Balance between Genetic Search and Local Search in Memetic

Algorithms for Multiobjective Per mutation Flowshop Scheduling

Hisao Ishibuchi* Member, |EEE, Tadashi Yoshida*, and Tadahiko Muratatember, IEEE
* Department of Industrial Engineering, Osaka PrefectUniversity
1-1 Gakuen-cho, Sakai, Osaka 599-8531, Japan
Fax +81-72-254-9915, E-mail: {hisaoi, yossy}@ie.osakafu-u.ac.jp
* Department of Informatics, Faculty of Informatidsansai University
2-1-1 Ryozeniji-cho, Takatsuki, Osaka 569-1095, Japan
Fax +81-72-690-2491, E-mail: murata@res.kutc.kansai-u.ac.jp

Abstract - This paper shows how the performance of evolutionary nhijdtitive
optimization (EMO) algorithms can be improved by the hybriibpatvith local search. The main
positive effect of the hybridization is the improvementhia tonvergence speed to the Pareto-
front. On the other hand, the main negative effect ésitibrease in the computation time per
generation. Thus the number of generations is decreasedtianailable computation time is
limited. As a result, the global search ability of EM@oaithms is not fully utilized. These
positive and negative effects are examined by computationariments on multiobjective
permutation flowshop scheduling problems. Results of our conigehtexperiments clearly
show the importance of striking a balance between geresticts and local search. In this paper,
we first modify our former multiobjective genetic locabsch (MOGLS) algorithm by choosing
only good individuals as initial solutions for local searchl assigning an appropriate local
search direction to each initial solution. Next we demaistihe importance of striking a balance
between genetic search and local search through compatagiqueriments. Then we compare
the modified MOGLS with recently developed EMO algorithi8®EA and NSGA-II. Finally,
we demonstrate that local search can be easily combingd timse EMO algorithms for
designing multiobjective memetic algorithms.

Index Terms - Multiobjective optimization, evolutionary multiobjective apization,

memetic algorithms, genetic local search, permutdlbovshop scheduling.

|. INTRODUCTION

Since Schaffer's study [1], evolutionary algorithms have nbegplied to various

-2-

multiobjective optimization problems for finding their Parefmimal solutions. Evolutionary
algorithms for multiobjective optimization are often ewéd to as EMO (evolutionary
multiobjective optimization) algorithms. For review of tifield, see [2]-[5]. The task of EMO
algorithms is to find Pareto-optimal solutions as many asiple. In early studies on EMO
algorithms (e.g., [6]-[8]), emphasis was mainly placedtton diversity of solutions in order to
find uniformly distributed Pareto-optimal solutions. Thus salveoncepts such as niching,
fitness sharing, and mating restriction were introduicédl EMO algorithms. In recent studies
(e.0., [9]-[13]), emphasis was placed on the convergence $pahe Pareto-front as well as the
diversity of solutions. In those studies, some form ofsefitivas used as an important ingredient
of EMO algorithms. It was shown that the use of d@itimproved the convergence speed to the
Pareto-front [12].

One promising approach for improving the convergence speed toréte-Rant is the use
of local search in EMO algorithms. Hybridization of evaagary algorithms with local search
has already been investigated for single-objective opaiticin problems in many studies (e.g.,
[14], [15]). Such a hybrid algorithm is often referred soeamemetic algorithm. See Moscato [16]
for an introduction to this field and [17]-[19] for recentvdlmpments. The hybridization with
local search for multiobjective optimization was firshplemented in [20], [21] as a
multiobjective genetic local search (MOGLS) algorithm wharascalar fithess function with
random weights was used for the selection of parentghendbcal search for their offspring.
Jaszkiewicz [22] improved the performance of the MOGLS bydifying its selection
mechanism of parents. While his MOGLS still used thdascfitness function with random
weights in selection and local search, it did not usedbkette wheel selection over the entire
population. A pair of parents was randomly selected fropmeaspecified number of the best
solutions with respect to the scalar fitness function i current weights. This selection
scheme can be viewed as a kind of mating restrictiotM@ BRlgorithms. Knowles & Corne [23]
combined their Pareto archived evolution strategy (PAES12]) ith a crossover operation for
designing a memetic PAES (M-PAES). In their M-PAES, Plageto-dominance relation and the
grid-type partition of the objective space were used &erdnining the acceptance (or rejection)
of new solutions generated in genetic search and local sddretM-PAES had a special form of
elitism inherent in the PAES. The performance of the AEE was examined in [24] for
multiobjective knapsack problems and [25] for degree-constraimedtiobjective MST
(minimum-weight spanning tree) problems. In those stuthiesM-PAES was compared with the
PAES, the MOGLS of Jaszkiewicz [22], and an EMO alganitIn the above-mentioned hybrid

EMO algorithms (i.e., multiobjective memetic algorithf@®]-[25]), local search was applied to

-3-

individuals in every generation. In some studies [26], [2€hllsearch was applied to individuals
only in the final generation. While Deb and Goel [26] usedll@earch for decreasing the
number of non-dominated solutions (i.e., for decreasinglithesity of final solutions), Talbi et
al. [27] intended to increase the diversity of final solusi by the application of local search. In
this paper, we apply local search to solutions in everyenerations. Whild is implicitly
assumed a¥ =1 in many computational experiments of this paper as in [20]-{bgr values
of T (e.g.,T =10, 100) are also examined in some computational experiments.

In many combinatorial optimization problems, local seatan be much more efficiently
executed than genetic search. Jaszkiewicz [22] mentibagdbtal search performed almost 300
times more function evaluations per second than genetichsieathe application of his MOGLS
to multiobjective traveling salesperson problems (TSPsk is mainly because local search only

needs the difference in the objective values (é.= f(x) - f(x')) between the current solution
x and its neighboix' instead of the objective valué(x ©Of x'. In the case of TSPs, the
complexity of the calculation oAf is O (1) while that of f (x ')is O(n) wheren is the number

of cities (for details, see [28], [29]). For examplet us consider Fig. 1 where a new tour is
generated by removing the edges (1, 2) and (6nd)aalding the edges (1, 6) and (2, 7). The
difference in the objective values between the twos can be calculated from only those four
edges. On the other hand, when a new tour is giexdlebg genetic operations, we usually have to
consider much more edges for evaluating the new towaddition to the efficient evaluation of

new solutions (i.e., neighbors), they can be muohenefficiently generated in local search than
genetic search. This is because genetic searchtlusss steps (i.e., selection, crossover and

mutation) for generating new solutions while losaérch uses a single step.

Fig. 1 An example of a new tour generated by allsearch operation.

-4-

We use some variants of the MOGLS in [20], [21] daltiobjective permutation flowshop
scheduling. Flowshop is one of the most frequestilylied scheduling problems in the literature
(see [30] for an introduction to this field). Pemation flowshop scheduling is to find an optimal
permutation ofn jobs processed am machines. Thus the size of the search spank idany
objectives have been studied in the literature aglhe makespan, total flow time, maximum
tardiness, and total tardiness. Except for someiapeases (e.g., two-machine flowshop
scheduling for minimizing the makespamymachinen-job permutation flowshop scheduling
problems are\®-hard (see Brucker [31] for the complexity of saedy problems). In flowshop
scheduling, new solutions can be much more effiiegenerated in local search than genetic
search as in the case of TSPs. The evaluation wfsmdutions in local search for flowshop
scheduling, however, is not much faster than gersetrch. This is because the calculation of the
difference in the objective values cannot be edfily performed for commonly used
neighborhood structures. For example, let us censadschedule in Fig. 2 for a three-machine
ten-job problem. From the schedule in Fig. 2, weegate a new schedule in Fig. 3 by the same
local search operation as Fig. 1 for TSPs. We entlsat the completion time of each job is
different between Fig. 2 and Fig. 3 except for fib& job. This means that the recalculation of
the completion time of each job is necessary fatuating a new schedule generated by the local
search operation. Thus the computation time foluaimg a new schedule in local search is the
same order of magnitude as that in genetic se&oh.the use of approximate evaluation of
solutions in scheduling problems in order to spgethe search, see Watson et al. [32] where fast

low-resolution and slow high-resolution simulatiomsre compared with each other.

L
Mif1] 2 | 3 4] 5]6l7] 8] 9 |10
M| [11 2 [ET4lsTelele ©]

M3| 1 'I2I i?li 4 | 5 1 6] 7]8]l9l10]

Fig. 2 An example of a schedule for a three-macten-job problem.

|v|1i1|6|5|4| 3] 2 |71 8] 9]10]
M| s 15 T2 31 7 (3] 8] T 0]

M| [T Te6l 5 [4 [al 2780l [10]

Fig. 3 An example of a new schedule generatethiégame local search operation as Fig. 1.

-5-

In the former MOGLS [20], [21], we used an eadyniination strategy for decreasing the
computation time spent by local search. In thiatetyy, neighbors of the current solution are
examined in a random order. Then the current swius replaced with the first neighbor that is
better than the current solution (i.e., not thet @provement but the first improvement). The
execution of local search was terminated when ritebeolution is found amonk neighbors
randomly generated from the current solution where a user-definable parameter. The same
early termination strategy was used in the M-PAES.[On the other hand, all neighbors were
examined in the MOGLS of Jaszkiewicz [22]. In Knes/land Corne [24], the early termination
strategy was used in Jaszkiewicz’s MOGLS as welthes M-PAES in their computational
experiments on multiobjective knapsack problems.

In this paper, we introduce a local search prdibpbp, 5 to the former MOGLS [20], [21]

for decreasing the computation time spent by Isealch. In the modified MOGLS, local search
is not applied to all solutions in the current plagion but probabilistically applied to selected

solutions with the probabilityp, . We used a different parameth; 5 (i.e., the number of

solutions selected for local search) in our previstudy [33]. While these two parameters have
the same effect on the computation time spent ¢ lsearch, we use the local search probability

p s in this paper because the specification Mfg depends on the population size (e.g.,
N s =50 for the population size 50 has a totally difftreeaning fromN, 5 =50 for the case of

the population size 100). We try to strike a badabetween genetic search and local search using

the two parameter& and p g in local search. We also use another paramétén some

computational experiments where local search ifiepfo solutions in every generations.

This paper is organized as follows. In Sectionvi, briefly describe the former MOGLS [20],
[21] where local search was applied to all soldion every generation. We show that the
performance of the former MOGLS can be improveapplying local search to not all solutions
but only good ones. We also discuss other impleatient issues such as the specification of an
objective function used in local search and thdaghof a neighborhood structure. In Section Ill,
we demonstrate the importance of striking a baldreteveen genetic search and local search.
Through computational experiments with various sjpations of the three parameters in local
search (i.e.k, p s andT), we show positive and negative effects of theriaypation with local

search on the performance of EMO algorithms. We a&samine the necessity of genetic
operations in our MOGLS through computational ekpents with various specifications of the
crossover and mutation probabilities. In Section W compare our MOGLS with the strength
Pareto evolutionary algorithm (SPEA [10]) and thevised non-dominated sorting genetic

-6-

algorithm (NSGA-II [13]). Then we show that locaasch is easily combined with those EMO
algorithms for designing multiobjective memeticalithms. We conclude this paper in Section V
where some topics for future research are alsoestigg)

1. MOGLSALGORITHMS

The outline of our MOGLS can be written in a géméorm as Fig. 4. This figure shows a
basic structure of simple memetic algorithms. Ftnep types of memetic algorithms, see
Krasnogor [34] where taxonomy of memetic algorithmas given using an index numigr Our
MOGLS is aD =4 memetic algorithm in his taxonomy (for detailse §&4]).

Initialization

Initial
populatior

EMO Part

Improvec New
populatior populatior

Local Search Part

Fig. 4 Generic form of our MOGLS.

A. Former MOGLS
We explain the former MOGLS [20], [21] using thalléwing N-objective minimization
problem:

Minimize z = (f;(x), f»(x), ..., fy (X)), 1)
subject tox O X, 2
wherez is the objective vectorx is the decision vector, and is the feasible region in the

decision space.

One issue to be considered in the hybridizatio&BMO algorithms with local search is the

-7-

specification of an objective function to be optied by local search. In the former MOGLS, the
following scalar fitness function to be minimize@swsed in both the selection of parents and the

local search for their offspring.
FO) = wy () +w, fo(x) + L +wy iy (%) - 3)

The weightw;, (w; 20,i=12,...N and};w, =1) was randomly specified whenever a pair of
parents was to be selected. That is, each selestigngoverned by a different weight vector. A
local search procedure was applied to each offgprging the same scalar fitness function (i.e.,
the same weight vector) as in the selection gfatents.

Another issue is the balance between genetic Iseard local search. For decreasing the
computation time spent by local search, only a kmahber of neighbors of the current solution
were examined. It was shown in [21] that the penfonce of the former MOGLS was
deteriorated when all neighbors were examined. fohmer MOGLS used a simple form of
elitism where all non-dominated solutions obtaindsting its execution were stored in a
secondary population separately from the curremujation. A few non-dominated solutions
were randomly selected from the secondary populaial their copies were added to the current

population. The former MOGLS is written as follows:

Step 0) Initialization: Randomly generate an ihpiapulation of N, solutions.

Step 1) Evaluation: Calculate theobjectives for each solution in the current popata Then
update the secondary population where non-dominapidions are stored separately

from the current population.
Step 2) Selection: Repeat the following procedtmeselect (N, — Nejire) PaIrs of parents.
(a) Randomly specify the weights;, w,, ...,wy wherew = Ofor i =12,...,N and
2w =1.
(b) Select a pair of parents based on the scalaess function in (3). The selection
probability ps(x) of each solutiorx in the current populatio® is specified by the
following roulette wheel selection scheme with lihear scaling:

Fmax(*) — F(X)
> (Fra(W) = F(¥)
yow

Ps(x) = 4)

where (¥) is the maximum (i.e., worst) fitness value amoig turrent

population¥ .

-8-

Step 3) Crossover and mutation: Apply a crossovperation to each of the selected

(Npop = Neiie) Pairs of parents with the crossover probabily. A new solution is

generated from each pair. When the crossover operat not applied, one parent is
randomly chosen and handled as a new solution. &pply a mutation operation to each

new solution with the mutation probability,, .

Step 4) Elitist strategy: Randomly selédt;. solutions from the secondary population. Then
add their copies to the N,q, = Ngjire) SOlUtions generated in Step 3 to construct a
population of N, solutions.

Step 5) Local search: Apply a local search procetiieach of théN o, solutions in the current

population using the scalar fitness function in @)r each solution, the weight vector
used in the selection of its parents is also uséalcial search. Only for a solution with no
parents (i.e., solution generated in the initiahayation in Step 0), we use a random
weight vector. Local search is terminated when etieb solution is found amonk
neighbors that are randomly selected from the teidiood of the current solution. After
local search is applied to all solutions in therent population, the current population is
replaced with the improved solutions (i.e., thigoaithm is a Lamarckian multiobjective
memetic algorithm).

Step 6) Return to Step 1.

This algorithm is terminated when a pre-specifietnber of solutions are examined during its
execution. In the local search part (i.e., Stepab)eighbor is randomly generated from the
neighborhood of the current solution. If the neighlis better than the current solution, the
current solution is replaced. That is, the firspiovement strategy is used in the local search part
instead of the best improvement strategy. Whenctireent solution is updated, local search
continues for the new current solution in the samener.

In this algorithm, all non-dominated solutions atered in the secondary population with no
restriction (i.e., no upper bound) on its size.general, the restriction is necessary from the
viewpoint of memory storage and computation time.(esee the SPEA [10]). We use, however,
no restriction because we did not encounter arfjcdifies related to the maintenance of the
secondary population in our computational experimem permutation flowshop scheduling
problems reported in this paper. Of course, theesy e many application fields where the
restriction on the size of the secondary populatarecessary.

Randomly selected\,. solutions from the secondary population in Stepotk as elite

-9-

solutions. It was shown in [21] that the performaraf this algorithm was deteriorated by

specifying the value ofNge as Ngie =0 (i.e., no elitism). It was also shown that the
performance was not sensitive to the valueNgf,. when Ny = 2 In this paper, the value of
Neite IS specified based on preliminary computationglegiments adN;. = 10 (see Subsection

I.C).

B. Modified MOGLS

In the above-mentioned MOGLS, the scalar fitnesgtion in local search for each solution
was specified by the weight vector used in thectiele of its parents. This specification of the
scalar fitness function in local search is not gkvappropriate. Using Fig. 5, we illustrate the
drawback of this specification method. Let us assuhat two solutions andb denoted by
closed circles are selected as parents based @tdle fithess function with the weight vector
w =(0.1, 0.9) for a two-objective minimization probleirhis scalar fithess function is also used
in local search. Since the two objectives in Fighbuld be minimized;-w =(-0.1, — 0.9¢an
be viewed as the local search direction for a nelwtisn generated from the selected parents. In
this paper, the local search direction means trectibn with the steepest improvement of the
objective function in the objective space, which-& = (-w;, ..., —wy) for the scalar fitness
function in (3). When an offspring is generateduaid the parents (e.g., solution A in Fig. 5),
-w =(-01, —0.9) is appropriate as the local search directionterdffspring. On the contrary,
when an offspring is far from its parents (e.gluson B in Fig. 5),-w =(-01, — 0.9)is not
appropriate as its local search direction. As we e from Fig. 5, an appropriate local search
direction for each offspring depends on its loaatio the objective space. For example,
(-09, —0.1) seems to be much more appropriate for the solBighan(-0.1, — 09)as its
local search direction. These discussions sugdestimportance of the specification of an
appropriate local search direction for each offgpraccording to its location in the objective

space.

-10-

o Solution in the current population
fo(X) e Selected parent solution
o Generated new solution

OC

B

o o © j

°
C]ete oo

Desired seart ¢] o
area for B o od

Desired seart

0 area for A f, (X)

Fig. 5 Specification of a local search directiondn offspring.

When the quality of an offspring is very poor (esplution C in Fig. 5), the application of
local search seems to be waste of the computatien Thus local search should be applied to
only good offspring. That is, the choice of offsy;i to which local search is applied, is also
important in the MOGLS.

When two parents are similar to each other (a.gndb in Fig. 5), their offspring are usually
similar to the parents. Thus appropriate initidugons (e.g., A) are likely to be generated from
good parents that are similar to each other. Owtiner hand, when two parents are not similar to
each other (e.gg andd), inappropriate solutions are much more likelfpeogenerated than the
case of similar parents with high fitness valueg.(a andb). These discussions suggest that the
use of parent selection schemes with high selegtiessure may improve the performance of the
former MOGLS with the roulette wheel selection. Isam approach to the modification of the
former MOGLS will be further discussed in lateraiigh computational experiments.

In this subsection, we modify the former MOGLS ibroducing a probabilistic selection
scheme of initial solutions for local search. Fboasing only good offspring and specifying an
appropriate local search direction for each offgprive modify Step 5 of the former MOGLS as

follows:

-11-

Step 5) Local search: Iterate the following thrégps N, times. Then replace the current

population withN,, solutions obtained by the following steps.

(a) Randomly specify the weights;, w,, ...,wy, wherew, = Ofor i =12,....N and
Ziw =1

(b) Select a solution from the current population using touemanselection with
replacement based on the scalar fitness function withutrent weights specified in
(a). A copy of the selected solution is used in (c). Tiusolution is removed from
the current population. In our computational experimentstoimmament size for the
selection of an initial solution for local search is sfpet as five (See Subsection
11.C).

(c) Apply local search to a copy of the selected solutiging the current weights with

the local search probabilitp, 5. The local search procedure is the same as in the

former MOGLS. When local search is applied to a copthefselected solution, the
final solution where local search is terminated is idetliin the next population. On
the other hand, when local search is not applied, a coplyeo$elected solution is

included in the next population.

The basic idea is not to try to specify an appropriateallsearch direction to each solution
but to choose an appropriate solution for a randomly speddid search direction. Moreover

local search is not applied to all the selected solutidres use the local search probabilipyg

for decreasing the number of solutions to which localcbesr applied. Our idea is illustrated in
Fig. 6 where local search is applied to only three solstigs shown in this figure, the proposed
algorithm chooses a good initial solution in Step 5 (b) witdpect to the current local search
direction specified in Step 5 (a). While the local sealicection is randomly specified, the search
is not a random walk because different solutions are chasiiitial solutions for different local
search directions (see Fig. 6). It should be notedtht®aturrent solution does not move to any

dominated neighbors because the weights are specifiegl a8 for i =1,2,...,N in the scalar

fitness function. That is, local search does ngyrage the current solution in the sense of the

Pareto-dominance relation. This issue will be farttiiscussed later.

-12-

f2(X)
N
«© o
(o]
(@] (o]
(o) /O (o) © o
(o] i o
0 > 1,)

Fig. 6 lllustration of the selection of initiallstions for local search.

C. Test Problems and Performance Measures

Before demonstrating how the performance of thenéo MOGLS can be improved by the
modification in its local search part, we explasttproblems and performance measures used in
this paper. In the same manner as in [21], we @géeereightm-machinen-job permutation
flowshop scheduling problems. The processing tifneagh job on each machine was specified
as a random integer in the interval [1, 99]. The date of each job was specified by adding a
random integer in the interval [-100, 100] to itfuml completion time in a randomly generated
schedule. All the eight test problems have 20 nmashi(i.e.,m= 20). Using the number of
objectives N) and the number of job#)(we denote each test problemNis whereN =2, 3
and n=20, 40, 60, 80. Four test problems have two objesti(i.e.,N =2): to minimize the
makespan and the maximum tardiness. The othertdéstiproblems are three-objective problems
(i.e., N =3) with an additional objective: to minimize theatibflow time. Details of each test
problem are available from the first author’s hoag (http://www.ie.osakafu-u.ac.jp/~hisaoi/
ci_lab_e/index.html).

Our three-objective test problems can be writterthie format of Ausiello et al. [35] as

follows (two-objective test problems can be alsitem in the same manner):

INSTANCE njobs {J;, J,, ..., Jo}, mmachines M, M,, ..., M}, an nxm matrix whosei(
j) element is the processing time of tké job on thg-th machine, and amdimensional vector

whosei-th elementd; is the due date of theh job.

SOLUTION: A set of non-dominated solutions with respecthi® given objectives. Each solution

13-

is a permutation of §,, J,, ..., I, }.

OBJECTIVES max{C; |i =12,...,n}, max{max{(C; —d;),0}|i =12,....n}, and ¥.,C; whereC,
is the completion time of thieth job, which is calculated from thexm matrix. All the three-

objectives are to be minimized.

As in [21], we used the two-point crossover in.Figand the insertion mutation in Fig. 8.
The insertion mutation is often referred to asshift mutation in the literature. We also used the
insertion mutation as a local search operationgfarerating a neighbor of the current solution.
The choice of a local search operation will be ussed later through computational experiments.
Good results were reported in [36] where the iisertnutation was used in tabu search for
minimizing the makespan. Good results were als@rted by simulated annealing with the
insertion mutation [37], [38]. Several crossoverd amutation operations were examined in
genetic algorithms for flowshop scheduling problemg39] where good results were obtained
from the combination of the two-point crossover ahd insertion mutation. Moreover, the
simultaneous use of different mutation operatiorith vadaptive mutation probabilities was
examined for two-objective flowshop scheduling peofis in the framework of multiobjective
memetic algorithms in Basseur et al. [40]. See Bagtl] for applications of multiobjective

genetic algorithms to shop scheduling problemauiting flowshop, jobshop and openshop.

Parent . [J1]J2] JZ[J4[JE[J€[37 [IE]IE[I1

T @

Offspring| 31 [J2 | JE | J2 | J4 1 J€] J< |a1(]
Parent : |JE|J Q C|J |JE|

Fig. 7 Two-point crossover.

* % - *
J1[JZz[JE]IZ [J€ [I7] I4] I€] I€ [I1(]
|

] -
(91732 [IE[IE]Iz [Je[I7] 94 3¢ [91(]

Fig. 8 Insertion mutation.

-14-

Next we briefly describe performance measures usdtiis paper for comparing many
solution sets obtained from different algorithmsdifferent parameter specifications. We use
performance measures that are applicable to sinedtes comparison of many solution sets. Let

S; be a solution setj(= 12,...,J). For comparing solution sets §, S, ..., S;), we use several

performance measures because it is impossibledioae all aspects of each solution set using a
single performance measure (see [4], [5], [42faumber of performance measures).

We mainly use a performance measure based onidtance from a reference solution set
(i.e., the Pareto-optimal solution set or a neart®aoptimal solution set) for evaluating the

solution setS; . More specifically, we use the average distanomfeach reference solution to its
nearest solution irB; . This measure was used in Czyzak and Jaszkiew®}zand referred to as

D1y in Knowles and Corne [42]. L&' be the reference solution set. Thé; measure can be

written as

i* > *min{dxy |xOS;}, (5)

DlR (Sj) =
| yOS

whered,, is the distance between a solutioand a reference solutignin the N-dimensional

normalized objective space:

dyy =/(fy ()= f1 ()2 + O+ (F ()= Fr ()2, (6)

where f;" () is thei-th objective that is normalized using the refesesolution setS . We will
explain the normalization of the objective spaderlaThe smaller the value @1z (S;) is, the
better the solution se$; is.

It should be noted that tHe1l; measure in (5) is not the average distance &ach solution
in S; to its nearest reference solution$n, which is referred to as the generation distai®)(
in the literature [4], [5], [42]. While the GD camly evaluate the proximity of the solution set
S; t0 S’, D1g(S;) can evaluate the distribution & as well as the proximity o§; to S’ .
See Czyzak and Jaszkiewicz [43] for characterfistitures of thdD1; measure.

In any multiobjective optimization problem, itiisasonable for the decision maker (DM) to

choose a final single solutiox® from the Pareto-optimal solution set. The findluton x* is
the best solution with respect to the DM’s prefeeenVhen the true Pareto-optimal solution set

-15-

is not given, the DM will choose a final solutionfrom an available solution s& . When S;

is a good approximation of the true Pareto-optis@ution set, the chosen solutianmay be
close to the best solutiaxn” . In this case, the loss due to the choice dfistead ofx* can be
approximately measured by the distance betweemd x” in the objective space. Sinceand

x* are unknown, we cannot directly measure the distdretweerx and x* . The expected
value of the distance, however, can be roughlynedéd by the average value of the distance

from each Pareto-optimal solution to its nearestilable solution. TheDly; measure
corresponds to this approximation. In additionhe D1; measure, we also use the following
performance measures for evaluating the solutibisse

Let S be the union of thel solution sets (i.e.S=S 0I[[0S;). A straightforward
performance measure of the solution Setwith respect to the solution sets is the ratio of
solutions inS; that are not dominated by any other solutionS.ifThis measure is written as

follows:

|S; —{x0S; |[LydS:y < x}|

S)= , 7
Rups(S;) S | ()

wherey < X means that the solutionis dominated by the solution In the numerator of (7),

dominated solutions by other solutiony in Sare removed from the solution s&f. The higher
the ratioRy\ps(S;) is, the better the solution s& is. In some computation experiments of this

paper, we also use the number of obtained solutions|&g|) as a performance measure.

The reference solution s& of each test problem was found using the SPEA [10], the
NSGA-II [13], and our MOGLS (i.e., the modified MOGLS Subsection 11.B). Each algorithm
was applied to each test problem with much longer computtitienand larger memory storage
than the other computational experiments in this paper. Sfmeifically, we used the following
parameter specifications in all the three algorithmdifmting the reference solution set of each

test problem:

Population sizeN y,,): 200,

Crossover probability: 0.9,
Mutation probability per string: 0.6,
Stopping conditions: Evaluation of 5 000 000 solutions.

-16-

In the SPEA, the size of the secondary population was mmeeai$ 200. In our MOGLS, we used

the following parameter specifications:

Number of elite solutionsNgj): 10,

Number of neighbors to be examinéd)(2,
Tournament size in the selection of initial salnsg: 5,

Local search probabilityy 5): 0.8.

The computation load in the search for reference soluti@s 50 times as much as the other
computational experiments in this paper where the stopping conditisrthg evaluation of 100
000 solutions. We used the two-point crossover and the iorsertutation in all the three
algorithms. The insertion mutation was also used in loeatch of our MOGLS. The above
parameter values were specified from preliminary computti@xperiments on the two-
objective 40-job test problem (i.e., 2/40 problem). One thank that the value df is too small.
The effect ofk and p, g on the performance of our MOGLS will be discussed intiGedI|

wherek =2 and p 5 =0.8 are shown to be one of their good combinations. In computhtion

experiments on multiobjective knapsack problems by Knowleanage [24], the value & (i.e.,
|_fails in their notation) was specified as 5 for the M-PAES] and the MOGLS of Jaszkiewicz
[22]. The effect of the other parameters on the performaneach algorithm will be discussed
later in this paper.

We chose only non-dominated solutions as reference solutans3D solution sets obtained
by 10 runs of the three algorithms for each test probleeskibw the obtained reference solution
sets for the two-objective 40-job and 80-job test problerksgn9 (a) and Fig. 9 (b), respectively.
We can observe the existence of a clear tradeoff bettheetwo objectives in each figure. We
can also see that the obtained reference solution seadbrtest problem has a good distribution

(i.e., somewhat similar to a uniform distribution)tbe tradeoff front in the objective space.

-17-

1500

1000

500 e

.
o,
® ocom

Maximum tardiness
3
[4

0 |
3300 3400 3500 3600 3700

Makespan

(a) Two-objective 40-job test problem.

800

700 e

600 e

500 . ¥
[]

400

Maximum tardiness

300

200
5450 5500 5550 5600 5650 5700 5750

Makespan

(b) Two-objective 80-job test problem.

Fig. 9 Reference solutions obtained from the thre©ENgorithms.

The number of the obtained reference solutions for &ssthproblem is summarized in Table
1 for the two-objective problems and Table 2 for the tlolgective problems. In these tables, we
also show the width of the range of each objective wifg(e), f,(x) and f3(x) are the

makespan, the maximum tardiness and the totaltiloe, respectively. The width of the range of

thei-th objective f; [)over the reference solution s8t is defined as

-18-

width (S") = max{f,(y)lydS} - min{ f, (y)lyOS'}. (8)

From the comparison between Table 1 and Table 2cavesee that much more reference
solutions were obtained for the three-objectivebfgms than the two-objective problems. We
can also see that the reference solutions of emtiptoblem locate over the wide range of each
objective except for the case of the two-objecB@egob test problem (i.e., 2/80 in Table 1). In
this case, it seems that the three algorithms didind extreme solutions with very good values
of one objective and poor values of the other dhjec As we have already mentioned, we
applied the three algorithms to each test probl@rtirtes (i.e., 10 runs). In each run, five million
solutions were examined. This means that 150 milBolutions were examined for each test

problem in total. Thus we did not further perfoitme search for reference solutions.

Table 1 The number of obtained reference solufionthe two-objective test problems and the

width of their range for each objective.

Test #of Width of the range
problem solutions f;(x) f5(Xx)

2/20 38 284 834
2/40 44 381 978
2/60 54 473 2632
2/80 28 245 478

Table 2 The number of obtained reference solufionthe three-objective test problems and the
width of their range for each objective.

Test # of Width of the range
problem solutions f;(x) f,(x) f3(x)
3/20 548 351 1032 4115
3/40 580 446 1916 10663
3/60 381 507 3298 19309
3/80 508 463 4262 32105

The objective space of each test problem was rizdbeso that the minimum and maximum
values of each objective among the reference solsitivere 0 and 100, respectively. For example,
the rectangle [3315, 3698]97, 1075] specified by the reference solutiongFig. 9 (a) was

-19-

normalized into the square [0, 160D, 100]. Using the normalized objective space, Efig

measure is calculated.

D. Effect of Modification of the Local Search Part
For examining the effect of the modification oétlocal search part in Subsection 11.B, we
applied the former MOGLS [20], [21] and the modifiMOGLS to the eight test problems using

the following parameter specifications:

Population sizeN y,,): 60,

Stopping conditions: Evaluation of 100 000 sohs.

The other parameter values were the same as thdSebisection I1.C for finding the reference
solution set of each test problem.

Each algorithm was applied to each test problenin@és (i.e., 20 runs) using different initial
populations. Multiple solutions were simultaneousifained from a single run of each algorithm.
In Fig. 10, we show 20 solution sets obtained fieaoh algorithm for the two-objective 40-job
test problem. We can see from Fig. 10 that alltgwig obtained from the former algorithm (i.e.,
open circles) are dominated by many solutions ftbenmodified one (i.e., closed circles). We
can also see that no solutions from the modifigdrethm are dominated by any solutions from
the former one.

For each of 20 runs of the two algorithms for etadt problem, we calculated the ratio of

non-dominated solutions (i.eRypg [X Yor the solution se§: from the former algorithm and
the solution setS,, from the modified one by specifying in (7) asS=SUSy,. Then we
calculated the average valueR{ps [@Yer 20 runs. For all the eight test problems pained
the following average result®yps(Sg) =0 and Ryps(Sy) =1. These results show that all

solutions obtained from the former algorithm weoenthated by solutions from the modified one.
Moreover no solutions from the modified algorithrere dominated by any solutions from the
former one. That is, the modified algorithm cleawlytperformed the former one for all the eight
test problems as visually shown in Fig. 10 fortthe-objective 40-job test problem.

-20-

o Former MOGLS + Modified MOGLS

2500

2000

1500

1000

500

Maximum tardiness

0
3300 3400 3500 3600 3700 3800 3900 4000

Makespan

Fig. 10 Comparison between the former MOGLS awsd nitodified version. All solutions
obtained by 20 runs of each algorithm for the twective 40-job test problem are shown.

In Subsection I1.B, we explained the motivation rieodifying the former MOGLS using Fig.

5. More specifically, we pointed out the possigilithat the genetic operations generate an
inappropriate initial solution for the current wiigzector (e.g., B and C in Fig. 5). For examining
the validity of this motivation, we measured thstaice between two parents of each solution in
the normalized objective space during each of 2t rof the former MOGLS for each test
problem. We also measured the distance betweensehdion and its nearest parent. As we have
already mentioned, we used the roulette wheel eten (4) for parent selection in the former
MOGLS. For comparison, we also examined the usehef tournament selection of the
tournament size 2, 5 and 10 instead of the roulgtieel selection. Moreover, the use of the
random selection from the best 10%, 20% and 50Utisak of the current population was also
examined. Jaszkiewicz [22] used the latter selecaieme for parent selection.

Average results with respect to the distance batve/o parents are summarized in Table 3.
From this table, we can see that the distance leettweo parents was much larger in the case of
the roulette wheel selection than the other selecichemes. This observation means that
dissimilar parents (e.gg andd in Fig. 5) were often selected in the executiorthef former
MOGLS with the roulette wheel selection. The digkinity of parents may be the main cause of
the poor performance of the former MOGLS. When weduthe other selection schemes with
higher selection pressure for parent selectionjlairparents were selected more frequently as
shown in Table 3.

-21-

Table 3 Average distance between two parentsabf salution in the normalized objective space

of each test problem.

Test Roulette Tournament Best solutions
problem wheel 2 5 10 10% 20% 50%
2/20 49.6 15.511.1 3.0 6.9 11.820.4
2/40 47.8 18.08.8 2.0 53 11.520.1
2/60 315 9253 18 3.2 57115
2/80 109.4 22.612.2 3.9 9.8 13.9 31.0
3/20 56.8 13.410.3 4.2 8.8 7.2 23.7
3/40 432 8466 3.0 53 53174
3/60 39.3 6450 24 41 42 14.1
3/80 40.4 58 3.8 20 3.6 34143

Average results with respect to the distance batvweach solution and its nearest parent are
summarized in Table 4. From the comparison betWedate 4 and the second column of Table 3,
we can see that each solution was similar to itgsast parent in all the seven MOGLS variants
for all the eight test problems. This observatiogether with the above-mentioned observation
on Table 3 suggests that good initial solutiong.{€\ in Fig. 5) were often generated from good
parents with high similarity (e.ga andb in Fig. 5) in the six variants with the tournament
selection and the random selection from the bdatisns. Thus we expect that the improvement
of the former MOGLS would be achieved by the usehafse selection schemes for parent

selection.

Table 4 Average distance between each solutiortsungarest parent in the normalized

objective space of each test problem.

Test Roulette Tournament Best solutions
problem wheel 2 5 10 10% 20% 50%
2/20 16.2 23.423.3 21.8 22.7 23.6 22.1
2/40 13.5 22.421.3 20.2 20.6 21.3 21.0
2/60 9.9 12512.6 12.212.4 12.6 12.4
2/80 27.5 52.154.3 52.6 52.6 52.7 52.2
3/20 18.7 21.821.8 20.2 21.1 21.3 22.0
3/40 14.4 13.513.4 12.9 13.4 13.2 14.9
3/60 129 9.7 98 9.4 9.6 9.6 11.8
3/80 13.7 9.6 9.6 9.1 9.7 9.8 11.9

-22-

Average values of th®1; measure are summarized in Table 5 where smallees mean
better solution sets. As expected from Table 3 Badale 4, the six variants with the tournament
selection and the random selection from the bdatisns outperformed its original version with
the roulette wheel selection. More specifically, rakults by the six variants for the eight test
problems in Table 5 are significantly better (ismaller) than the corresponding results by their
original version with the 99% confidence level (Mann-Whitney U test).

Table 5 Performance evaluation of each variathh@former MOGLS using thB1; measure.

Smaller values mean better solution sets.

Test Roulette Tournament Best solutions
problem wheel 2 5 10 10% 20% 50%
2/20 214 6.86.2 69 68 7.3 8.0
2/40 48.5 17.620.5 22.4 20.9 19.6 20.4
2/60 457 21.721.1 21.6 21.3 23.7 24.6
2/80 267.9 72.769.8 72.570.8 72.2 76.9
3/20 174 10.895 9.6 94 11.1 9.6
3/40 41.3 23.624.3 22.8 23.4 26.0 21.5
3/60 58.5 32.133.7 28.1 32.8 32.3 30.1
3/80 70.2 39.541.3 40.6 40.2 42.4 34.9
Average 71.4 28.428.9 29.3 28.2 29.4 28.3

In the same manner as Table 5, we performed catipual experiments using the modified
MOGLS. The tournament selection with the tournansre five was used for selecting initial

solutions for local search in the modified MOGLSvefage values of th®1ly measure are

summarized in Table 6 where the seven variants diifierent selection schemes for parent
selection are compared. It is interesting to nbk the best results were obtained from the
roulette wheel selection in Table 6 on the averéegpecially for the three-objective test

problems) while it was the worst in Table 5. Whée troulette wheel was used for parent
selection, the improvement by the modificationtaf tocal search part from Table 5 to Table 6 is
significant for all the eight test problems withetB9% confidence level (the Mann-Whitney U
test). On the other hand, the same modificationifigntly degraded the performance of the
other six variants for all the four three-objectiest problems with the 99% confidence level. The
deterioration in the performance may be due tonbgative effect of the selection of initial

solutions for local search. When our MOGLS has regaselection scheme with high selection

-23-

pressure, the selection of initial solutions fardbsearch makes the overall selection pressure too
strong. Too strong selection pressure leads toddwease in the diversity of solutions (i.e.,
undesired convergence to a small number of sokitioAs a result, the performance of our
MOGLS with high selection pressure in the parefgc®n was deteriorated by the combination
with high selection pressure in the selection @fahsolutions for local search in computational

experiments on the three-objective test problertis many reference solutions.

Table 6 Performance evaluation of each variath®imodified MOGLS using th®1; measure.

Test Roulette Tournament Best solutions
problem wheel 2 5 10 10% 20% 50%
2/20 60 7583 74 71 75 8.9
2/40 17.8 19.720.6 22.0 18.7 19.4 20.3
2/60 22,9 22.822.8 22.7 23.1 23.5 25.2
2/80 77.3 77.472.1 67.272.1 76.3 82.3
3/20 9.3 14.414.1 13.513.7 15.2 15.8
3/40 21.6 33.933.1 30.5 29.3 32.8 34.6
3/60 29.5 37.539.1 38.5 38.9 39.9 40.8
3/80 35.7 48.148.6 48.9 48.0 51.2 50.7
Average 27.5 32.933.0 32.6 31.4 33.3 34.9

Among the 14 variants of the MOGLS in Table 5 ditble 6, good results were obtained by
seven variants (i.e., the six variants of the forM®GLS with the tournament selection and the
random selection from the best solutions in Tabén8 the modified MOGLS with the roulette
wheel selection in Table 6). Hereafter we mainlg tise modified MOGLS with the roulette
wheel for parent selection (i.e., the second colefihable 6) for examining the balance between
genetic search and local search through computdtierperiments using the local search

probability p, 5. Multiobjective memetic algorithms with no selectischeme of initial solutions

for local search will be examined again in Sectighin the context of the hybridization of

popular EMO algorithms.

E. Choice of a Neighborhood Structure
In the above computational experiments, we usedirthertion mutation as a local search
operation. In this subsection, we examine otheallsearch operations (i.e., other neighborhood

structures): exchange of adjacent two jobs, exomasfgarbitrary two jobs, and exchange of

-24-

arbitrary three jobs. The number of neighbors @& turrent solution (i.e., the size of the
neighborhood structure) is1—1) when we exchange adjacent two jobs fomgob permutation

flowshop scheduling problem. It isC, =n(n— 1)/@nd 2[, C; =n(n-1)(n— 2)/3when we

exchange arbitrary two and three jobs, respectivBhe number of neighbors {s-1)? in the
case of the insertion operation. It should be natatl these four neighborhood structures are not
mutually exclusive. For example, the adjacent talo-gxchange neighbors are included in the
arbitrary two-job exchange and insertion neighbdrse insertion neighbors partially overlap
with the arbitrary two-job and three-job exchangeghbors. Many neighborhood structures were
explained in a more general manner in Krasnogd [34

The performance of the four local search operatiwas compared using tii¥l; measure.
For evaluating each local search operation, theififeddMOGLS with the roulette wheel
selection was applied to each test problem 20 timeshe same manner as the previous
computational experiments. The average value ofDhg measure over 20 runs is shown
together with the standard deviation (in parentkiegeTable 7. We can see from this table that
the best (i.e., smallest) results were obtainethftbe insertion operation for all the eight test
problems.

Table 7 Performance evaluation of each algoritemgitheD1; measure. Standard deviations

are shown in parentheses.

Test Local Search Operation

problem Adjacent Two-job Three-job Insertion
2/20 6.9(1.6) 6.1(1.0) 6.9(1.4) 6.0(1.7)
2/40 26.9 (4.7) 22.4(4.4)28.0 (4.5) 17.8 (3.3)
2/60 28.9 (4.4) 24.7(2.9)27.1(2.9) 22.9 (2.7)
2/80 156.9(24.5)101.1(21.10125.1(14.8) 77.3(13.8)
3/20 11.5(1.8) 10.0(1.1)10.1(2.0) 9.3(1.9)
3/40 26.3 (2.6) 22.6 (2.5)25.4 (3.3) 21.6 (2.7)
3/60 37.8(3.2) 34.1(4.0)35.0 (3.0) 29.5(3.2)
3/80 44.5 (6.8) 38.4 (4.3)41.2 (6.1) 35.7 (4.1)

Average 42.5(6.2) 32.4(5.2)37.3(4.6) 27.5(4.1)

F. Choice of an Acceptance Rulein Local Search
In the local search part of the modified MOGLS #talar fitness function in (3) was used

-25-

for making the decision on the replacement of tlreent solution with its neighbor. That is, the
neighbor was accepted only when it had a betr, §maller) value of the scalar fithess function
than the current solution. It is possible to udgeptacceptance rules in the local search part. In
this subsection, we examine three acceptanceiruéaidition to the scalar fithess function in (3).

One rule is to accept neighbors that are not datadh by the current solution. Let us
consider Fig. 11 where the current solution anahéighbors are denoted by a closed circle (i.e.,
A) and open circles (i.e., B, C, D, E, F and G¥pezxtively. The current solution A can move to
the five neighbors except for G because only Gisidated by A. A drawback of this acceptance
rule is that the current solution can be degradednbltiple moves. For example, the current
solution A can move to the neighbor B, from whible turrent solution can further move to G.
Another acceptance rule is to accept only betteghbers that dominate the current solution. In
this case, the current solution A can move onltheoneighbor D in Fig. 11. A drawback of this
acceptance rule is that the movable area is veajl @specially when the number of objectives is
large.

fa(x)
N

B

° oG

Co A
oF
Do
oE

0 > f1(X)

Fig. 11 lllustration of each acceptance rule.

The other acceptance rule is the use of the pseudo-weigbt {#&c The pseudo-weight;

for thei-th objective is defined for the current solutioas

maX i f'max_f.
. f,(x)/ N f; J(X), i=12....N, ©

I - A A
fimax _ fimln =1 fjmax _ fjmln

-26-

where f;"® and f,™" are the maximum and minimum values of ittle objective in the current

population, respectively. The scalar fithess function with hseudo-weight vector

w = (wy, ..., wy) determined by (9) is used in the third acceptant® Let us assume in Fig. 11
that the arrow shows the weight vectow and the inclined line is orthogonal with this avrdn

this case, the current solution A can move to linee neighbors C, D and E. The determination
of the weight vector by (9) is illustrated in FitR where all solutions in the current population
are shown by open circles. The arrow attached ¢b epen circle shows the weight vectow

for the corresponding solution. From this figures @an see that an appropriate weight vector is
assigned to each solution by (9). Note that eadwain Fig. 12 is not the exact direction of the
move by local search. Since we use the first impnoent strategy for combinatorial optimization
problems with discrete search spaces, the moveday search is not the same as the direction of
the weight vector-w. For example, A in Fig. 11 will move to the firekamined neighbor
among C, D and E. It should be noted that the Isealrch direction specified by the weight
vector —w in the objective space is a totally different ogpicfrom the local search direction in

the continuous decision space (e.g., see Salorddn [4

f5(X)
A
«°
o p ;
PPN,
<P $3
0 > f,(X)

Fig. 12 Pseudo-weight vector.

In the calculation of the pseudo-weight vector dach solution, we need the maximum and
minimum values of each objective over the curresputation. Thus this approach has some

computational overhead. The overhead, however, ois large because the maximum and

-27-

minimum values are calculated just once for theresurpopulation in each generation. The
calculated values are used for all solutions in ¢herent population. Moreover, the pseudo-
weight vector is calculated only for each initialigion of local search (i.e., the pseudo-weight
vector is not updated unless local search restanta a new initial solution). A possible
drawback of this approach is that the distributadnweight vectors directly depends on the
distribution of solutions in the objective spacdw$ the distribution of weight vectors is not
uniform when the distribution of solutions in therent population is not uniform. For example,
similar weight vectors are assigned to many sahgtizvhen they are closely located in the
objective space.

We compared the three acceptance rules using tduified MOGLS with the insertion
neighborhood. The same parameter values as in Sidrsdl.D were used. Since the three
acceptance rules do not have any selection mechaofisnitial solutions, we chose an initial
solution in the same manner as the modified MOGLI&n local search with each acceptance
rule was applied to the selected initial solutiathwthe local search probability. Average results
over 20 runs with each acceptance rule are sumedhiiizTable 8. We also show average results
by the modified MOGLS in the same table. From thisle, we can see that almost the same
results were obtained from the modified MOGLS ahd pseudo-weight approach. This is
because these two approaches are based on thefgpaks function. We can also see that the
performance of the first two approaches based erdtiminance relation were not bad for many
cases while they were outperformed by the otheromges based on the scalar fithess function
for all the eight test problems (small values irb[€a8 mean better solution sets). That is, the
above-mentioned drawbacks of the acceptance ralesdbon the dominance relation were not
clear in Table 8. This is because the valuk @f., the maximum number of examined neighbors
of the current solution) was very small (i.k.= 2). We also performed the same computational

experiments by specifying the value lofand p, g ask =100 andp, 5 =0.02. Average results

over 20 runs are summarized in Table 9. While gesuilts were still obtained from the two
approaches based on the scalar fithess functiothenlast two columns of Table 9, the
performance of the first acceptance rule based fen dominance relation was severely
deteriorated for all the eight test problems aswshin the second column of Table 9. The
drawback of this acceptance rule (i.e., possibterd®@ation of the current solution by multiple
moves) became clear by increasing the valu& of Table 9. The performance of the second
acceptance rule based on the dominance relatien (hove to better solutions) was slightly
deteriorated by increasing the valuekdfom Table 8 to Table 9 (see the third columnhafsie
tables).

-28-

Table 8 Comparison among the four acceptance usieg theD1; measure for the case of

k=2andp.g=0.8.

Test Acceptance Rule

problem Non-D Better Pseudo MOGLS
2/20 6.7 (1.1) 7.2(2.1) 6.4(1.5) 6.0(1.7)
2/40 23.5(2.0) 21.4(3.4)18.3(2.8) 17.8 (3.3)
2/60 28.6 (4.1) 26.0(3.6)23.9 (2.9) 22.9 (2.7)
2/80 116.0(21.0) 91.6(16.582.9(21.3) 77.3(13.8)
3/20 96(1.1) 11.1(1.6) 9.8(1.2) 9.3(1.4)
3/40 30.2 (4.0) 23.3(3.5)23.0(2.3) 21.6 (2.7)
3/60 42.9 (4.2) 32.4 (4.5)30.1 (4.1) 29.5(3.2)
3/80 50.4 (6.0) 38.4 (4.2)36.6 (3.5) 35.7 (4.1)

Average 38.5(5.5) 31.4(4.9)28.9 (5.0) 27.5(4.1)

Table 9 Comparison among the four acceptance usieg theD1; measure for the case of

k =100 andp, 5 =0.02.

Test Acceptance Rule

problem Non-D Better Pseudo MOGLS
2/20 92.1(13.4) 6.8(1.3) 7.3(1.9) 4.4(0.7)
2/40 163.9(15.0) 20.3 (3.1)16.6 (3.9) 19.2 (3.1)
2/60 137.8(13.1) 25.8 (3.3)21.9 (3.4) 20.1(1.6)
2/80 699.6(75.6)101.7(24.3%7.2(12.6) 69.5 (8.8)
3/20 108.7(12.0) 11.5(1.8)10.9(1.9) 7.8(1.0)
3/40 142.2(16.3) 24.6 (2.6)24.4 (2.4) 20.3 (1.9)
3/60 145.3(15.6) 33.4 (4.3)32.3 (3.5) 26.8 (2.7)
3/80 175.0(21.0) 39.5(3.9)38.5 (3.4) 31.2(3.2)

Average 208.1(22.8) 33.0 (5.6)27.4 (4.1) 24.9 (2.9)

[1l. BALANCE BETWEEN GENETIC AND LOCAL SEARCH

In this section, we examine the effect of the hedabetween genetic search and local search
on the search ability of our MOGLS (i.e., the m@ifMOGLS in Subsection II.B). The problem
is how to allocate the available computation timgely between genetic search and local search.
This problem has been studied in the field of srgbjective hybrid (i.e., memetic) algorithms
[45]. For example, Orvosh and David [46] reporthdttthe best results in their computational

experiments were obtained from their memetic atgoriwhen individuals were improved by

-20-

local search with a probability 0.05 (i.e., whee thcal search probabilitp, 5 was specified as
p.s =0.05). Goldberg and Voessner [45] presented a etieal framework for discussing the

balance between genetic search and local search. [#g investigated the following four
guestions for designing efficient memetic algorighior continuous optimization:

(a) How often should local search be applied?

(b) On which solutions should local search be used?

(c) How long should local search be run?

(d) How efficient does local search need to be?

The first and second questions are related toote search probability, 5 and the local search

application intervall while the third question is related to the paramkt(i.e., the maximum
number of examined neighbors of the current satjtim our MOGLS. Hart's study was
extended to the case of combinatorial optimizatignLand [48] where the balance between
genetic search and local search was referred tealocal/global ratio. The balance can be also
adjusted by the use of different neighborhood stings. Krasnogor [34] investigated how to
change the size and the type of neighborhood stegtdynamically in the framework of
multimeme memetic algorithms where each meme halifferent neighborhood structure, a
different acceptance rule and a different numbetecétions of local search.

All the above-mentioned studies investigated takce between local search and genetic
search for single-objective optimization. Since diira of EMO algorithms is not to find a single
final solution but to simultaneously find a variety Pareto-optimal (or near Pareto-optimal)
solutions, an appropriate balance for multiobjectbptimization may be different from the case
of single-objective optimization. For example, theersity of solutions in the final generation is
very important in multiobjective optimization whiteis usually not important in single-objective
optimization. Thus more emphasis should be placedhe maintenance of the diversity of
solutions in each generation in the case of myk&imlve optimization than single-objective
optimization. In this section, we examine the beéabetween local search and genetic search

using the three parameters (ile.,p s andT) in the local search part of our MOGLS. We also
examine the necessity of genetic search using tbesaver probabilityp. and the mutation

probability py, .

A. Effect of Local Search
For examining the effect of local search on therde ability of our MOGLS, we performed

computational experiments using various specificetiof k and p 5. More specifically, we

-30-

examined 132 combinations of 11 valuekdfe., k=1, 2, 4, 6, 8, 10, 20, 40, 60, 80, 100) and
12 values ofp s (i.e., p.g =0, 0.01, 0.02, 0.04, 0.06, 0.08, 0.1, 0.2, 0.4, 0.8, 1.0). Using
each combination of and p, 5, our MOGLS was applied to each test problem 2@gimm the

same manner as Subsection II.D under the sameisgpppndition (i.e., evaluation of 100 000

solutions). The average value of tbdy measure obtained from each combinatiok afd p, g

is shown in Fig. 13 for the two-objective 80-jolsttproblem where shorter bars mean better
solution sets. In this figure, we can observe d&eydirom the left-bottom corner to the right-top
corner in thek - p g plane. That is, good results were obtained fromlanations ok and p, g

that approximately satisfy the relatibrip, g =1~ .1When the value ok[p, 5 was too small
(i.e., the left-top corner), the search in our MCB5Wwas mainly driven by genetic operations.
Thus the search ability of local search was ndizetl well in our MOGLS. On the other hand,
when the value ok[p g was too large (i.e., the right-bottom corner), @mall computation

time was spent by local search. Thus the seardityaifigenetic algorithms was not utilized well.

Fig. 13 Average value of thB1; measure for the two-objective 80-job problenorEr bars
mean better solution sets.

-31-

The best (i.e., smallest) average value of By measure was obtained from the
combination ofk =80 andp ¢ =0.02 as 67.2. The worst average value was obtdioed the
combination ofk =100 andp, g =1 as 125.7. Wherp, g =0, local search was applied to no
solutions. Thus the value &fhas no effect on the performance of our MOGLSHasva by the
flat region corresponding tp, 5 =0 in Fig. 13 (i.e., the top-most row). In this casdes average
value of theD1y measure was 97.8. We further examined solugtsabtained from these three
specifications:(k, p,g) =(80, 0.02), (100, 1) ang, 5 =0. In addition to theD1; measure, we

also calculated the ratio of non-dominated solifre., Ryps(S;)) and the number of obtained
solutions (i.e.,|S; |) for each run of our MOGLS using the three paramaipecifications.

Average results over 20 runs for each parametecifgaion are summarized in Table 10
together with standard deviations (in parenthedeslable 10, we also show the average number
of generations updated by the EMO part. Wken80 andp, 5 =0.02, the average number of
obtained solutions was 12.7. Among those soluti®®6 were not dominated by any other
solutions in each run. The EMO part of our MOGLSswierated for 358 generations on the
average. On the other hand, the EMO part was égrar only a few generations whér= 100

and p_ s =1. In this case, the average number of obtainadtiens was small (i.e., 9.0) and the
guality of each solution was not good. Actuallythlé obtained solutions from this combination
of k and p s were dominated by other solutions (i.e., the ayereatio of non-dominated
solutions was 0 in Table 10). That is, both thesdiity of solutions and the convergence speed to
the Pareto-front were degraded by the use of leagiges ofk and p, g in Table 10. When the

local search probabilityp, s was specified ag, =0, local search was not applied to any

solutions. In this case, the quality of each solutwas not high while the average number of
obtained solutions was large. Actually only 23%ebfained solutions were not dominated by any

other solutions in each run.

-32-

Table 10 Comparison of the three caseqkofp g for)the two-objective 80-job problem.
Average values over 20 runs are shown together stithdard deviations in parentheses. Larger

values of Ryps(S;j) and|S; | mean better solution sets while smaller valuesDaf mean

better solution sets.

Specification of(k, p.s)
(80,0.02) (100,1) ps=0

Dig 67.2 (12.1) 125.7 (9.3) 97.8 (21.1)
Rups(S;) 0.90 (0.22) 0.00 (0.00) 0.23 (0.33)

IS | 12.7 (3.3) 9.0(2.0) 14.44.7)
Generations 358 (38.0) 3.9 (0.3) 1667 (0.0)

Measure

For all the eight test problems, we observed therovement in thé1; measure by the
hybridization with local search when the values kofand p, s were appropriate. We also
observed the negative effect of the hybridizatiothwocal search for all the eight test problems
when bothk and p, g were large (i.e., the right-bottom corner of Fig). The negative effect,
however, was small for small-size test problems.&@ample, we show the average value of the
D1; measure for the two-objective 20-job test probla Fig. 14 where the deterioration in the
D1z measure at the right-bottom corner is not cléae best result in Fig. 14 was obtained from
the combination ok =100 andp, 5 =0.02. In the same manner as Table 10, we compare th
three specifications(k, p,s) =(100, 0.02), (100, 1) ang, 5 =0 in Table 11. From this table, we
can see that the performance deterioration by sleeofi large values &f and p, 5 was small for

the two-objective 20-job test problem (i.e., theyatéve effect of the hybridization with local
search was small). This may be because the nunfbexammined solutions (i.e., 100 000
solutions) during the execution of our MOGLS wagdéarelative to the problem size in the case
of the two-objective 20-job test problem. On théent hand, the positive effect of the

hybridization with local search was still clear &mall-size test problems as shown in Table 11.

-33-

Fig. 14 Average value of thB1; measure for the two-objective 20-job problem.

Table 11 Comparison of the three specificationgkofp, 5) for the two-objective 20-job

problem.

Specification of(k, p g)

Measure
(100, 0.02) (100,1) p,s=0
D1, 4.4 (0.65) 5.4(0.92) 5.8(1.34)
Rups(Sj) 0.68 (0.13) 0.50 (0.17) 0.44 (0.15)
|S; | 22.3(3.2) 19.7(2.4) 21.1(3.4)

Generations 358 (16.5) 9.3 (0.4) 1667 (0.0)

We further examined the positive and negativeceffef the hybridization with local search
for the other test problems using tBdz measure. Average results over 20 runs are suagdar
in Table 12 where standard deviations are showraientheses. In this table, the second column

labeled as “Tuned” shows the results obtained ftioenbest combination &f and p, 5 for each

test problem (e.gk =80 andp, g =0.02 for the 2/80 problem). In this table, we cdiseyve

-34-

both the positive and negative effects in all tightetest problems while their strength depends

on the problem.

Table 12 Effect of the parameter values in thallsearch part on thB1l; measure.

Test Specification of(k, p.s)
problem Tuned (100,1) pg=0

2/20 44(0.7) 5.4(0.9 58(.3
2/40 17.3(3.1) 26.7(1.7) 22.9(5.3)
2/60 19.3(1.8) 27.3(2.5) 23.8(2.6)
2/80 67.2(12.1) 125.7 (9.3) 97.8(21.1)
3/20 7.7(11) 9712 8.7(0.9
3/40 19.6 (2.4) 26.2(3.0) 21.5(2.1)
3/60 25.4(2.9) 35.5(3.1) 31.5(4.6)
3/80 31.2(3.2) 47.1(5.5) 35.8(4.4)

From the above experimental results, one may thilk the negative effect of the
hybridization with local search can be reducedh®yihcrease in computation load. This may be
the case for all test problems. We need, howeveichnmore computation load for large test
problems because the size of the search space entfadly increases with the number of jobs
(i.e., n! for n-job problems). We performed computational expenisevith more computation
load (i.e., evaluation of 500 000 solutions) foe tivo-objective 80-job test problem in the same
manner as Fig. 13. In experimental results, wé shbkerved a clear negative effect of the
hybridization with local search when bdtland p g were large as in Fig. 13.

In the above computational experiments, we adjuite balance between genetic search and
local search using the two parametkr&nd p, 5. We can also adjust the balance by invoking the
local search part ever§y generations (not every generation). When the lsearch part is
invoked, we still use the local search probabilitys. Thus the overall local search probability
can be viewed ap, /T over the whole execution of the MOGLS. The loezrsh application
interval T was implicitly assumed aB =1 in all the above computational experiments.

In the same manner as Fig. 13, we examined 13bioations of p, g andT (i.e., p,g =0,

0.01, 0.02, 0.04, 0.06, 0.08, 0.1, 0.2, 0.4, 0.8, 0.0 andT =1, 2, 4, 6, 8, 10, 20, 40, 60, 80,
100) for the two-objective 80-job problem. The alof k was fixed ask = 80, which was the

-35-

value ofk in the best combination &fand p, g in Fig. 13. While we examined various values of
T, we did not observe any improvement in th&; measure by the specification DfasT >1.

That is, we obtained the best result frdmns 1. We also examined the effectTofor the other test
problems in the same manner. The best results ol@ened fromT =1 for all the eight test
problems. This may be because the selection dalirsblutions for local search plays a very
important role in our MOGLS as shown in Table 5 drable 6. We will further examine the
effect of T in the context of the hybridization of other EM@aithms with local search in
Section IV.

B. Effect of Genetic Search

For examining the effect of the crossover prolitgbb. and the mutation probability,,
on the performance of our MOGLS, we performed camanal experiments using 121
combinations of 11 values g and py (i.e., pc =0.0, 0.1, ..., 1.0 angh,, =0.0, 0.1, ..., 1.0).
When p; =0.0 andp,, =0.0, the evolution is driven by local search anéam®mn. In this case,
our MOGLS can be viewed as a population-based otjéctive local search algorithm. Using
the best parameter values in Fig. 13 for the lsealch part (i.ek =80, p g =0.02 andT =1),
we applied our MOGLS with each combination @ and p,, to the two-objective 80-job test
problem 20 times. The other parameter values wlee dame as the above-mentioned
computational experiments. Average results overu® are summarized in Fig. 15 where the
performance of the MOGLS is evaluated using g, measure as in Fig. 13. From Fig. 15, we
can see that the performance of the MOGLS wassdessitive top: and p,, thank and p, g

(compare Fig. 15 with Fig. 13).

-36-

Fig. 15 Average value of thB1; measure for the two-objective 80-job problenoby
MOGLS with various specifications of the crossopesbability p- and the mutation probability

Pwm -

In Fig. 15, the best (i.e., smallest) average lte81.6 was obtained fronp: =0.9 and
py =0.1 among the 121 combinations jp¢ and p,, . When the crossover probability. was
specified asps =0 (i.e., no crossover: the left-most row of Fig),lthe best average result 68.6
was obtained fronp,, =0.2. On the other hand, the best average res8t\@ds obtained from
pc =1.0 when the mutation probability,, was specified ap,, =0 (i.e., no mutation: the top-
most row). Furthermore, the average result was #2.the case ofp. =0 and p,, =0 (no

genetic search: the left-top corner). These fosesare compared in Table 13. From this table,
we can see that the crossover and the mutatioroiwregrthe search ability of our MOGLS. When
we did not use the genetic operations, the avenag@er of obtained solutions was small (i.e.,
8.2). Moreover, only 26% of them were not dominalbgdother solutions in each run on the
average. In Table 13, the crossover seems to be important than the mutation because better
results were obtained from our MOGLS with only thhessover operation than that with only the

mutation operation.

-37-

Table 13 Comparison of the four cases with resjgettte parameter specifications in genetic

search for the two-objective 80-job test problemrder values oRyps(S;j) and|S; | mean

better solution sets while smaller valuesDif; mean better solution sets.

Specification of (pc, Py)
(0.9,0.1) (0,0.2) (1.0,0) 0, 0)
D1y 61.6(10.5 68.6 (9.6) 63.8(12.0) 72.3(14.9)
Rups(S;) 0.53(0.36 0.28(0.23) 0.52(0.31) 0.26(0.23)
IS | 10.2(3.5 11.0(3.4) 11.1(5.3) 8.2(2.6)
Generations 410(68.4 461(44.9) 443(45.5) 518(40.2)

Measure

In the same manner as Table 13, we further exairtine effect of genetic search for the

other test problems. Experimental results are sumeth in Table 14 using thB1ly; measure
where we used the tuned parameter valués pf 5 andT for each test problem. In this table, the
column labeled as pc, py) shows the best result among the 121 combinatibng: and py,

for each test problem. On the other hand,f},) and (pc, 0) mean the best specification of
py When pc =0 (i.e., no crossover) and the best specificatibnpg when p,, =0 (i.e., no

mutation), respectively. For the results in Talledie examined the statistical significance using
the Mann-Whitney U test for three confidence le8886, 97.5% and 99%. More specifically, we
compared each result in the four columns in Talleolitained from the four variants of our
MOGLS: LS (the population-based multiobjective lossarch algorithm with no genetic
operations whereg. =0 and p,, =0), C (MOGLS with no mutation wherp: > @nd p,, =0),

M (MOGLS with no crossover wherp: =0 and py, > Q and CM (MOGLS with both genetic
operations wherep: > @nd py > 0). We examined the confidence level with which one
algorithm can be viewed as being better than anatigerithm for each test problem based on the
D1; measure. Results are summarized in Table 15ewher B means that the algorithm A
outperforms the algorithm B. In this table, “-” nmsathat the confidence level is less than 95%.
From the fourth column of Table 15, we can see doatMOGLS with both genetic operations
(i.e., CM) significantly outperformed its varianitiv no genetic operations (i.e., LS) for all the
eight test problems. We can also see from thavastolumns of Table 15 that the use of at least
one genetic operation (i.e., C or M) significarittyproved the performance of our MOGLS with
no genetic operations (i.e., LS) for many test [mols. These results suggest that at least one

-38-

genetic operation is necessary in our MOGLS. Theessty of both genetic operations was

clearly shown in the second and third columns dfl@45 for some test problems (e.g., 2/40 and
3/60) while it was not clear for other test probdefe.g., 2/60 and 3/40). Moreover the best result
for the 3/80 test problem was obtained from the @ > 0 and p,, =0 (see Table 14).

Table 14 Comparison of the four cases with resjoettte parameter specifications in genetic
search for each of the eight test problems. Theageevalue of th&1; measure and the

corresponding standard deviation are shown for eash.

Test Specification of (pc, Py)

problem (p.,py) O, py) (Pc.0) (0,0
2/20 44(0.7 46(0.7) 59(11) 85(L7)
2/40 17.3 (3.1 21.8(3.0) 22.2 (4.7) 28.5(5.3)
2/60 19.2 (2.4 19.7 (1.6) 20.4 (2.4) 22.5(2.9)
2/80 61.6(10.5 68.6 (9.6) 63.8(12.0) 72.3(14.9)
3/20 7.4(0.6 7.7(1.0) 8.3(1.0) 11.6 (1.7)
3/40 18.9 (2.5 19.5(2.1) 19.5(2.6) 21.3(2.8)
3/60 29.5 (3.6 39.6 (3.6) 42.7 (3.9) 53.4 (4.7)
3/80 28.2 (3.3 29.6 (4.3) 28.2(3.3) 31.5(3.3)

Table 15 Comparison of the four algorithms basethe results in Table 14. In the first row,
A < B means that the algorithm A outperforms the algoriB.

Test CM CM CM M C
Problem <M <C <LS <LS <LS

2/20 - 99 99 99 99
2/40 99 99 99 99 99
2/60 - - 99 99 97.5
2/80 95 - 99 - 95
3/20 - 99 99 99 99
3/40 - - 99 95 -

3/60 99 99 99 99 99
3/80 - - 99 - 99

-30-

V. COMPARISON WITH OTHER EMO ALGORITHMS

A. Comparison with SPEA and NSGA-I11

We compare our MOGLS with the SPEA [10] and the NSGA-3] through computational
experiments on the eight test problems under the same staupidion (i.e., evaluation of 100
000 solutions). Fair comparison among different algorithmeoiseasy especially when they
involve many parameters. Since different parameter valugsbeappropriate for each of the
three algorithms (i.e., MOGLS, SPEA and NSGA-Il), eeamined 27 combinations of the

following parameter values:
Population sizeN y,,): 30, 60, 120,

Crossover probability-): 0.6, 0.8, 1.0,
Mutation probability per string,): 0.4, 0.6, 0.8.

In the SPEA, the size of the secondary population was mukei$ 60 independent of the size of
the primary population. The values lof p_ g andT tuned in Section Il were used for each test

problem in our MOGLS. We used the two-point crossover gn Fiand the insertion mutation in
Fig. 8 for all the three algorithms. The insertion motatvas also used for local search in our
MOGLS.

Each algorithm was applied to each test problem 20 tiore=ath of the 27 combinations of
the parameter values. Thus 540 solution sets were obtainegdby algorithm for each test
problem. Table 16 summarizes the best, average and whrss vd theD1; measure over those
540 solution sets. From this table, we can see ttl@fperformance of the NSGA-Il strongly
depends on the parameter specifications. Whileethee no large differences in the best results
among the three algorithms except for the resuitshe 2/80 and 3/20 test problems, the worst
results by the NSGA-II are much inferior to thogetbe other algorithms for all the eight test
problems. The worst results by the MOGLS are bettan those by the SPEA for six test
problems except for 3/60 and 3/80. This means tiatperformance of our MOGLS is less
sensitive to the parameter specificationsNgf,,, pc and py, in the EMO part than the SPEA

and the NSGA-II. The best results for the two-otijectest problems in Table 16 were obtained
by our MOGLS on the average while the SPEA was#st for the three-objective test problems.

-40-

Table 16 The best, average and worst values dDilae measure over 540 solution sets obtained

by each algorithm for each test problem.

Test SPEA NSGA-II MOGLS

problem Best Ave. Worst Best Ave. Worst Best Ave. Worst
2/20 29 6.0 125 3.3 12.1 40.8 20 53 94
2/40 7.9 18.3 334 9.1 28.4 76.8 10.7 20.0 31.5

2/60 124 226 34.1 131 28.1 725 13.1 21.3 314
2/80 40.6 84.9 1454 38.0 99.9 220.8 26.4 72.2 116.7
3/20 42 7.7 154 9.0 240 54.1 59 8.1 123
3/40 11.7 17.8 31.5 13.2 45.0 89.6 14.2 20.8 29.0
3/60 15.1 24.8 384 15.6 46.8 80.0 18.2 27.2 38.8
3/80 19.9 28.8 424 21.2 49.8 90.5 20.1 32.2 493

We further examined the performance of each dlgoriusing the best values of the three

parametersN,,, pc and py for each test problem. That is, we chose the petmvalues

from which the best solution set was obtained lyhesgorithm for each test problem in Table
16. Using those parameter values, we applied elydritam to each test problem 20 times.

Experimental results were summarized in Table 1The D1; measure, Table 18 for the ratio of

non-dominated solutions, and Table 19 for the nundbieobtained solutions. We can see from
Table 18 that our MOGLS outperformed the other idtlgms for six test problems in terms of the
ratio of non-dominated solutions. On the other hamat MOGLS was inferior to the other

algorithms in terms of the number of obtained sohg for the two-objective test problems in
Table 19. These results suggest that our MOGLSsteméind fewer solutions with higher quality

than the SPEA and the NSGA-Il (we have similar ltssby the hybridization of the SPEA and
the NSGA-II with local search in the next subsattidAs a result, our MOGLS is comparable to

the other algorithms for many test problems wipeet to theD1; measure in Table 17.

In Table 20, we compare the three algorithmsrimseof the computation time. All the three
algorithms were coded in C and executed on a PiCaientium 4 CPU (2.2 GHz). We used the
same code in the three algorithms for calculativgydbjective functions of each solution. Since
the number of evaluated solutions was used astdppiag condition, the three algorithms spent
the same computation time for solution evaluatidisis the difference in the total computation
time among the three algorithms stemmed from tHéerdnce in their fitness calculation
mechanisms and the generation update mechanismie We SPEA and NSGA-Il used
sophisticated fitness calculation mechanisms basedhe Pareto-dominance relation and the

concept of crowding, our MOGLS used a simple scéitaess function. Moreover, the local

-41-

search operation for generating new solutionsnigpkr than the genetic operations with selection,
crossover and mutation. From Table 20, we can éxpat experimental results may favor our
MOGLS when the three algorithms are compared utidesame computation time instead of the

same number of examined solutions. In Table 21,sthvew the average values of tbd,

measure obtained by each algorithm when the sameuation time was used as the stopping
condition. In computational experiments in Table ti& execution of each algorithm was iterated
for 10 seconds. From this table, we can see th#¢rbesults were obtained from our MOGLS

than the SPEA and the NSGA-Il for seven test problén Table 21 (except for the 2/40

problem).

Table 17 Comparison of the three algorithms utiegD1l; measure (smaller values mean

better solution sets).

Test
oroblem SPEA NSGA-l MOGLS
2/20 5.1 (1.3) 5.8(L.5) 4.6 (L1)
2/40 21.7 (3.7) 15.2 (3.2) 21.3 (4.2)
2/60 19.1 (3.0) 17.8 (1.8) 20.2 (2.7)
2/80 97.3(19.2)71.3(14.7) 60.4(12.2)
3/20 10.8 (1.1) 10.6 (0.9) 8.2 (0.8)
3/40 16.2 (1.9) 20.2 (2.7) 19.2 (2.2)
3/60 24.9 (3.9) 35.9 (6.7) 24.5 (3.3)
3/80 25.9 (2.8) 27.8 (3.4) 29.8 (3.4)

Table 18 Comparison of the three algorithms ustiegatio of non-dominated solutions (larger

values mean better solution sets).

Test
oroblem SPEA NSGA-l MOGLS
220 0.60 (.14) 0.57 (.15) 0.64 (.11)
2/40 0.18 (.23) 0.70 (.29) 0.35 (.24)
2/60 0.37 (.25) 0.42 (.22) 0.56 (.27)
2/80 0.14 (.20) 0.38 (.36) 0.73 (.27)
3/20 0.33 (.14) 0.41 (.14) 0.85 (.10)
3/40 0.60 (.18) 0.48 (.26) 0.64 (.19)
3/60 0.61(.25) 0.21 (.12) 0.78 (.22)
3/80 0.58 (.36) 0.53 (.30) 0.54 (.28)

-42-

Table 19 Comparison of the three algorithms utieghumber of obtained solutions (larger

values mean better solution sets).

Test
oroblem SPEA NSGA-l MOGLS
2120 235 (3.0) 19.6 (2.1) 22.7 (3.0)
2/40 21.8 (3.8) 23.1(2.6) 20.1 (5.4)
2/60 21.5(5.2) 19.9 (4.0) 13.7 (3.7)
2/80 12.0 (4.6) 16.0 (3.7) 11.9 (3.6)
3/20 30.5 (0.8) 48.9 (4.8) 104.9(11.9)
3/40 60.3 (2.1) 59.2 (3.6) 73.8 (14.2)
3/60 61.0 (1.1) 41.5 (5.7) 71.4 (14.6)
3/80 60.6 (1.3) 53.6 (7.8) 53.2 (11.1)

Table 20 Comparison of the three algorithms u#iegcomputation time (seconds).

Test
oroblem SPEA NSGA-l MOGLS
2120 4.6 (0.12) 8.1 (0.02) 3.3 (0.04)
2/40 6.3 (0.05)10.6 (0.03) 7.5 (0.03)
2/60 9.6 (0.23)13.2 (0.05) 7.0 (0.05)
2/80 11.1 (0.10)15.7 (0.04) 9.8 (0.11)
3/20 7.5(0.19) 8.9 (0.06) 4.0 (0.10)
3/40 10.9 (0.78)11.2 (0.02) 5.1 (0.04)
3/60 16.0 (0.97)11.4 (0.04) 8.7 (0.17)
3/80 15.5 (1.11)16.4 (0.04) 9.8 (0.14)

Table 21 Comparison of the three algorithms u#iegD1l; measure under the same

computation time: 10 seconds.

Test
oroblem SPEA NSGA-l MOGLS
2120 4.4 (1.1) 5.7 (1.3) 3.3(1.0)
2140 17.4(2.9) 15.6 (3.1) 19.3 (4.0)
2/60 18.8 (2.9) 19.8 (2.3) 18.4 (3.0)
2/80 101.2(19.1)91.2(16.8) 59.9(12.1)
3/20 11.1(1.2) 10.7 (1.1) 6.3 (1.0)
3/40 16.4 (1.8) 20.6 (2.7) 16.0 (2.1)
3/60 30.2 (4.9) 35.3 (5.1) 23.5 (3.5)
3/80 30.1(3.8) 31.9 (3.5) 29.4 (3.4)

-43-

B. Hybridization of EMO Algorithms

In our MOGLS, the local search direction (i.e.e thveight vector in the scalar fithess
function) for each solution is not inherited frohetEMO part. This means that the local search
part is independent of the EMO part. Thus the Iseakch part can be combined with other EMO
algorithms such as the SPEA and the NSGA-Il. Welemented a hybrid SPEA by combining
the SPEA with the local search part of our MOGLShylrid NSGA-I1 was also implemented in
the same manner. In those hybrid algorithms, theAS&nd the NSGA-II are used as the EMO
part of Fig. 4 with no modifications. The local s#a part is applied to the new population
generated by the EMO part. The improved populaisaturned to the EMO part as the current
population. In the hybrid SPEA, local search is aygplied to the secondary population as in our
MOGLS. The secondary population is updated usimgpifimary population improved by local
search. We also implemented another version (say2)ef hybrid algorithms where the scalar
fitness function was not used for selecting inisalutions for local search. In the Ver.2 hybrid

algorithms, local search is applied to each satutith the local search probability, g

independent of its quality as an initial solutidrhe local search direction of each solution is
specified by the pseudo-weight vector in (9). Aidmidea to the Ver.2 hybrid algorithms has
already been used in Table 5 for avoiding too naatction pressure.

These two versions of the hybrid SPEA and the ilyRNSGA-II were compared with their
non-hybrid versions (i.e., pure EMO algorithms).cEaalgorithm was applied to each test
problem 20 times using the same stopping conditemMaluation of 100 000 solutions. In the
EMO part of each hybrid algorithm, we used the sparameter values as its non-hybrid version
in Tables 17-20. That is, the parameter valuehénEMO part were tuned not for each hybrid
algorithm but for its original pure EMO algorithnm the local search part of each hybrid
algorithm, the best combination &f, p,g andT was chosen for each test problem from their
18 combinations (i.ek =1, 10, 100,p,5 =0.01, 0.1 andl' =1, 10, 100). The average value of
the D1z measure, the average ratio of non-dominatediso&j the average number of obtained
solutions and the average computation time are suined in Tables 22, 23, 24 and 25,
respectively. We examined whether each hybrid #@lyor outperformed its original pure EMO
algorithm for each test problem. When we can confinat a hybrid algorithm outperformed its
non-hybrid version with the 95% confidence level liye Mann-Whithey U test, the
corresponding result by the hybrid algorithm ishiighted by boldface in each table. From Table
22, we can see that the performance of the SPEABISGA-II was significantly improved

for some test problems by the hybridization witbalosearch. Such improvement is also observed

-44-

in Table 23. The difference between the two vessiointhe hybridization was not large for many
test problems in Table 22. On the other hand, tieridization with local search severely
decreased the number of obtained solutions for sesteproblems (i.e., 2/80 and 3/60) while
there exist some counter-examples in Table 24. M@ the hybridization with local search
significantly decreased the computation time fonyngest problems as shown in Table 25. Thus
the experimental results in Table 22 and Table 2B more favor the hybrid algorithms if

computational experiments are performed underah@msomputation time as in Table 21.

Table 22 Average value of tH2l; measure. Each boldface result by a hybrid alyorcan be
viewed as being better than the correspondingtrbguts non-hybrid version with the 95%
confidence level.

Hybrid Pure Hybrid
SPEA NSGA- NSGA-II
Ver.1 Ver.2 |l Ver.1 Ver.2
2/20 51 47 5.0 58 51 51
2/40 21.7 157 196 152 14.6 144
2/60 19.1 184 185 17.8 18.0 175
2/80 97.3 50.5 717 713 605 64.7
3/20 108 96 93 106 9.7 88
3/40 16.2 159 159 20.2 182 182
3/60 249 23.6 23.6 359 288 282
3/80 25.9 26.0 254 278 27.2 27.1

Test Pure
problem SPEA

Table 23 Average ratio of non-dominated solutiéech boldface result by a hybrid algorithm
can be viewed as being better than the corresppmnesult by its non-hybrid version with the
95% confidence level.

Hybrid Pure Hybrid

SPEA NSGA- NSGA-II
Ver.1 Ver.2 |l Ver.1 Ver.2
2/20 0.48 061 0.50 0.50 0.53 0.53
2/40 0.05 034 0.02 0.31 0.39 0.32
2/60 0.24 0.29 0.22 0.25 0.19 0.24
2/80 0.04 053 0.11 0.11 0.32 0.26
3/20 0.23 058 047 0.26 036 0.4
3/40 0.29 039 0.36 0.24 0.31 0.28
3/60 0.42 0.44 0.47 0.18 0.28 0.15
3/80 0.26 0.32 0.34 0.35 0.23 0.22

Test Pure
problem SPEA

-45-

Table 24 Average number of obtained solutions hBsutdface result by a hybrid algorithm can
be viewed as being better than the correspondmgtrey its non-hybrid version with the 95%

confidence level.

Hybrid Pure Hybrid
SPEA NSGA- NSGA-II
Ver.1 Ver.2 |l Ver.1 Ver.2
2/20 23,5 223 232 196 20.3 210
2/40 21.8 23.7 225 231 215 24.2
2/60 21.5 20.7 234 199 20.8 22.0
2/80 12.0 9.7 10.1 16.0 16.5 16.0
3/20 30.5 30.6 30.8 48.9 47.0 53.6
3/40 60.3 60.3 60.8 59.2 56.7 58.7
3/60 61.0 30.8 30.8 415 312 374
3/80 60.6 60.6 59.5 53.6 51.1 53.3

Test Pure
problem SPEA

Table 25 Average computation time (seconds). Batdiface result by a hybrid algorithm can be
viewed as being better than the correspondingtrbguts non-hybrid version with the 95%

confidence level.

Hybrid Pure Hybrid
SPEA NSGA- NSGA-II
Ver.1 Ver.2 |l Ver.1 Ver.2
2120 46 31 43 81 69 40
2/40 6.3 7.3 6.4 106 10.7 10.6
2/60 96 90 9.6 132413211319
2/80 11.1 9.7 110 157 140 136
3/20 75 27 26 89 43 27
3/40 109 95 104 112 114 11.3
3/60 16.0 131 124 114 68 74
3/80 15,5 15.3 155 16.4 16.3 16.3

Test Pure
problem SPEA

In Table 22, the largest improvement was achideedhe 2/80 test problem by the hybrid
SPEA Ver.1 algorithm. Using this algorithm, we exaed the effect of the parametérand p, g
on the performance in the same manner as Fig. 1Sewtion Ill. Experimental results are
summarized in Fig. 16. In this figure, we can olss¢he negative effect of the hybridization with

local search when bothand p g were large (i.e., the right-bottom corner). We aéso observe

the positive effect of the hybridization whé&nand p 5 were appropriately specified. That is,

-46-

smaller values of thé&1; measure were obtained by the hybrid algorithamtthe case of
p.s = 0 with no local search (i.e., the top-most row @. A6). In Fig. 16, the best result 43.8
was obtained whek =60 andp, g =0.02. Usingk =60, we examined the effect gf g andT

on the performance of the hybrid SPEA Ver.1 algponitin the same manner as Fig. 16.
Experimental results are summarized in Fig. 17inASig. 16, we can observe the negative effect
of the hybridization with local search in Fig. 1Thewn p g was large and was small (i.e., the
right-bottom corner). Moreover, we can observe leydrom the left-bottom corner to the right-
top corner in Fig. 16 and Fig. 17 as in Fig. 13by MOGLS in Section IlI.

Fig. 16 Average value of thB1; measure obtained by the hybrid SPEA Ver.1 dlgorusing
various values dk and p, g for the 2/80 test problem.

-47-

Fig. 17 Average value of thB1; measure obtained by the hybrid SPEA Ver.1 dlgorusing

various values ofp, g andT for the 2/80 test problem.

While better results were obtained from the VéwyBrid algorithms than their original pure
EMO versions for all the eight test problems in [Ea®2, the Ver.1 hybrid algorithms did not
always outperform their original versions (i.e.8@/for SPEA and 2/60 for NSGA-II). One
possible reason is the use of the tuned paramelaess for the SPEA and the NSGA-II. In
Subsection IV.A, the best combination was choseritie SPEA and the NSGA-II among 27
combinations of the population si2¢,,, (30, 60, 120), the crossover probabilipy (0.6, 0.8,

1.0) and the mutation probability,, (0.4, 0.6, 0.8). The chosen combination for eabtOE

algorithm was also used for its hybrid versionsTables 22-25. When the best combination
among those 27 combinations was used for each chgbgiorithm, experimental results were
improved for some test problems as shown in Tabléc@mpare Table 26 with Table 22). Even
in Table 26, the Ver.1 hybrid algorithms slightlgtdriorated the performance of their original
pure EMO algorithms (i.e., 3/80 for SPEA and 2/6@ NSGA-II). This may be due to the
negative effect of the selection of initial solutsofor local search. As we have already shown in
Table 3 and Table 4, the proposed selection schafmieitial solutions for local search can
degrade EMO algorithms. It should be noted, howetleat much larger improvement was

-48-

achieved in Table 26 for some test problems (&/0) by the Ver.1 hybridization with the
proposed selection scheme than the Ver.2 hybridizatith no selection of initial solutions. The
Ver.1 hybridization significantly improved the cargence speed to the Pareto-front of the
SPEA in Table 23 for much more test problems thanMer.2 hybridization. On the other hand,
the number of obtained solutions by the Ver.1 iyDISGA-II was smaller than that by the Ver.2
hybrid NSGA-II for seven test problems in Table @kcept for 2/80). These observations
suggest that the proposed selection scheme ddlisitlutions for local search used in the Ver.1
hybridization tends to improve the convergence dpe¢he Pareto-front while it tends to degrade

the diversity of solutions.

Table 26 Average value of tH21l; measure obtained from the tuned parameter vafube
population size, the crossover probability andntimation probability. Each boldface result by a
hybrid algorithm can be viewed as being better tharcorresponding result by its non-hybrid

version with the 95% confidence level.

Hybrid Pure Hybrid
SPEA NSGA- NSGA-II
Ver.1 Ver.2 |l Ver.1 Ver.2
2120 51 45 5.0 58 51 51
2/40 21.7 149 152 152 14.6 144
2/60 19.1 18.3 185 17.8 18.0 175
2/80 97.3 46.0 71.7 713 549 618
3/20 108 82 78 106 93 88
3/40 16.2 15.6 158 20.2 182 182
3/60 249 21.7 220 359 273 27.1
3/80 25.9 26.0 254 278 27.2 27.1

Test Pure
problem SPEA

V. CONCLUSION AND FUTURE RESEARCH

In this paper, first we improved the performandette former MOGLS [20], [21] by
modifying its local search part for choosing onbod individuals from the current population as
initial solutions of local search and for approfeia specifying a local search direction of each
initial solution. Next we examined positive and atdge effects of the hybridization with local
search on the performance of our MOGLS. Then weotisinated the importance of striking a

-49-

balance between genetic search and local searclald&/eexamined the role of genetic search in
our MOGLS. Moreover our MOGLS was compared with 3REA and the NSGA-II. Finally we
demonstrated that the local search part of our MO@Guld be easily combined with other EMO
algorithms such as the SPEA and the NSGA-II. It slamwvn through computational experiments
that the performance of the SPEA and the NSGA-I$ wignificantly improved for some test
problems by the hybridization with local search.wias also shown that the hybridization
significantly decreased the computation time os&hBMO algorithms for many test problems.

The main contribution of this paper is that thgpdmance of striking a balance between
genetic search and local search was clearly demnadedtthrough computational experiments on
multiobjective permutation flowshop scheduling geshs. For adjusting the balance, we used
three parameters that can decrease the numbelutbes examined by local search. The values
of those three parameters were constant duringxbeution of our computational experiments.
Dynamic control of those parameters is a futureaesh topic. Tan et al. [49] proposed an idea of
adjusting the number of solutions examined in losadrch in their multiobjective memetic
algorithm. Many issues related to dynamic parametartrol have already been studied for
single-objective memetic algorithms [34], [47], T4EB0], [51]. Those studies can be extended to
the case of multiobjective memetic algorithms wherare emphasis should be placed on the
diversity of solutions than the case of single-cldye optimization.

The performance evaluation of our MOGLS in thipgrais not complete. We compared our
MOGLS with a population-based multiobjective locdarch (MOLS) algorithm, which was

implemented by specifying the crossover probabifity and the mutation probability,, as
pc =0 and py =0. As summarized in Jaszkiewicz [52], a number @l algorithms have

been proposed in the field of multicriteria deaisimaking such as multiobjective simulated
annealing (MOSA [43], [53]) and multiobjective tabaarch (MOTS [54]). Comparison of our
MOGLS with those MOLS algorithms is a future resbatopic. It is also left for future research
to compare our MOGLS with other multiobjective meimalgorithms such as the MOGLS of
Jaszkiewicz [22] and the M-PAES of Knowles & Cof@8]. Jaszkiewicz [55] compared these
two algorithms with three MOSA algorithms througlongoutational experiments on
multiobjective knapsack problems. He obtained thst vesults from his MOGLS [22] and an
MOSA of Czyzak and Jaszkiewicz [43]. Jaszkiewickl©GLS and the M-PAES were also
compared with each other on multiobjective knapspiblems by Knowles and Corne [24]
where better results were obtained from the M-PA&t® Jaszkiewicz’'s MOGLS.

In our MOGLS, simple hill climbing was used asdbsearch. It is worth examining the use

of other local search algorithms (e.g., simulatedealing and tabu search) in multiobjective

-50-

memetic algorithms. Such a future study will motévais to design adaptive multiobjective
memetic algorithms that can dynamically control badance between genetic search and local
search through the choice of local search algosthmd neighborhood structures in addition to

the adaptation of parameter values in a similarmaato multimeme memetic algorithms [34].

ACKNOWLEDGEMENT

The authors would like to thank the financial sopgrom Japan Society for the Promotion
of Science (JSPS) through Grand-in-Aid for SciégmtResearch (B): KAKENHI (14380194).

Special thanks are due to the anonymous reviewetbdir valuable comments.

REFERENCES

[1] J. D. Schaffer, “Multiple objective optimizatiowith vector evaluated genetic algorithms,”
Proc. of 1st International Conference on Genetic Algorithms and Their Applications, pp. 93-
100, Carnegie-Mellon University, Pittsburgh, Judy26, 1985.

[2] C. A. Coello Coello, “A comprehensive survey ewolutionary-based multiobjective
optimization techniques,Knowledge and Information Systems, vol. 1, no. 3, pp. 269-308,
August 1999.

[3] D. A. Van Veldhuizen and G. B. Lamont, “Multigztive evolutionary algorithms:
Analyzing the state-of-the-art,Evolutionary Computation, vol. 8, no. 2, pp. 125-147,
Summer 2000.

[4] K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms, John Wiley & Sons,
Chichester, 2001.

[5] C. A. Coello Coello, D. A. van Veldhuizen, a@d B. Lamont,Evolutionary Algorithms for
Solving Multi-Objective Problems, Kluwer Academic Publishers, Boston, 2002.

[6] C. M. Fonseca and P. J. Fleming, “Genetic algors for multiobjective optimization:
Formulation, discussion and generalizatioRfoc. of 5th International Conference on
Genetic Algorithms, pp. 416-423, University of lllinois at Urbana-@haaign, July 17-21,
1993.

[7]1 J. Horn, N. Nafpliotis and D. E. Goldberg, “Ached Pareto genetic algorithm for multi-
objective optimization,”Proc. of 1st IEEE International Conference on Evolutionary
Computation, pp. 82-87, Orlando, June 27-29, 1994.

[8] N. Srinivas and K. Deb, “Multiobjective optindtion using nondominated sorting in genetic
algorithms,”Evolutionary Computation, vol. 2, no. 3, pp. 221-248, Fall 1994.

-51-

[9] J. D. Knowles and D. W. Corne, “The Pareto areti evolution strategy: A new baseline
algorithm for Pareto multiobjective optimizatiorB¥oc. of 1999 Congress on Evolutionary
Computation, pp. 98-105, Washington D.C., July 6-9, 1999.

[10]E. zitzler and L. Thiele, “Multiobjective evalionary algorithms: A comparative case study
and the strength Pareto approadEEE Trans. on Evolutionary Computation, vol. 3, no. 4,
pp. 257-271, November 1999.

[11]J. D. Knowles and D. W. Corne, “Approximatinige nondominated front using Pareto
archived evolution strategyEvolutionary Computation, vol. 8, no. 2, pp. 149-172, Summer
2000.

[12] E. Zitzler, K. Deb, and L. Thiele, “Comparisof Multiobjective Evolutionary Algorithms:
Empirical Results, Evolutionary Computation, vol. 8, no. 2, pp. 173-195, Summer 2000.

[13] K. Deb, A. Pratap, S. Agarwal, and T. Meyariy8A fast and elitist multiobjective genetic
algorithm: NSGA-II,”|[EEE Trans. on Evolutionary Computation, vol. 6, no. 2, pp. 182-197,
April 2002.

[14]P. Merz and B. Freisleben, “Genetic local shafor the TSP: New resultsProc. of 4th
IEEE International Conference on Evolutionary Computation, pp. 159-164, Indianapolis,
USA, April 13-16, 1997.

[15] N. Krasnogor and J. Smith, “A memetic alganithvith self-adaptive local search: TSP as a
case study,Proc. of 2000 Genetic and Evolutionary Computation Conference, pp. 987-994,
Las Vegas, July 10-12, 2000.

[16] P. Moscato, “Memetic algorithms: A short irdeaction,” in D. Corne, F. Glover, and M.
Dorigo (eds.)New Ideas in Optimization, McGraw-Hill, pp. 219-234, Maidenhead, 1999.

[17]W. E. Hart, N. Krasnogor, and J. Smith (ed&i)st Workshop on Memetic Algorithms
(WOMA 1), in Proc. of 2000 Genetic and Evolutionary Computation Conference Workshop
Program, pp. 95-130, Las Vegas, July 8, 2000.

[18]W. E. Hart, N. Krasnogor, and J. Smith (edS&sond Workshop on Memetic Algorithms
(WOMA 1), in Proc. of 2001 Genetic and Evolutionary Computation Conference Workshop
Program, pp. 137-179, San Francisco, July 7, 2001.

[19]W. E. Hart, N. Krasnogor, and J. Smith (ed®)pc. of Third Workshop on Memetic
Algorithms (WOMA IIl), Granada, Spain, September 7, 2002.

[20] H. Ishibuchi and T. Murata, “Multi-objectiveegetic local search algorithmProc. of 3rd
IEEE International Conference on Evolutionary Computation, pp. 119-124, Nagoya, Japan,
May 20-22, 1996.

[21]H. Ishibuchi and T. Murata, “A multi-objectivgenetic local search algorithm and its

-52-

application to flowshop scheduling,EEE Trans. on Systems, Man, and Cybernetics - Part
C: Applications and Reviews, vol. 28, no. 3, pp. 392-403, August 1998.

[22] A. Jaszkiewicz, “Genetic local search for rolbjective combinatorial optimization,”
European Journal of Operational Research, vol. 137, no. 1, pp. 50-71, February 2002.

[23]J. D. Knowles and D. W. Corne, “M-PAES: A mdinealgorithm for multiobjective
optimization,” Proc. of 2000 Congress on Evolutionary Computation, pp. 325-332, San
Diego, July 16-19, 2000.

[24]1J. D. Knowles and D. W. Corne, “A comparisoh diverse approaches to memetic
multiobjective combinatorial optimization,Proc. of 2000 Genetic and Evolutionary
Computation Conference Workshop Program, pp. 103-108, Las Vegas, July 8, 2000.

[25]J. D. Knowles and D. W. Corne, “A comparatissessment of memetic, evolutionary, and
constructive algorithms for the multiobjectideMST problem,”Proc. of 2001 Genetic and
Evolutionary Computation Conference Workshop Program, pp. 162-167, San Francisco,
July 7, 2001.

[26] K. Deb and T. Goel, “A hybrid multi-objectivevolutionary approach to engineering shape
design,” Proc. of 1st International Conference on Evolutionary Multi-Criterion
Optimization, pp. 385-399, Zurich, Switzerland, March 7-9, 2001

[27] E. Talbi, M. Rahoual, M. H. Mabed, and C. Dheaes, “A hybrid evolutionary approach for
multicriteria optimization problems: Application tehe flow shop,” Proc. of 1st
International Conference on Evolutionary Multi-Criterion Optimization, pp. 416-428,
Zurich, Switzerland, March 7-9, 2001.

[28] P. Merz, “On the performance of memetic algoris in combinatorial optimizationProc.
of 2001 Genetic and Evolutionary computation Conference Workshop Program, pp.168-173,
San Francisco, July 7, 2001.

[29] P. Merz, “Memetic algorithms for combinatoriaptimization problems: Fitness landscape
and effective search strategy,” Ph. D. Thesis, &isity of Siegen, December 2000.

[30]R. A. Dudek, S. S. Panwalkar, and M. L. Smitfihe lessons of flowshop scheduling
research, Operations Research, vol. 40, no. 1, pp. 7-13, January/February 1992.

[31] P. Brucker Scheduling Algorithms, Springer, Berlin, 1998.

[32]J. P. Watson, S. Rana, L. D. Whitley, and A. Howe, “The impact of approximate
evaluation on the performance of search algoritfonsvarehouse schedulingJournal of
Scheduling, vol. 2, no. 2, pp. 79-98, March/April 1999.

[33]H. Ishibuchi, T. Yoshida, and T. Murata, “Batse between genetic search and local search

in hybrid evolutionary multi-criterion optimizatioalgorithms,”Proc. of 2002 Genetic and

-53-

Evolutionary Computation Conference, pp. 1301-1308, New York, July 9-13, 2002.

[34]N. Krasnogor, “Studies on the theory and des$pace of memetic algorithms,” Ph. D.
Thesis, University of the West of England, Bristhine 2002.

[35] G. Ausiello, P. Crescenzi, G. Gambosi, V. KaAn Marchetti-Spaccamela, and M. Protasi,
Complexity and Approximation: Combinatorial Optimization Problems and Ther
Approximability Properties, Springer, Berlin, 1999.

[36] E. Taillard, “Some efficient heuristic methodisr the flow shop sequencing problem,”
European Journal of Operational Research, vol. 47, no. 1, pp. 65-74, July 1990.

[37]1. H. Osman and C. N. Potts, “Simulated animgafor permutation flow-shop scheduling,”
OMEGA, vol. 17, no. 6, pp. 551-557, 1989.

[38] H. Ishibuchi, S. Misaki, and H.Tanaka, “Mo@ii simulated annealing algorithms for the
flow shop sequencing problentiuropean Journal of Operational Research, vol. 81, no. 2,
pp. 388-398, March 1995.

[39] T. Murata, H. Ishibuchi, and H. Tanaka, “Geoetlgorithms for flowshop scheduling
problems,” Computer and Industrial Engineering, vol. 30, no. 4, pp. 1061-1071, October
1996.

[40] M. Basseur, F. Seynhaeve, E. G. Talbi, “Desigmulti-objective evolutionary algorithms:
Application to the flow-shop scheduling probler®foc. of 2002 Congress on Evolutionary
Computation, pp. 1151-1156, Honolulu, May 12-17, 2002.

[41]T. P. BagchiMultiobjective Scheduling by Genetic Algorithms, Kluwer Academic Publishers,
Boston, 1999.

[42]J. D. Knowles and D. W. Corne, “On metrics tmmparing non-dominated set&¥oc. of
2002 Congress on Evolutionary Computation, pp. 711-716, Honolulu, May 12-17, 2002.
[43]1P. Czyzak and A. Jaszkiewicz, “Pareto-simudadenealing — A metaheuristic technique for
multi-objective combinatorial optimizationJournal of Multi-Criteria Decision Analysis,

vol. 7, no.1, pp. 34-47, January 1998.

[44]R. Salomon, “Evolutionary algorithms and gexdi search: Similarities and differences,”
IEEE Trans. on Evolutionary Computation, vol. 2, no. 2, pp. 45-55, July 1998.

[45]D. E. Goldberg and S. Voessner, “Optimizinglgl-local search hybridsProc. of 1999
Genetic and Evolutionary Computation Conference, pp. 220-228, Orlando, July 13-17, 1999.

[46] D. Orvosh and L. David, “Shall we repair? Genalgorithms, combinatorial optimization,
and feasibility constraints,Proc. of 5th International Conference on Genetic Algorithms,
p.650, University of lllinois at Urbana-Champaidaly 17-21, 1993.

[47]W. E. Hart, “Adaptive global optimization witlocal search,” Ph. D. Thesis, University of

-54-

California, San Diego, 1994.

[48] M. W. S. Land, “Evolutionary algorithms witledal search for combinatorial optimization,”
Ph. D. Thesis, University of California, San Die@898.

[49]K. C. Tan, T. H. Lee, E. F. Khor, “Evolutionaalgorithms with dynamic population size and
local exploration for multiobjective optimization,'1EEE Trans. on Evolutionary
Computation, vol. 5, no. 6, pp. 565-588, December 2001.

[50]N. Krasnogor and J. Smith, “Emergence of padifie search strategies based on a simple
inheritance mechanismProc. of 2001 Genetic and Evolutionary Computation Conference,
pp. 432-439, San Francisco, July 7-11, 2001.

[51] B. Carr, W. Hart, N. Krasnogor, J. Hirst, EurBe, J. Smith, “Alignment of protein structures
with a memetic evolutionary algorithm,Proc. of 2002 Genetic and Evolutionary
Computation Conference, pp. 1027-1034, New York, July 9-13, 2002.

[52] A. Jaszkiewicz, “Multiple objective metaheuris algorithms for combinatorial
optimization,” Habilitation Thesis, 360, Poznan \nsity of Technology, Poznan, 2001.
[53]E. L. Ulungu, J. Teghem, P. H. Fortemps, andThyttens, “MOSA method: a tool for
solving multiobjective combinatorial optimizatiorrgblems,” Journal of Multi-Criteria

Decision Analysis, vol. 8, no.4, pp. 221-236, July 1998.

[54]M. P. Hansen, “Tabu search for multiobjectieptimization: MOTS,” Proc. of 13th
International Conference on Multiple Criteria Decision Making, Cape Town, South Africa,
January 6-10, 1997.

[55] A. Jaszkiewicz, “Comparison of local searclsé@d metaheuristics on the multiple objective
knapsack problem,Foundations of Computing and Decision Sciences, vol. 26, no. 1, pp.
99-120, 2001.

-55-

Hisao Ishibuchi (M'93) received the B.S. and M.S. Degrees in [@ieci mechanics from Kyoto
University, Kyoto, Japan, in 1985 and 1987, respelt, and the Ph.D. degree from Osaka
Prefecture University, Osaka, Japan, in 1992.

Since 1987, he has been with Department of IndusEngineering, Osaka Prefecture
University, where he is currently a Professor. Haesva Visiting Research Associate at the
University of Toronto from August 1994 to March 598nd from July 1997 to March 1998. His
research interests include fuzzy systems, genkgficithms, and neural networks. He is currently
an Associate Editor folEEE Trans. on Systems, Man, and Cybernetics - Part B, andMathware
and Soft Computing.

Tadashi Yoshida received the B.S. degree in industrial engineeffiogn Osaka Prefecture
University, Osaka, Japan, in 2001. He is curremtbyking toward the M.S. degree at the same
university.

His research interests include evolutionary nuifiective optimization and hybrid

algorithms.

Tadahiko Murata (S'96 — M'97) received the B.S., M.S., and Ph.[2grbes from Osaka
Prefecture University, Osaka, Japan, in 1994, 1888,1997 respectively.

He joined the Department of Industrial and Infotioa Engineering, Ashikaga Institute
Technology as a Research Associate in 1997, arahiean Assistant Professor in 1998. Since
2001, he has been an Associate Professor in therDegnt of Informatics, Faculty of
Informatics, Kansai University. His research ingtse include multiobjective optimization,
scheduling, pattern classification, fuzzy systemachine learning, and genetic algorithms. He
received the 1997 Award from Institute of Systef@entrol and Information Engineers for his
paper on flowshop scheduling with interval procegstime. He has been on the program
committees of GECCO 2000-2003, EMO 2001, EMO 20@8ather conferences. He has been a
member of the Soft Computing Committee of the IEREC Technical Committee since 2002.
He is a member of SOFT, JIMA, ISCIE, and ISGEC.

