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Abstract. This paper proposes a new mating scheme for evolutionary 
multiobjective optimization (EMO), which simultaneously improves the 
convergence speed to the Pareto-front and the diversity of solutions. The 
proposed mating scheme is a two-stage selection mechanism. In the first stage, 
standard fitness-based selection is iterated for selecting a pre-specified number 
of candidate solutions from the current population. In the second stage, 
similarity-based tournament selection is used for choosing a pair of parents 
among the candidate solutions selected in the first stage. For maintaining the 
diversity of solutions, selection probabilities of parents are biased toward 
extreme solutions that are different from prototypical (i.e., average) solutions. 
At the same time, our mating scheme uses a mechanism where similar parents 
are more likely to be chosen for improving the convergence speed to the Pareto-
front. Through computational experiments on multi-objective knapsack 
problems, it is shown that the performance of recently proposed well-known 
EMO algorithms (SPEA and NSGA-II) can be improved by our mating scheme. 

1  Introduction 

Evolutionary multi-objective optimization (EMO) algorithms have been applied to 
various problems for efficiently finding their Pareto-optimal or near Pareto-optimal 
solutions. Recent EMO algorithms usually share some common ideas such as elitism, 
fitness sharing and Pareto ranking for improving both the diversity of solutions and 
the convergence speed to the Pareto-front (e.g., see Coello et al. [1] and Deb [3]). In 
some studies, local search was combined with EMO algorithms for further improving 
the convergence speed to the Pareto-front [10, 12-14]. While mating restriction has 
been often discussed in the literature, its effect has not been clearly demonstrated. As 
a result, it is not used in many EMO algorithms as pointed out in some reviews on 
EMO algorithms [6, 17, 21]. The aim of this paper is to clearly demonstrate that the 
search ability of EMO algorithms can be improved by appropriately choosing parent 
solutions. For this aim, we propose a new mating scheme that is applicable to any 
EMO algorithms. For maintaining the diversity of solutions, the selection probabilities 
of parent solutions are biased toward extreme solutions that are different from 



  

prototypical (i.e., average) solutions in our mating scheme. At the same time, our 
mating scheme uses a mechanism where similar parents are more likely to be chosen 
for improving the convergence speed to the Pareto-front.  
 Mating restriction was suggested by Goldberg [7] and used in EMO algorithms by 
Hajela & Lin [8] and Fonseca & Fleming [5]. The basic idea of mating restriction is to 
ban the crossover of dissimilar parents from which good offspring are not likely to be 
generated. In the implementation of mating restriction, a user-definable parameter 

matingσ  called the mating radius is usually used for banning the crossover of two 
parents whose distance is larger than matingσ . The distance between two parents is 
measured in the decision space or the objective space. The necessity of mating 
restriction in EMO algorithms was also stressed by Jaszkiewicz [13] and Watanabe et 
al. [18]. On the other hand, Zitzler & Thiele [20] reported that no improvement was 
achieved by mating restriction in their computational experiments. Moreover, there 
was also an argument for the selection of dissimilar parents. Horn et al. [9] argued 
that information from very different types of tradeoffs could be combined to yield 
other kinds of good tradeoffs. Schaffer [16] examined the selection of dissimilar 
parents but observed no improvement.  
 In our previous study [11], we demonstrated positive and negative effects of 
mating restriction on the search ability of EMO algorithms through computational 
experiments on knapsack problems and flowshop scheduling problems. The positive 
effect of the recombination of similar parents is the improvement in the convergence 
speed to the Pareto-front while its negative effect is the decrease in the diversity of 
solutions. On the other hand, the positive effect of the recombination of dissimilar 
parents is the improvement in the diversity while its negative effect is the 
deterioration in the convergence speed. In this paper, we propose a new mating 
scheme for simultaneously improving the convergence speed and the diversity. The 
effect of the proposed mating scheme on the performance of the SPEA [21] and the 
NSGA-II [4] is examined through computational experiments on knapsack problems 
in Zitzler & Thiele [21]. Experimental results show that the search ability of those 
EMO algorithms on the two-objective and three-objective knapsack problems is 
significantly improved by the proposed mating scheme.  

2  Proposed Mating Scheme 

We describe our mating scheme using the following k-objective optimization 
problem: 

   Optimize ,         (1) ))(...,),(),(()( 21 xxxxf kfff=
   subject to ,                 (2) Xx∈

where  is the objective vector,  is the i-th objective to be minimized or 
maximized, x is the decision vector, and X is the feasible region in the decision space. 

)(xf )(xif



  

Let us denote the distance between two solutions x and y as |)()(| yfxf −  in the 
objective space. In this paper, the distance is measured by the Euclidean distance as  

   22
11 |)()(||)()(||)()(| yxyxyfxf kk ffff −+⋅⋅⋅+−=− .    (3) 

 We propose a two-stage mating scheme illustrated in Fig. 1. The selection in the 
second stage (i.e., upper layer) is based on the similarity between solutions while the 
selection in the first stage (i.e., lower layer) uses the fitness value of each solution. 
Our mating scheme is applicable to any EMO algorithms because an arbitrary fitness 
definition can be directly used with no modification in its lower layer. For choosing 
the first parent (i.e., Parent A in Fig. 1), the standard fitness-based binary tournament 
selection with replacement is iterated α  times for choosing α  candidates (say , 

, ..., ). Next the center vector over the chosen 
1x

2x αx α  candidates is calculated in the 
objective space as 

      ))(...,),(),(()( 21 xxxxf kfff= ,          (4) 

where 
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Then the most dissimilar solution to the center vector )(xf  is chosen as Parent A in 
Fig. 1 among the α  candidates. That is, the most extreme solution with the largest 
distance from the center vector )(xf  in the objective space is chosen as the first 
parent A in Fig. 1. When multiple solutions have the same largest distance, one 
solution is randomly chosen among them (i.e., random tiebreak). The choice of the 
first parent is illustrated for the case of =α 3 in Fig. 2 (a) where three solutions , 

 and  are selected as candidates of the first parent. The most dissimilar solution 
 to the center vector 

1x
2x 3x
3x )(xf  is chosen as the first parent in Fig. 2 (a).  
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Fig. 1  The proposed mating scheme. 
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(a) Choice of the first parent ( =α 3)      (b) Choice of the second parent ( =β 5) 

Fig. 2  Illustration of the proposed mating scheme. 

 When =α 1, th he standard binary 
tournament selection. The case of

e choice of the first parent is the same as t
 =α 2 is actually the same as the standard binary 

 seltournament ection because two candidates always have the same distance from 
their center vector. Selection probabilities are biased toward extreme solutions only 
when ≥α 3. 
 On the other hand, the standard fitness-based binary tournament selection with 
replacement is iterated β  times for choosing β  candidates of the second parent (i.e., 
Parent n FiB i g. 1). Then the most similar solution to the first parent (i.e., Parent A in 
Fig. 1) is chosen as Parent B among the β  candidates. That is, the solution with the 
smallest distance from Parent A is chosen. In this manner, similar parents are 
recombined in our mating scheme. The choice of the second parent is illustrated in 
Fig. 2 (b) for the case of =β 5. The most similar solution 7x  to the first parent (i.e., 

3x ) is selected as the second parent among the five candidates ( 4x , ..., 8x ) in Fig. 2 
(b). A crossover operation is applied to 3x  and 7x  for generating new solutions. 
 The mating scheme in our former study [11] corresponds to the case of =α 1. 
That is, the first parent was chosen by the standard fitness-based binary tournament 
selection. Not only the choice of the m t simi  solution as the second parent os lar
also the choice of the most dissimilar solution was examined. Experimental results in 
our former study [11] suggested that the choice of similar parents improved the 
convergence speed to the Pareto-front while it had a negative effect on the diversity of 
solutions. On the other hand, the choice of dissimilar parents improved the diversity 
of solutions while it had a negative effect on the convergence speed to the Pareto-
front. The main motivation to propose the new mating scheme in Fig. 1 is to 
simultaneously improve the diversity and the convergence speed by appropriately 
choosing parents for recombination. 
 Our mating scheme has high applicability and high flexibility. The positive 
aspects of our mating scheme are summarized as follows: 
(1) Our mating scheme is applicable

but 

 to any EMO algorithms because an arbitrary 
fitness definition can be directly used with no modification. 



  

(2) The specification of the mating radius matingσ  is not necessary. 
(3) The selection pressure toward extreme solutions is adjustable by the specification 

of the parameter α . 
(4) The selection pressure toward similar ns is adjustable bysolutio  the specification 

of the parameter β . 
 The proposed ma ing(5) t  scheme has high flexibility. For example, not only the 

te lutions. The distance between solutions can be measured in 

On
(i) 

binary tournament selection but also other selection mechanisms can be used for 
choosing candida  so
the decision space as well as in the objective space. The choice of dissimilar 
parents can be also examined using our mating scheme. 

 the other hand, the negative aspects of the proposed mating scheme are as follows: 
Appropriate specifications of the two parameters α  and β  seem to be problem-
dependent. The sensitivity of the performance of EMO algorithms on the 

o  

r mating scheme is 

3  

In this section, we examine the effect of our mating scheme on the performance of 
eriments. For this purpose, we combined 

our mating scheme with recently developed well-known EMO algorithms: SPEA [21] 

parameter specifications will be examined in the next section. 
(ii) Additional computational load is required for perf rming our mating scheme in 

EMO algorithms. The increase in CPU time will be also examined in the next 
section. In general, the computational overhead caused by ou
negligible when the evaluation of each solution needs long CPU time. 

Computational Experiments 

EMO algorithms through computational exp

and NSGA-II [4]. It should be noted that our mating scheme is the same as the 
standard binary tournament selection when the two parameters α  and β  are 
specified as =α 1 and =β 1. In this case, the modified SPEA and NSGA-II 
algorithms with our mating scheme are the same as their original versions. Using 100 
combinations of α  and β  (i.e., =α 1,2,...,10 and =β 1,2,...,10), we exami the 
effect of our m  the performance of the EMO algorithms. 

3.1  Test Problems and Parameter Specifications 

ne 
ating scheme on

In our computational experiments, we used four knapsack problems in Zitzler & 
, three-objective 250-item, 

and three-objective 500-item test problems. Each solution in an m-item knapsack 
Thiele [21]: two-objective 250-item, two-objective 500-item

problem was coded as a binary string of the length m. Thus the search space size was 
m2 . Each string was evaluated in the same manner as in Zitzler & Thiele [21]. 

 The modified SPEA and NSGA-II algorithms with our mating scheme were 
applied to the four knapsack problems under the following parameter specifications: 



  

 

, 

Various performance measures have been proposed in the literature for evaluating a 
. As explained in Knowles & Corne [15], no single 

ultaneously evaluate various aspects of a solution set. 

  Crossover probability: 0.8, 
   Mutation probability: m/1  where m is the string length, 
   Population size in NSGA-II: 200, 
   Population size in SPEA: 100, 
   Population size of the secondary population in SPEA: 100

ns.    Stopping condition: 2000 generatio

3.2  Performance Measures 

set of non-dominated solutions
performance measure can sim
Moreover, some performance measures are not designed for simultaneously 
comparing many solution sets but for comparing two solution sets with each other. 
 For comparing various combinations of α  and β , we use the average distance 
from each Pareto-optimal solution to its nearest solution in a solution set. This 
performance measure was used in Czyzak & Jaszkiewicz [2] and referred to as D1  

 K
R

in nowles & Corne [15]. The RD1  measure needs all Pareto-optimal solutions of 
each test problem. For the two-objective 250-item and 500-item knapsack problems, 
the Pareto-optimal solutions are available from the homepage of the first author of 
[21]. For the three-objective 250-item and 500-item knapsack problems, we found 
near Pareto-optimal solutions using the SPEA and the NSGA-II. These algorithms 
were applied to each test problem using much longer CPU time and larger memory 
storage (e.g., 30000 generations with the population size 400 for the NSGA-II) than 
the other computational experiments (see Subsection 3.1). We also used a single-
objective genetic algorithm with a secondary population where all the non-dominated 
solutions were stored with no size limitation. Each of the three objectives was used in 
the single-objective genetic algorithm. This algorithm was applied to each three-
objective test problem 30 times (10 times for each objective using the same stopping 
condition as the NSGA-II: 30000 generations with the population size 400). The 
SPEA and the NSGA-II were also applied to each test problem 10 times. Thus we 
obtained 50 solution sets for each test problem. Then we chose non-dominated 
solutions from the obtained 50 solution sets as near Pareto-optimal solutions. The 
number of the Pareto-optimal or near Pareto-optimal solutions of each test problem in 
our computational experiments is as follows:  

     567 solutions (2/250 test problem), 
   1427 solutions (2/500 test problem), 
   2158 solutions (3/250 test problem),  
   2142 solutions (3/500 test problem), 

w er th k/m test problem means the k-objectiveh e e  m-item test problem. 



  

3.3  Experimental Results 

The modified SPEA and NSGA-II algorithms with our mating scheme were applied to 
the four test problems using 100 combinations of α  and β . For each combination, 
we performed ten runs from different initial populations for each test problem. 

measure over ten runs are summarized in Figs. 3-6 
measure (i.e., shorter bars) mean better results. In 

 Average values of the 
where smaller values of the

RD1  
 RD1  

each figure, the result by the original EMO algorithm corresponds to the bar at the 
top-right corner where =α 1 and =β 1. From these figures, we can see that our 
mating scheme improved the performance of the SPEA and the NSGA-II over a wide 

nra ge of combinations of α  and β . Especially the performance of the original EMO 
algorithms on the three-object e test problems (i.e., Fig. 5 and Fig. 6) was improved 
by our mating scheme in almost all combinations of 

iv
α  and β . This is also the case 

for the performance of the NSGA-II on the 2/500 test problem (i.e., Fig. 4 (b)). The 
significant deterioration in the performance was observed only when the value of α  
in the modified SPEA was too large in Fig. 3 (a) and Fig. 4 (a). 
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(a) Results by the modified SPEA    (b) Results by the modified NSGA-II 

Fig. 3  Average values of the  measure for the two-objective 250-item problem. 
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(a) Results by the modified SPEA    (b) Results by the modified NSGA-II 

Fig. 4  Average values of the  measure for the two-objective 500-item problem. 
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(a) Results by the modified SPEA    (b) Results by the modified NSGA-II 

Fig. 5  Average values of the D1  measure for the three-objective 250-item problem. R
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(a) Results by the modified SPEA    (b) Results by the modified NSGA-II 

Fig. 6  Average values of the  measure for the three-objective 500-item problem. RD1

 Using the Mann-Whitney U test, we examined the statistical significance of the 
improvement in the measure by the proposed mating scheme. More specifically, 
the results by the o al EMO algorithms (i.e., 

RD1  
rigin =α 1 and =β 1) were compared 

with those by their modified versions (i.e., ≥α 2 and/or ≥β 2) for examining the 
statistical significance of the improvement by the propose ing scheme for three 
confidence levels (90%, 95% and 99%). Confidence leve he improvement are 
summarized in Table 1 for the 2/250 test problem and 2 for the 3/500 test 
problem. From those tables, we can see that the perform of the SPEA and the 
NSGA-II was significantly improved by our mating schem any cases. As shown 
in our experimental results in Figs.  Tables 1-2, the selection bias t rd 
either

d mat
ls of t
Table 
ance 
e in m

 3-6 and owa
 extreme solutions (i.e., ≥α 3 na d 1) or similar parents (i.e., =α 1 and =β

2) improved the performa of the EMO algorithms. It is, however, clea≥β nce rly 
shown by some experimental results (e.g., Fig. 4 (b), Fig. 5 (a) and Fig. 6 at the 

m
(a)) th

si ultaneous use of them (i.e., ≥α 3 and ≥β 2) improved their performance more 
significantly. For ex ple, the best result was obtained in Fig. 6 (a) from the 
combination of =

am
α 10 and =β 10.  



  

Table 1. Confidence levels of the improvement for the two-objective 250-item test problem. 
(* means that the corresponding confidence level is less than 90%) 

  (a) Results for the SPEA       (b) Results for the NSGA-II 
 

  The value of β     The value of β    
α  1 2 3 4 5 6 7 8 9 10  α 1 2 3 4 5 6 7 8 9 10 
1 * 95 99 99 99 99 99 99 99 99  1 * 99 90 99 99 99 99 99 99 99 
2 * 95 99 99 99 99 99 99 99 99  2 * 99 90 99 99 99 99 99 99 99 
3 99 99 99 99 99 99 99 99 9 99  * 99 99 99 99 99 99 9 99 99 
4 99 99 99 99 99 99 99 99 99 99  4 * 99 99 99 99 99 99 99 99 99 
5 99 99 99 99 99 99 99 99 99 99  5 95 99 99 99 99 99 99 99 99 99 
6 * 99 99 99 99 99 99 99 99 99  6 90 99 99 99 99 99 99 99 99 99 
7 * * * 99 * * 95 90 *  * 99 99 99 99 99 99 99 99 99 
8 * * * * * * * * * *  8 * 95 99 99 99 99 99 99 99 99 
9 * * * * * * * *
1

9 3 9 

95 7

* *  9 * 95 95 95 99 99 99 95 90 * 
0 * * * * * * * * * *  10 * * 90 * 90 * * * * * 

 

em. 

  (a) Result        (b) Resu A II  

Table 2. Confidence levels of the improvement for the three-objective 500-item test probl

s for the SPEA lts for the NSG -

  The value of β     The value of β    
α  1 2 3 4 5 6 7 8 9 10  α 1 2 3 4 5 6 7 8 9 10 
1 * * * 90 * * * 99 * 95  1 * 95 90 95 99 99 99 99 99 99 
2 * * * 90 * * * 99 * 95  2 * 95  90 95 99 99 99 99 99 99 
3 99 95 99 95 95 99 99 99 95 99  3 99 99 99 99 99 99 99 99 99 99 
4 90 95 99 99 99 99 99 99 99 99  4 99 99 99 99 99 99 99 99 99 99 
5 99 99 99 99 99 99 99 99 99 99  5 99 99 99 99 99 99 99 99 99 99 
6 99 99 99 99 99 99 99 99 99 99  6 99 99 99 99 99 99 99 99 99 99 
7 99 99 99 99 99 99 99 99 99 99  7 99 99 99 99 99 99 99 99 99 99 
8 
9 

99 99 99 99 99 99 99 99 99 99  
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ting 
ou m ti  sche ua ng  computat o a  t  
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As mentioned in Section 2, additional computation load is required for execu 

r a ng me. For eval ti  such a ional verhead, we me sured he
ve age CPU time for e ch co b α  and β . Exp

s r d . f t  a ig. th
of t  rith  a
l l o r
n  e o r m in g
han  ov h  
e i ere  
a r n  in t e v u

erimental results are 
umma ize  in Fig  7 or he SPEA nd F 8 for e NSGA-II. Since the CPU time 

he original and modified SPEA algo ms tot lly depends on the computation 
oad for the clustering of non-dominated so uti ns in the seconda y population, it is 
ot easy to evaluate the pure eff ct f ou at g scheme (see Fi . 7). On the other 

d, the evaluation of the computational er ead caused by our mating scheme is 
asy for the NSGA-II as shown in F g. 8 wh we observe the linear increase in the 
ve age CPU time with the i crease h al es of  and α β . The increase in the 

average CPU time from the origi  A-nal NSG II with =α 1 and =β 1 to the modified 
NSGA-II with =α 10 and =β 10 was 15.7% in Fig. 8 (a) and 7.4% in Fig. 8 (b). 
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(a) Two-objective 250-item test problem    (b) Three-objective 500-item test problem 

Fig. 7  Average CPU time of the original and modified EA.  SP
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(a) Two-objective 250-item test problem    (b) Three-objective 500-item test problem 

F  ig. 8  Average CPU time of the original and modified NSGA-II.
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 For visually demonstrating the improvement in the performance of the EMO 
algorithms by our mating scheme, we show the 50% attainment surface (e.g., see [3]) 
obtained by the original EMO algorithms and the modified EMO algorithms in Fig. 9 

 (a) SPEA and its modified version   ) NSGA-II and its modified version   (b
 9  50% attainment surface for the two-objective 250-item test probl



  

for the 2/250 problem. The best values of α  and β  with the smallest  measures 
in Fig. 3 were used in Fig. 9 for the modified SPEA and NSGA-II algorithms. We can 
see from Fig. 9 that better attainment surfaces were obtained by the modified 
algorithms. Similar improvement was also observed for the 2/500 problem.  

4  Concluding Remarks 

We proposed a two-stage mating scheme for simultaneously improving the diversity 
of solutions and the convergence speed t he Pareto-front. The basic idea is to bia

treme so  and
toward si  mating 
scheme was ive 
knapsack problems where our mating scheme was combined with the two well-known 

e vem

RD1

o t s 
 selection probabilities toward ex lutions for preserving the diversity

milar parents for improving the convergence speed. The effect of our
 examined through computational experiments on multiobject

EMO algorithms (i.e., SPEA and NSGA-II). It was shown that the performance of 
those EMO algorithms was improved by our mating scheme. It was also shown that 
the increase in the CPU time caused by our mating scheme was small if compared 
with the total CPU time (e.g., 7.4% increase). Th simultaneous impro ent in the 
diversity and the convergence speed is usually very difficult. This is also the case in 
our mating scheme. In our mating scheme, the two parameters (i.e., α  and β ) should 
be carefully adjusted to strike a balance between the diversity and the convergence 
speed. Further studies are needed for automatically specifying these parameter values 

re also needed for examining the effectiveness of our 
mating scheme for recently developed other EMO algorithms such as SPEA2 [22]. 

. 

2. Czyzak, P., and Jaszkiewicz, A.: Pareto-Simulated Annealing – A Metaheuristic Technique 

appropriately. Further studies a

 Our mating scheme can be viewed as assigning a selection probability to each pair 
of solutions (not to each individual solution). Pairs of similar solutions tend to have 
higher selection probabilities than those of dissimilar solutions. At the same time, 
pairs of extreme solutions tend to have higher selection probabilities than those of 
prototypical solutions. While various sophisticated methods for assigning a fitness 
value to each individual solution have been proposed in the literature on EMO 
algorithms, the assignment of a fitness value (or a selection probability) to each pair 
of solutions has not been studied well. Experimental results in this paper clearly show 
that such an idea of fitness assignment has a possibility to improve EMO algorithms 
with sophisticated fitness assignment schemes to each individual solution. 
 The authors would like to thank the financial support from Japan Society for the 
Promotion of Science (JSPS) through Grand-in-Aid for Scientific Research (B): 
KAKENHI (14380194). 
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