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ABSTRACT


This paper examines the following issues related to the 


implementation of local search in hybrid multi-objective 


genetic algorithms: specification of an objective function 


to be optimized by local search, early termination of local 


search before finding a locally optimum solution, choice 


of individuals to which local search is applied, and timing 


of the application of local search. These issues are 


examined through computer simulations on a flowshop 


scheduling problem using a hybrid version of a well-


known multi-objective genetic algorithm: the strength 


Pareto evolutionary algorithm (SPEA). Simulation results 


show that the hybridization with local search degrades the 


search ability of the SPEA when the implementation of 


local search is not appropriate. It is also shown that the 


hybridization has the possibility to improve the 


convergence speed of the SPEA to the Pareto front. 


1. INTRODUCTION 


Since Shaffer’s work [1], genetic algorithms have been 


applied to multi-objective optimization problems in many 


studies [2-4]. One approach to the design of multi-


objective genetic algorithms with high search ability is the 


efficient use of non-dominated solutions stored in a 


secondary population separately from the current 


population [5-8]. Another approach is the hybridization 


with local search [9-11]. Hybridization with local search, 


however, often degrades the global search ability of multi-


objective genetic algorithms when the available 


computation time is limited. This is because almost all the 


available computation time is spent by local search. A 


large number of solutions are examined for finding a 


locally optimum solution by local search from each initial 


(i.e., starting) solution generated by genetic operations.


 For decreasing the computation time spent by local 


search, we examined the following two tricks in our 


former studies [12]: Early termination of local search 


before finding locally optimum solutions and the 


restriction on the number of solutions to which local 


search is applied. Local search, which was applied to only 


a few solutions in the current population, was terminated 


before locally optimum solutions were found. We 


demonstrated the importance of finding a good balance 


between local search and genetic search in hybrid multi-


objective genetic algorithms [12]. In addition to these two 


tricks, we also examine the timing of the application of 


local search in this paper. While local search was usually 


applied to solutions in every generation [9-12], its 


application is executed in every T generations in this paper 


where T is a user-definable parameter.  


 When hybrid algorithms are applied to a multi-


objective optimization problem, we have to specify an 


objective function to be optimized by local search. This 


specification is straightforward in the application to a 


single-objective optimization problem because the single 


objective can be used for both genetic search and local 


search. On the other hand, the specification of an objective 


function for local search is not straightforward in the case 


of multi-objective optimization. A weighed sum of 


multiple objectives was often used for local search in 


hybrid multi-objective genetic algorithms [9-12]. In this 


paper, we examine the following six alternatives: 


(a) The weighted sum of multiple objectives with random 


weights. Initial (i.e., starting) solutions for local search 


are randomly selected from the current population.  


(b) The weighted sum of multiple objectives with random 


weights. An appropriate initial solution is selected 


from the current population for each weight vector. 


(c) The weighted sum of multiple objectives with pseudo 


weights [4]. A pseudo-weight vector is specified for 


each of randomly selected initial solutions based on its 







location in the objective space. 


(d) The direct use of the fitness function in the strength


Pareto evolutionary algorithm (SPEA [5]).


(e) Move to a non-dominated neighbor that is not


dominated by the current solution.


(f) Move to a better neighbor that dominates the current


solution.


In the last two alternatives, no objective function is 


explicitly defined. The objective function in (d), which is


defined by the dominance relation in the primary and 


secondary populations, cannot be simply written. 


In this paper, we first examine the above-mentioned


six alternatives in the implementation of local search.


Then we examine the balance between genetic search and


local search using the three tricks: Early termination of


local search, its application to only a limited number of


solutions, and its application to solutions in every T


generations. Simulation results on a flowshop scheduling


problem clearly show that inappropriate hybridization of


the SPEA with local search significantly degrades its 


global search ability to find a variety of non-dominated


solutions. We also show that a hybrid algorithm with a 


good balance between local search and global search can


outperform the non-hybrid SPEA. 


2. OBJECTIVE FUNCTION FOR LOCAL SEARCH 


For simplicity of explanation, let us consider the following


two-objective optimization problem:


Minimize (f  and . (1))1 x )(2 xf


2.1 Weighted Sum with Random Weights 


While we can use many multi-objective genetic


algorithms in the literature to our two-objective


optimization problem, their hybridization with local


search is not straightforward because local search is an


iterative improvement procedure for optimizing a single


objective function. That is, we have to construct a scalar


objective function to be optimized by local search. 


A simple approach to the implementation of local


search for our two-objective problem in (1) is the use of 


the following weighted sum as an objective function.


, (2))()()( 2211 xxx fwfwf


where  and are non-negative weights satisfying the


following relations:
1w 2w
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The specification of the weight vector w


corresponds to that of the local search direction in the two-


dimensional objective space. For finding a variety of non-


dominated solutions, a different weight vector was used


for each solution in [9,10]. In Fig. 1, the weight vector for


each solution is randomly specified.


),( 21 ww


2.2 Selection of Initial Solutions with Random Weights


As we can see in Fig. 1, a randomly specified local search


direction for each solution is not always appropriate. 


Moreover the application of local search to poor solutions


seems to be mere waste of CPU time. For decreasing the


inefficiency of the random weight specification, local


search was applied to only good solutions in our former


study [12] as shown in Fig. 2. In [12], first a local search


direction was randomly specified. Then an initial solution


was selected from the current population using the


tournament selection of the size four with replacement


where the weighted sum in (2) with the current weight


vector is used for evaluating each individual. 
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Current population


Fig. 1  Randomly specified local search directions.
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Fig. 2  Application of local search only to good solutions.


2.3 Use of Pseudo-Weights


In Deb [4], the pseudo-weight w  for the i-th


objective is defined for the current solution x as
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where  and are the maximum and minimum


values of the i-th objective function in the current


population, respectively. The weighted sum in (2) is used


in local search where a pseudo-weight vector is specified


using this formulation for each initial solution randomly


selected from the current population.
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2.4 Direct Use of a Fitness Function


Another approach to the implementation of local


search is the direct use of fitness functions in multi-


objective genetic algorithms. In this paper, we use the


fitness function in the SPEA [5], which is defined by the 


dominance relation among solutions in the primary and


secondary populations. A drawback of this approach is


that longer CPU time is required for evaluating each 


neighbor in local search than the above-mentioned


approaches with the weighted sum of multiple objectives.


2.5 Move to Non-dominated Solutions


For comparison, we examine other alternatives based


on the dominance relation between the current solution


and its neighbors. One implementation of local search is to 


replace the current solution with its neighbor that is not


dominated by the current solution. This approach is 


illustrated in Fig. 3 where the current solution (closed


circle) can be replaced with any neighbor (open circle) in


the shaded region. A drawback of this approach is that the


current solution may be degraded by multiple moves.
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Fig. 3  Move to a non-dominated solution.


2.6 Move to Better Solutions


Another approach is to move to a better neighbor that


dominates the current solution. A drawback of this


approach is that the movable region from the current


solution is very small especially in the case of many


objectives (i.e., in a high-dimensional objective space). 


3. LOCAL SEARCH AND GENETIC SEARCH 


For finding a good balance between local search and 


genetic search, we examine the following three tricks that


can control the CPU time spent by local search. 


3.1 Early termination of local search


In local search of our former studies [9,10,12], a 


neighboring solution was randomly generated from the


current solution. The current solution was replaced with


the generated neighbor if the neighbor was better than the


current solution. When no better solution was found


among randomly generated k neighbors of the current


solution, local search was terminated.


3.2 Restriction on the Number of Initial Solutions


In [12], an initial solution for local search was selected 


from the current population using the tournament selection


based on a randomly specified weight vector. We use the


same idea in the second alternative of the objective


function for local search. In the other alternatives, we


randomly choose a pre-specified number of initial


solutions from the current population. The next population


consists of the improved solutions by local search and the


other solutions in the current population to which local


search is not applied. The number of solutions to which


local search is applied is denoted by N.


3.3 Timing of Local Search 


In this paper, local search is applied to solutions in every T


generations ( T 1 in our former studies [9, 10, 12]).


4. COMPUTER SIMULATIONS 


4.1 Test Problem


As in our former studies [9,10,12], we generated a two-


objective flowshop scheduling problem with 40 jobs and


20 machines. The two objectives are to minimize the


makespan and the maximum tardiness. We used the shift


mutation in local search for generating neighbors of the


current solution. The total number of neighbors for each 


solution is 1521 (i.e., ).3939


4.2 Parameter Specification 


We implemented a hybrid algorithm of the SPEA with


local search where parameter values were specified as







In the above computer simulations, early termination


of local search was realized by the small value of k (i.e.,


5). In Fig. 6, we show simulation results for several


values of k  (i.e., 5,100,1000). The second alternative


of the objective function was used in the computer


simulations. For comparison, we also show simulation


results by the non-hybrid SPEA (i.e., the original SPEA) 


in Fig. 6. From this figure, we can see that much worse


results were obtained from large values of k than the


original SPEA. This means that the search ability of the


SPEA was deteriorated by the hybridization with local


search when we did not use the early termination trick. 


Size of the primary population: 100, 


Size of the secondary population: 100, 


k


k


Crossover rate: 0.9 (two-point order crossover), 


Mutation rate: 0.3 (shift mutation).


We examined several specifications of the parameters in


local search (i.e., k, N and T). The hybrid algorithm was 


terminated when 100,000 solutions were examined.


4.3 Simulation Results 


First we compared the six alternatives for specifying the


objective function to be optimized by local search. The


parameters in local search were specified as k 5, 5


and 1. Non-dominated solutions obtained from five


runs for each alternative are depicted in Fig. 4 and Fig. 5.


From these figures, we can see that slightly better results


were obtained in Fig. 4 with the weighted sum in (2) than


Fig. 5. The average CPU time was about 6 seconds (i.e.,


5.21 ~ 6.88) for the five alternatives except for the direct


use of the fitness function where much longer CPU time


was required (i.e., 17.50 seconds). 


N


T In Fig. 7, we show simulation results for some


combinations of k and N (N: the number of solutions to


which local search is applied in each generation). Good


results could not be obtained when both k and N were


large (also see [12]).
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Fig. 6  Effect of early termination of local search 
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Fig. 7  Effect of the specifications of k and N.


In Fig. 8, we show the effect of the new parameter T


on the performance of the hybrid algorithm. The otherFig. 5  Simulation results by the last three alternatives.







Referencesparameter values were the same as the case of k 5 in Fig.


6. We also show the result of the original SPEA, which


can be viewed as the case of T . This figure shows


that the search ability of the hybrid algorithm can be


improved by appropriately specifying the value of T (i.e.,


the timing of the local search application). We can also 


see from Fig. 8 that slightly better results were obtained


from the hybrid algorithm with T  than the non-hybrid


SPEA with T .
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