs. First we describe our
multi-objective genetic local search (MOGLS) algorithnhjch is the hybridization
of a simple EMO algorithm with local search. Next we déscsome implementation
issues of local search in our MOGLS algorithm such asclivice of initial (i.e.,
starting) solutions for local search and a terminatimmdiion of local search. Then
we implement hybrid EMO algorithms using well-known EM@azithms: SPEA
and NSGA-II. Finally we compare those EMO algorithmshwiteir hybrid versions
through computational experiments. Experimental results shovhinatybridization
with local search can improve the search ability of EMO algorithms when local
search is appropriately implemented in their hybrid versi

1. Introduction

Since Schaffer’'s work [1], evolutionary algorithms héeen applied to various multi-
objective optimization problems for finding their Parefhmal solutions. Evolutionary
algorithms for multi-objective optimization are ofteaferred to as EMO (evolutionary
multi-objective optimization) algorithms. For review tbis field, see [2], [3]. The task of
EMO algorithms is to find Pareto-optimal solutions asynas possible. It is, however,
impractical to try to find true Pareto-optimal solutions lafge-scale combinatorial
optimization problems. Thus non-dominated solutions anex@agnined ones are presented
to decision makers as a result of the search by EMO idlgw:. In this case, EMO
algorithms try to drive populations to true Pareto-optiméitons as close as possible for
obtaining a variety of near Pareto-optimal solutions.

One promising approach for improving the search ability MOEalgorithms to find
near Pareto-optimal solutions is the hybridizationrhwdacal search. The hybridization of
evolutionary algorithms with local search has alrelaglyn investigated in many studies for
single-objective optimization problems [4], [5]. Suchydorid algorithm is often referred to
as memetic algorithms. A hybrid evolutionary algorithm wibtical search for multi-
objective optimization was first implemented in [6]] s a multi-objective genetic local



search (MOGLS) algorithm. Jaszkiewicz [8] improved thefgpgenance of the MOGLS
algorithm by modifying the selection mechanism for choostagent solutions for
crossover in its EMO part. The performance of the MSGllgorithm was also improved
by introducing a selection mechanism into its localdeaart for choosing good solutions
to which local search is applied in each generation [[B}]. Knowles & Corne [11]
combined their Pareto archived evolution strategy (PAES [&2h) a crossover operation
for designing a memetic PAES (M-PAES). In their M-PAE$, Pareto-dominance relation
and the grid-type partition of the multi-dimensional obyec space were used for
determining the acceptance (or rejection) of new salstgenerated in genetic search and
local search. The M-PAES had a special form of gliiitherent in the PAES.

Generic frameworks of hybrid EMO algorithms are shownFig. 1. The two
frameworks in Fig. 1 are the same except for the ordgenétic search and local search.
Genetic operations are first applied to an initial popatain Fig. 1 (a). On the other hand,
genetic operations are applied after an initial populasamproved by local search in Fig.
1 (b). The two frameworks are executed in the same maftegrthe second generation:
the EMO part and the local search part are iteratedirfding Pareto-optimal solutions.
Emphasis is implicitly placed on the local search pafig. 1 (b) while the EMO patrt is
implicitly viewed as the main part in Fig. 1 (a). In th&per, we use the framework in Fig.
1 (a) for describing hybrid EMO algorithms. In Fig. 1 (a), ld@al search part can be also
viewed as a special kind of mutation in EMO algorithms.
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Fig. 1. Two generic frameworks of hybrid EMO algorithrits(a), local search is applied to new solutions
generated by the EMO part. In (b), genetic operatioaspplied to an improved population generated by the
local search part.

In this paper, we first rewrite the MOGLS algorithm ur dormer studies [9], [10] by
introducing a new parameter: local search probabiity. Local search is probabilistically
applied to each solution with the local search proligbiis in our MOGLS algorithm.
Next we discuss some implementation issues of l@zakts in our MOGLS algorithm such
as the choice of initial (i.e., starting) solutions focal search and a termination condition
of local search. In the local search part of our MSGlgorithm, good solutions are
selected from the current population as initial solutifmmdocal search. Then local search
is probabilistically applied to each of the selecteditgmhs. For decreasing the CPU time
spent by local search (i.e., for striking a balanceveen genetic search and local search



[10]), we use an early termination strategy where Iseatch is terminated before finding a
locally optimal solution. The probabilistic applicaticof local search and its early
termination are for preventing a possible negative efféedvaal search: It may cause a
premature convergence to local solutions. Then we ingréerhybrid versions of well-
known EMO algorithms: SPEA (strength Pareto evolutioadggrithm [13]) and NSGA-II
(revised non-dominated sorting genetic algorithm [14]). TRES and the NSGA-II are
combined with local search in the framework shown in Figa). Finally we compare those
EMO algorithms with their hybrid versions through compotai experiments on multi-
objective permutation flowshop scheduling problems.

2. Multi-Objective Genetic Local Search Algorithm

Let us consider the following-objective minimization problem:

Minimize z = (f,(x), f,(x),..., f,(X)), (1)
subject tox O X, (2)

wherez is the objective vectorf;(x) is thei-th objective to be minimized is the decision
vector, andX is the feasible region in the decision space.

The EMO part of our MOGLS algorithm is a simplelthabjective genetic algorithm
with the roulette wheel selection based on a sditlaess function. It has a secondary
population for elitism [15]. As in standard singlbjective genetic algorithms, first an
initial population of Ny, solutions is randomly generated wheg,, is the population
size. Non-dominated solutions in the initial popiola are identified, and a secondary
population is constructed from their copies. Theefss value of each solution in the current
population is evaluated using the following scéitaess function (to be minimized):

f(x) = W Fy (X) + W £,00) + T W, £, (%), ©)

where w; is a normalized non-negative random weight for ithle objective function
f,(X): wy +w, + [+ w, =1 andw; =0 for Ui . A pair of parent solutions is selected from
the current population using the roulette wheed&n scheme with the linear scaling:

_ fmax(l‘p) - f (X)
Ps(x) = , 4
S(X) Z{ fmax( | )_ f(y)} ( )

yow
where Ps(x ) is the selection probability of the solutimn¥’ denotes the current population,
and f. (W) is the largest (i.e., worst) fitness valdi€x) in the current populatiol
under the current weight vectaw = (wy, Wo, ...,W, . )For finding a variety of non-
dominated solutions (i.e., for realizing variousarsé directions in ther-dimensional
objective space), the weight vector is randomlycsjgel whenever a pair of parent
solutions is to be selected. That is, the seleaifogach pair of parent solutions is governed
by a different weight vector. A pre-specified numlzg pairs of parent solutions are
selected in this manner. New solutions are gergtaterossover and mutation in the same
manner as standard single-objective genetic algost Then a pre-specified number of
non-dominated solutions are randomly selected ftbhen secondary population as elite
solutions, and their copies are added to the newherated solutions. In this manner, a
new population is constructed from the solutionsegated by the genetic operations and
the copies of non-dominated solutions randomlycsetefrom the secondary population.




Next the local search part receives the new poipul@generated in the EMO patrt. In
our MOGLS algorithm, an initial (i.e., starting)lstion for local search is selected from the
current population (i.e., population generatedhia EMO part) using the scalar fithess
function in (3) with random weight values. Weiglalues are randomly specified whenever
an initial solution is to be selected for localreda That is, each initial solution is selected
based on a different weight vector. Local searctitfe selected initial solution is governed
by the scalar fitness function with the weight weatsed in its selection. The tournament
selection with the tournament size five is usedum computational experiments for the
selection of an initial solution for local seartlocal search is probabilistically applied to a
copy of the selected initial solution with the lbaarch probabilityP_s. When local
search is not applied, a copy of the selectedalrstolution is added to the next population.
When local search is applied, a neighbor of theerirsolution is randomly selected. If the
neighbor is superior to the current solution wiélspect to the scalar fitness function with
the current weight vector, the current solutiomnsnediately replaced with the neighbor.
That is, we use the hill-climbing algorithm withetlirst improvement strategy in the local
search part instead of the best improvement (steepest hill-climbing) strategy. For
preventing the local search part from spending sinadl the available CPU time, we
restrict the number of successive fails of localvendo k wherek is a user-definable
parameter. This means that local search for theeusolution is terminated when a better
solution is not found amonk neighbors randomly selected from the neighborhafoithe
current solution. Of course, when a better neigldbéound, we can examideneighbors of
the new current solution again. When local seasckeiminated, the current solution is
added to the new population. The selection of @mlsolution from the current population
and the probabilistic application of local searcé geratedNy,, times for generating the
new population withN,, solutions (i.e., for improving the population geated by the
EMO part).

The outline of our MOGLS algorithm can be writenfollows:

MOGLS Algorithm
Step 0) Initialization: Randomly generate an ihpapulation of Ny, solutions.

[EMO Part]

Step 1) Evaluation: Calculate theobjectives for each solution in the current pofoia
Then update the secondary population where nonsaigd solutions are stored
separately from the current population.

Step 2) Selection: Repeat the following procedumesselect (Npop — Neite ) pairs of
parent solutions wherblj is the number of elite solutions.

(a) Randomly specify the weight values, ws, ..., W,.
(b) Select a pair of parent solutions using thdasditness function in (3). The
roulette wheel scheme in (4) is used for the seledf parent solutions.

Step 3) Crossover and mutation: Apply a crossoymration to each of the selected
(Npop — Neiite) pairs of parent solutions. A new solution is gated from each
pair. Then apply a mutation operation to each efgénerated new solutions.

Step 4) Elitist strategy: Randomly selddt;,. solutions from the secondary population.
Then add their copies to theNfo, — Neie ) SOlutions generated in Step 3 to
construct a population dflp,, solutions.

[Local Search Part]
Step 5) Local search: Iterate the following threeps Ny, times. Then replace the



current population witiN o, solutions obtained by the following steps.

(a) Randomly specify the weight values, ws, ..., W,

(b) Select a solution from the current populati@mg tournament selection with
replacement based on the scalar fitness functidB)imvith the current weight
vector specified in (a). A copy of the selectedusoh is used in (c). Thus no
solution is removed from the current population.

(c) Apply local search to a copy of the selecteldtgm using the current weight
vector with the local search probabilis. When local search is applied, the
current solution after local search is includedtie next population. As
mentioned above, local search is terminated whebetter solution is found
amongk neighbors randomly generated from the currenttissluOn the other
hand, when local search is not applied, a copyhe@felected solution in (b) is
added to the next population.

Step 6) Return to Step 1.

This algorithm is terminated when a pre-specifiempging condition is satisfied. In this
paper, we use the number of examined solutionbe@astbpping condition for comparing
different algorithms under the same computatiod.loa

Let us demonstrate how the performance of the EWOrithm can be improved by
the hybridization with local search in our MOGLSg@iithm. As test problems, we
generated eight flowshop scheduling problems insdr@e manner as [7]. The processing
time of each job on each machine was specifiedras@m integer in the interval [1, 99].
The due date of each job was specified by addirgndom integer in the interval [-100,
100] to its actual completion time in a randomlyngeted schedule. All the eight test
problems have 20 machines. Using the number ottbgs ) and the number of job$),
we denote each of the eight test problems/Aswheren=2, 3 andN =20, 40, 60, 80.
Four test problems have two objectives (ires2): to minimize the makespan and to
minimize the maximum tardiness. The other four tpsbblems are three-objective
problems (i.e.n=3) with an additional objective: to minimize theadbflow time.

In our computational experiments of this paper,used the same genetic operations
as [7]: the two-point order crossover and the sbifitnge mutation. The shift change
mutation is the same as the insertion operationowe a randomly selected job and insert it
into another position. The shift change mutatiors &0 used in the local search part for
generating a neighbor from the current solutiomdg]. We used the following parameter
specifications in the EMO part:

Population sizeN,): 60,

Crossover probability: 0.9,

Mutation probability per string: 0.6,

Number of elite solutionsNe ): 10,

Stopping condition: Evaluation of 100,000 sa@os.

Several different specifications were examinediertwo parameterB_ s andk.

A solution set obtained by our MOGLS algorithm wesmluated by the average
normalized distance from each reference solutiag., (iapproximate Pareto-optimal
solution) to the nearest solution in the obtaingldton set. This performance criterion can
measure the proximity of the obtained solutiontgdhe Pareto front and the quality of the
distribution of solutions in the obtained solutiset. The reference solutions were found
from ten independent runs of the MOGLS algorithine SPEA, and the NSGA-II for each



test problem with much longer CPU time (i.e., fimélion solutions were examined in each
run of each algorithm). We compared 30 solutios,sehich were obtained from ten runs
of the three algorithms, with each other for firglimon-dominated solutions. All the non-
dominated solutions were used as reference sofufmmeach test problem. The objective
space of each test problem was normalized so hieaminimum and maximum values of
each objective among the reference solutions beGaanel 100, respectively.

Using the reference solutions of each test probiéimthe normalized objective space,
we evaluated solution sets obtained by the MOGQ8rahm with various specifications of
the two parameters in the local search par:andk. We also evaluated the performance
of the EMO part of the MOGLS algorithm. Averageuies over 50 independent runs are
summarized in Table 1. From this table, we cantbatthe performance of the simple
EMO algorithm was significantly improved by the higization with local search. We can
also see that the performance of our MOGLS algarigirongly depended on the two
parametersk and P_.s. The best result for each test problem in eacle tabindicated by
“*” The best result for each test problem amondaddles in this paper is underlined.

The performance of the MOGLS algorithm is sigmifily deteriorated when we
remove the selection mechanism (i.e., selectiomitiél solutions for local search) from
the local search part. We performed the same catipnal experiments as Table 1 using
the MOGLS algorithm without the selection mechanisrthe local search part. In this case,
local search was probabilistically applied to evemjution in the current population with
the local search probabilitiy s independent of their fithess values. When locatdewas
applied to a solutiorx, the local search direction for (i.e., weight vector in the scalar
fitness function) was specified using the concdpiseudo-weight vector [2]. The pseudo-
weight w; for thei-th objective f; (x )was defined for the solutionas

_ fimax _ fi (X) n fjmax _ fJ (X)
fimax _ fimln j:]- fjmax _ fjmln

L i=12,..n, (5)

where ;™ and f,™" are the maximum and minimum values of ithle objective f;(x) in
the current population, respectively. It shouldnoted that the local search direction for
each initial solution was specified by the weighttor used in the selection of that initial
solution in the MOGLS algorithm with the selectimmechanism in Table 1. Table 2 shows
average results over 50 independent runs of the ME®&gorithm without the selection
mechanism. From the comparison between Table 1Talde 2, we can see that the
performance of the MOGLS algorithm was significgntleteriorated in Table 2 by
removing the selection mechanism. That is, we eartisat the selection of initial solutions
for local search plays a significant role in the @IC5 algorithm. When the local search
probability is very small (e.gR s =0.01), the selection of initial solutions for locaarch
can be viewed as the selection of good solutiomsnfrthe current population for
constructing the next population. The effect of rswselection may be twofold: the
improvement in the convergence speed to Paretosaptolutions and the decrease in the
variety of solutions. Since our MOGLS algorithm sisevery simple EMO algorithm with
the parent selection scheme based on the rouldteelwthe positive effect (i.e., the
improvement in the convergence speed) dominatesdbative effect (i.e., the decrease in
the variety of solutions) in our computational expents. As a result, the selection of
initial solutions for local search significantly proved the performance of the MOGLS
algorithm from Table 2 to Table 1 even when thaleearch probability was very small.



Table 1. Performance of the MOGLS algorithm with $kkection mechanism in the local search part.

Test Rs=0.01 As=0.05 As=0.1 Rs=1 EMO
Problem|k=1 10 100 | k=1 10 100 | k=1 10 100 | k=1 10 100 | Part
2/20 5.85 559 4.9 6.14 5.67 4.94|6.23 597 4.93|5.89 575 5.39| 42.61
2/40 | 22.11 20.65 18.68|21.17 19.27 19.01|20.15 18.50 19.43|18.0F 20.27 26.26| 109.76
2/60 | 24.46 24.08 20.56|24.10 22.16 20.02| 23.64 21.88 20.89|22.55 23.41 27.69| 107.52
2/80 |110.2889.50 70.67| 96.73 84.41 71.72|97.84 74.52 74.42|83.18 89.79127.13 610.29
3/20 8.99 9.13 7.96| 8.96 8.66 8.25| 9.05 8.44 8.42| 9.45 9.14 9.50| 50.06
3/40 | 22.07 21.1520.1%|21.67 21.70 21.30|21.70 21.56 20.86|21.25 22.92 26.51| 109.91
3/60 | 32.1930.72 26.84|31.96 29.29 26.82|30.35 29.00 27.18|30.52 32.23 35.91| 130.88
3/80 | 36.9335.00 33.18|35.98 34.93 33.93|34.17 34.91 32.84|35.83 38.90 47.49| 173.60

Table 2. Performance of the MOGLS algorithm withowt $election mechanism in the local search part.

Test Rs=0.01 As=0.05 As=0.1 Rs=1 EMO
Problem| k=1 10 100 | k=1 10 100 | k=1 10 100 | k=1 10 100 | Part
2/20 | 38.9422.80 9.89(29.37 19.91 9.21|26.39 19.10 9.29|22.65 12.80 7.33| 42.61
2/40 |100.2866.53 39.13|80.56 56.47 37.64|67.54 53.76 37.70|47.41 43.64 34.6%| 109.76
2/60 | 95.3361.87 35.52| 76.88 52.22 34.41|67.90 50.99 33.8%| 46.30 41.09 33.97| 107.52
2/80 | 565.8390.5 181.3|479.4 338.0 170.3|428.9 305.9 161.6|277.3 247.7 185.9| 610.29
3/20 | 45.57 23.25 12.68|34.88 19.53 11.80|27.47 18.43 12.04|17.92 13.38 10.48| 50.06
3/40 |101.1560.13 32.68| 78.58 52.59 33.08|68.16 49.84 33.50|42.70 40.74 33.20| 109.91
3/60 |119.4073.24 43.84|97.68 65.01 42.29|82.92 62.56 41.95|58.32 53.36 41.12| 130.88
3/80 |161.6297.92 54.98(131.5386.58 55.03|114.6682.98 55.03| 74.79 70.15 59.42| 173.60

3. Hybrid SPEA and Hybrid NSGA-I11

Since the local search part (i.e., Step 5 of o0@QUS algorithm) is independent of the
EMO part, it can be combined with other EMO alduris. In the hybridization with local
search, we do not have to modify EMO algorithms.eWHMO algorithms have a
secondary population, it is updated after the etippepulation is improved by local search.
We implemented a hybrid SPEA and a hybrid NSGAyIréplacing the EMO part of the
MOGLS algorithm with the SPEA and the NSGA-II, resfively. The hybridization was
implemented in the framework of Fig. 1 (a). In thdg/brid EMO algorithms, local search
was applied to solutions in the primary populatioe., it was not applied to the secondary
population) as in the MOGLS algorithm.

In the same manner as Table 1, we applied thach@REA and the hybrid NSGA-II
to the eight test problems. Average results oveinBi@pendent runs are summarized in
Table 3 and Table 4. In the computational expertsmenTable 3 and Table 4, the selection
mechanism was used in the local search part aahbiteTL. In these tables, boldface shows
that better results were obtained by the hybridsiees than the non-hybrid EMO
algorithms. From Table 3, we can see that the peegace of the SPEA was improved by
the hybridization with local search for the two-@dijve test problems. On the other hand,
we can see from Table 4 that the performance ofNB&A-II was improved by the
hybridization for all test problems when the partenepecification was appropriate (e.qg.,
Rs=0.1 andk =100). It is very interesting to observe that thérity SPEA in Table 3
and the hybrid NSGA-II in Table 4 do not alwayspmrform the MOGLS algorithm while
their EMO parts clearly outperform the EMO parbof MOGLS algorithm in Table 1.



Table 3. Performance of the hybrid SPEA with thectiele mechanism in the local search part.

Test H_S =0.01 H_S =0.05 H_S =0.1 H_S =1 SPEA
Problem| k=1 10 100 |[k=1 10 100 k=1 10 100 (k=1 10 100
2/20 7.16 7.27 522+ 6.65 6.73 539 | 7.19 6.72 540 |6.69 6.46 549 | 6.05
2/40 |17.24 17.60 14.94*/17.14 17.01 16.67|17.11 16.93 18.24/16.83 19.01 26.64| 18.01
2/60 | 23.6322.4721.17%23.00 23.42 21.59|22.33 23.19 21.27|23.03 24.93 27.45| 22.09
2/80 |80.02 76.38 52.84*|80.38 71.04 54.78|76.22 66.85 62.99|76.92 72.87 125.99 81.18
3/20 8.16 8.01 7.96|8.23 840 8.14|7.98 842 8.23|8.35 862 8.90| 7.0
3/40 | 19.17 18.26 19.10|18.90 19.42 19.53|18.74 19.70 19.79|19.41 21.60 25.03| 15.8F
3/60 | 25.7924.72 24.32|25.14 24.93 25.45|25.19 26.37 26.35|26.46 30.05 34.55| 24.1G
3/80 | 32.2131.91 30.85/31.91 33.12 31.63|31.81 32.99 32.25|33.64 37.02 46.57| 28.10G

Table 4. Performance of the hybrid NSGA-II with tleéestion mechanism in the local search part.

Test Rs=0.01 As=0.05 Rs=0.1 As=1 NSGA-
Problem| k=1 10 100 k=1 10 100 k=1 10 100 k=1 10 100 Il
2/20 17.21 15.34 13.88/17.90 15.17 9.90|17.29 13.61 8.33 |14.52 9.53 5.60* 9.25
2/40 | 38.84 38.94 35.72|37.66 36.20 24.65|37.24 34.54 19.83%| 33.18 21.23 27.44| 21.54
2/60 | 28.02 26.70 25.05|27.30 25.05 21.60|26.65 25.1021.24%| 25.80 24.15 28.47| 22.04
2/80 |101.6991.51 81.67|90.49 81.24 70.19|101.3482.8368.78*| 85.93 81.34128.42 78.43
3/20 | 26.26 26.51 23.42|25.89 24.33 17.82|26.74 23.62 16.01|23.82 15.10 9.63*| 21.12
3/40 | 44.48 44.56 34.57|44.94 40.14 28.79|44.24 38.83 25.50*| 36.96 27.62 26.22| 43.26
3/60 | 50.07 48.04 36.57|48.89 44.87 31.46|49.47 41.61 29.25%|40.78 33.29 35.48| 46.35
3/80 | 49.3246.28 39.98|47.92 43.37 35.25|46.59 41.64 33.68+(41.80 38.41 48.13| 44.59

While the performance of the EMO part in the MOG&l§orithm was significantly
improved by the hybridization, the improvement was large in Table 3 and Table 4. One
possible cause of the limited improvement is thgatige effect of the selection mechanism
in the local search part (i.e., the decrease irvahiety of solutions). Thus we examined the
performance of the hybrid SPEA and NSGA-II with selection mechanism in the local
search part as in Table 2. Average results are suized in Table 5 and Table 6. From the
comparison of Table 5 with Table 3, we can see ttmatperformance of the hybrid SPEA
for the three-objective problems was improved byiaeing the selection mechanism while
the performance for the two-objective problems deteriorated. This may be because the
variety of solutions is more important in the thadgective problems with much more
Pareto-optimal solutions. On the other hand, thopmance of the hybrid NSGA-II was
improved for both the two-objective and three-otiecproblems in many combinations of
Rs andk. Since the NSGA-II does not have a secondary oipul the negative effect of
the decrease in the variety of solutions may beersevere than the SPEA.

In the above computational experiments, we alwesgsl the scalar fitness function in
the local search part. We also examined the usheoflominance relation based on the
objectives. In this case, a local move to a neighlsas accepted only when the current
solution was dominated by the neighbor. As in Tabland Table 6 (i.e., without the
selection mechanism in the local search part), xeenined the performance of the hybrid
SPEA and the hybrid NSGA-II with the acceptancéedan of a local move based on the
dominance relation. Average results are summaiizdable 7 and Table 8. From Table 5
~ Table 8, we can see that the use of the dominaatagon as the acceptance criterion did
not improve the performance of the hybrid algorgshimour computational experiments.



Table 5. Performance of the hybrid SPEA without tHecs®en mechanism in the local search part.

Test H_S =0.01 H_S =0.05 H_S =0.1 H_S =1 SPEA
Problem| k=1 10 100 |[k=1 10 100 k=1 10 100 (k=1 10 100
2/20 6.21 593« 599 | 6.13 6.48 6.20| 6.45 6.59 6.28| 6.72 7.59 6.32| 6.05
2/40 |17.13* 18.39 19.50| 18.77 18.64 22.13|18.78 20.35 23.45|19.82 28.74 30.09| 18.01
2/60 | 22.5621.26* 21.75|23.02 22.67 23.70|22.40 24.18 23.96|24.75 29.96 29.56| 22.09
2/80 |81.04 76.07* 76.41|76.12 76.29 92.11|79.39 81.12 102.2887.43125.00153.24 81.18
3/20 | 693 7.09 7.19|6.98 7.23 803|7.18 7.21 843|7.33 852 951| 7.02
3/40 | 15.86 16.72 20.48|16.54 17.80 22.82|16.19 18.76 23.84|18.90 28.24 29.02| 15.8F
3/60 |22.70* 23.23 26.32|23.26 24.42 29.50|24.17 26.77 30.26|26.98 38.94 38.92| 24.10
3/80 |27.15 26.72* 32.12|28.20 28.71 36.09| 28.44 30.82 38.86|31.79 46.65 53.20| 28.10

Table 6. Performance of the hybrid NSGA-II without #etection mechanism in the local search part.

Test Rs=0.01 As=0.05 Rs=0.1 As=1 NSGA-
Problem| k=1 10 100 k=1 10 100 k=1 10 100 k=1 10 100 Il
2/20 9.37 9.04 867|863 9.18 736|880 913 700|896 780 6.24* 9.25
2/40 | 22.8420.81 19.94%21.48 21.37 21.17|21.72 20.94 21.77|20.77 26.85 30.76| 21.54
2/60 |21.69 21.88 20.95+|21.55 21.46 22.26|21.93 22.39 23.10|21.74 27.62 30.76| 22.04
2/80 |77.69 75.40 74.58|74.27« 75.16 90.20|83.14 81.51 98.04|85.18 128.85163.79 78.43
3/20 | 22.8421.55 17.03|22.11 19.86 12.20|21.39 17.97 11.48|19.98 11.74 9.44*| 21.12
3/40 | 44.0839.83 27.83|43.48 36.26 24.88|45.21 34.37 24.69*|36.31 30.85 29.70| 43.26
3/60 |43.01 42.52 30.44|43.78 37.66 30.03*|44.23 37.56 31.14|39.12 39.71 40.29| 46.35
3/80 |44.00 42.07 34.61*%/43.90 39.59 36.28(43.10 39.76 39.67|39.53 46.91 54.32| 44.59

Table 7. Performance of the hybrid SPEA without tHecs®n mechanism in the local search part. The loca

move to a neighbor was accepted only when the curoautt® was dominated by the neighbor.

Test H_S =0.01 H_S =0.05 H_S =0.1 H_S =1 SPEA
Problem| k=1 10 100 | k=1 10 100 k=1 10 100 (k=1 10 100
2/20 | 5.85- 593 6.60| 6.06 6.07 7.87|6.18 6.95 8.37| 7.08 8.60 10.59| 6.05
2/40 |17.94 18.04 21.39|18.74 19.85 28.64|17.65* 19.82 31.09|21.14 31.33 46.01| 18.01
2/60 | 22.1023.24 25.24|22.69 24.30 28.14|22.12 24.83 30.32|25.43 31.73 42.11| 22.09
2/80 |79.90* 82.41 97.35|82.27 88.03135.0880.86 96.36164.7896.51144.53316.44 81.18
3/20 715 7.18 7.93|7.06 7.32 9.97|7.06 7.69 10.99| 7.71 10.12 14.39| 7.0
3/40 | 16.27 17.20 19.87|16.35 18.57 26.82| 16.28 18.30 29.10| 19.50 28.61 39.31| 15.8F
3/60 |22.96* 24.73 28.44|23.41 25.12 34.04|23.61 27.40 37.94|28.09 38.87 50.61| 24.10
3/80 |27.40 27.26* 33.19|27.65 29.45 40.37|28.27 32.33 45.38|32.33 46.12 65.85| 28.10

Table 8. Performance of the hybrid NSGA-II without #etection mechanism in the local search part. The

local move to a neighbor was accepted only when themrusolution was dominated by the neighbor.

Test Rs=0.01 As=0.05 Rs=0.1 RAs=1 NSGA-
Problem| k=1 10 100 k=1 10 100 k=1 10 100 k=1 10 100 Il
2/20 9.52 9.30 8.64|880 852 845 |9.38 9.00 8.17% 898 9.16 10.99| 9.25
2/40 | 21.7421.53 21.18|20.08* 20.77 26.45(21.06 22.45 28.76|21.37 27.90 48.46| 21.54
2/60 |21.63 21.84 23.28|22.02 22.21 27.53|21.50* 22.41 30.82|23.35 29.59 43.10| 22.04
2/80 | 82.14 82.02 97.92|75.19* 83.71150.3082.15 95.09194.0892.72 152.54322.61 78.43
3/20 | 22.4421.30 20.11|22.45 20.20 15.71(22.08 19.92 13.86|20.71 14.37 13.73*| 21.12
3/40 | 44.9942.99 30.49|43.08 37.07 27.56*|42.52 35.37 29.34|35.60 29.99 40.49| 43.26
3/60 |45.05 42.41 33.75|45.57 40.07 33.71*|44.07 38.00 36.90|39.76 39.90 52.33| 46.35
3/80 |43.59 44.28 36.89*|44.01 42.13 40.87(44.36 40.95 44.64|41.13 45.96 67.95| 44.59




4. Conclusion

In this paper, we examined how the performandeM® algorithms can be improved
by the hybridization with local search. We showkabtigh computational experiments on
multi-objective permutation flowshop scheduling lems that the performance of the
EMO part of our MOGLS algorithm was improved by tigbridization with local search
while the performance of the MOGLS algorithm stigndepended on the choice of the
parameter values in the local search part (keand P.s). We also implemented hybrid
versions of the SPEA and the NSGA-II. The hybritda@a with local search improved the
performance of the SPEA and the NSGA-II wheand P_s were appropriately specified.
The best results for the two-objective test prolslewere obtained by our MOGLS
algorithm and the hybrid SPEA with the selectionchanism of initial solutions in the
local search part. On the other hand, the besttsefeu the three-objective test problems
were obtained by the non-hybrid SPEA and the hyBREEA with no selection mechanism
of initial solutions in the local search part. Quatential advantage of hybrid algorithms
over pure EMO algorithms is the decrease in the @fR¥. This is because local search can
be much more efficiently executed than geneticcker many application problems.

This study is partially supported by Japan Sodetyhe Promotion of Science (JSPS)
through Grand-in-Aid for Scientific Research (B AKENHI (14380194).
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