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Abstract  

This paper shows how a small number of simple fuzzy if-then rules can be selected for pattern 

classification problems with many continuous attributes. Our approach consists of two phases: Candidate 

rule generation by rule evaluation measures in data mining and rule selection by multi-objective 

evolutionary algorithms. In our approach, first candidate fuzzy if-then rules are generated from numerical 

data and prescreened using two rule evaluation measures (i.e., confidence and support) in data mining. 

Then a small number of fuzzy if-then rules are selected from the prescreened candidate rules using multi-

objective evolutionary algorithms. In rule selection, we use three objectives: maximization of the 

classification accuracy, minimization of the number of selected rules, and minimization of the total rule 

length. Thus the task of multi-objective evolutionary algorithms is to find a number of non-dominated 

rule sets with respect to these three objectives. The main contribution of this paper is to propose an idea of 

utilizing the two rule evaluation measures as prescreening criteria of candidate rules for fuzzy rule 

selection. An arbitrarily specified number of candidate rules can be generated from numerical data for 

high-dimensional pattern classification problems. Through computer simulations, we demonstrate that 

such a prescreening procedure improves the efficiency of our approach to fuzzy rule selection. We also 

extend a multi-objective genetic algorithm (MOGA) in our former studies to a multi-objective genetic 

local search (MOGLS) algorithm where a local search procedure adjusts the selection (i.e., inclusion or 

exclusion) of each candidate rule. Furthermore, a learning algorithm of rule weights (i.e., certainty 

factors) is combined with our MOGLS algorithm. Such extensions to our MOGA for fuzzy rule selection 

are another contribution of this paper. 

 

Keywords: Data mining, pattern classification, fuzzy rule selection, evolutionary multi-criterion 

optimization, hybrid genetic algorithms.  
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1. Introduction 

 Fuzzy rule-based systems have been successfully applied to various application areas such as control 

and classification [20,21]. While the main objective in the design of fuzzy rule-based systems has been 

the performance maximization, their comprehensibility has also been taken into account in some recent 

studies [3,4,19,24,25,27,28]. The comprehensibility of fuzzy rule-based systems is related to various 

factors: 

(i) Comprehensibility of fuzzy partitions (e.g., linguistic interpretability of each fuzzy set, separation 

of neighboring fuzzy sets, the number of fuzzy sets for each variable). 

(ii) Simplicity of fuzzy rule-based systems (e.g., the number of input variables, the number of fuzzy 

if-then rules). 

(iii) Simplicity of fuzzy if-then rules (e.g., type of fuzzy if-then rules, the number of antecedent 

conditions in each fuzzy if-then rule). 

(iv) Simplicity of fuzzy reasoning (e.g., selection of a single winner rule, voting by multiple rules). 

 In this paper, we show how a small number of simple fuzzy if-then rules can be selected for 

designing a comprehensible fuzzy rule-based system for a pattern classification problem with many 

continuous attributes. Among the above four issues, the second and third ones are mainly discussed in this 

paper. The first issue (i.e., comprehensibility of fuzzy partitions) is considered in this paper as a part of a 

preprocessing procedure for fuzzy rule generation. That is, we assume that the domain interval of each 

continuous attribute has already been discretized into several fuzzy sets. In computer simulations, we use 

simple homogeneous fuzzy partitions. See [19,24,25,27,28] for the determination of comprehensible 

fuzzy partitions from numerical data. Partition methods into non-fuzzy intervals have been studied in the 

area of machine learning (e.g., [6,7,26]).  

 A straightforward approach to the design of simple fuzzy rule-based systems is rule selection. In our 

former studies [14,15], we proposed a genetic algorithm-based approach for selecting a small number of 

fuzzy if-then rules from a large number of candidate rules. The GA-based approach was extended to the 

case of two-objective rule selection for explicitly considering a tradeoff between the number of fuzzy if-

then rules and the classification accuracy [10]. This approach was further extended in [12] to the case of 

three-objective rule selection by including the minimization of the total rule length (i.e., total number of 

antecedent conditions). When the GA-based rule selection approach is applied to high-dimensional 

pattern classification problems, a prescreening procedure of candidate rules is necessary because the 

number of possible fuzzy if-then rules exponentially increases with the dimensionality of pattern spaces. 

In [10,14,15], the GA-based approach was only applied to low-dimensional pattern classification 

problems where no prescreening procedure was necessary for decreasing the number of candidate rules. A 

simple prescreening procedure based on rule length was used for handling high-dimensional problems in 



 -61-

[12]. In this paper, we propose an idea of utilizing rule evaluation measures in data mining as 

prescreening criteria. An arbitrarily specified number of candidate rules can be generated from numerical 

data for high-dimensional pattern classification problems using rule evaluation measures. We also extend 

our multi-objective genetic algorithm (MOGA) in [10,12] to a multi-objective genetic local search 

(MOGLS) algorithm by combining local search and rule weight learning with our MOGA. 

 This paper is organized as follows. In the next section, we show how we can use two rule evaluation 

measures (i.e., confidence and support of association rules) in data mining for prescreening candidate 

fuzzy if-then rules. Three prescreening criteria (i.e., confidence, support, and their product) are compared 

with one another through computer simulations on a wine classification problem with 13 continuous 

attributes. We also examine some alternative heuristic definitions of rule weights through computer 

simulations. In Section 3, we describe our MOGA designed for finding non-dominated rule sets with 

respect to three objectives from candidate rules. Through computer simulations, we demonstrate that the 

efficiency of our MOGA can be improved by the use of a prescreening procedure. In Section 4, we 

implement an MOGLS algorithm by combining local search and rule weight learning with our MOGA. In 

Section 5, we examine the generalization ability of rule sets obtained by our approach through computer 

simulations on several pattern classification problems. Section 6 concludes this paper. 

 

2. Candidate Rule Generation from Numerical Data 

2.1 Fuzzy If-Then Rules for Pattern Classification Problems 

 In our approach, first fuzzy if-then rules are generated from numerical data. Then the generated rules 

are used as candidate rules from which a small number of fuzzy if-then rules are selected by multi-

objective genetic algorithms. Let us assume that we have m labeled patterns , 

 from M classes in an n-dimensional continuous pattern space. We also assume that the 

domain interval of each attribute  is discretized into  linguistic values (i.e.,  fuzzy sets with 

linguistic labels). Some typical examples of fuzzy discretization are shown in Fig. 1.  

)...,,( 1 pnpp xx=x

mp ...,2,1=

ix iK iK

 We use fuzzy if-then rules of the following form for our n-dimensional pattern classification 

problem: 

   Rule : If  is  and  ...  and  is  then Class  with ,  (1) qR 1x 1qA nx qnA qC qCF

where  is the label of the q-th fuzzy if-then rule, qR )...,,( 1 nxx=x  is an n-dimensional pattern vector, 

 is an antecedent fuzzy set,  is a consequent class (i.e., one of the M classes), and  is a rule qiA qC qCF
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weight (i.e., certainty factor). The rule weight  is a real number in the unit interval [0, 1]. While 

some studies (e.g., Castillo et al.[3] and Castro et al.[4]) used an arbitrary disjunction of multiple 

linguistic values as an antecedent fuzzy set (e.g., = “small or large”), we use only a single linguistic 

value as  for keeping each fuzzy if-then rule simple. It should be noted that some antecedent 

conditions can be “don’t care”. Since don’t care conditions are usually omitted, the number of antecedent 

conditions is not always n in our fuzzy if-then rules. Some fuzzy if-then rules may have n antecedent 

conditions (i.e., have no don’t care conditions), and others may have only a few antecedent conditions 

(i.e., have many don’t care conditions). It is easy for human users to understand short fuzzy if-then rules 

with only a few antecedent conditions. Thus the number of antecedent conditions in each fuzzy if-then 

rule (i.e., the rule length) is minimized in our fuzzy rule selection method. 

qCF
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Fig. 1  Some typical examples of fuzzy partitions of the domain interval [0, 1]. The meaning of each label 

is as follows: S: small, MS: medium small, M: medium, ML: medium large, and L: large. The superscript 

of each label denotes the granularity of the corresponding fuzzy partition (i.e., the value of ).  iK
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 Since each antecedent fuzzy set  in (1) can be one of the  fuzzy sets or don’t care, the total 

number of possible combinations of antecedent fuzzy sets is 

qiA iK

)1()1( 1 +×⋅⋅⋅×+ nKK . We can examine 

all combinations for rule generation and use the generated fuzzy if-then rules as candidate rules for rule 

selection in the case of low-dimensional pattern classification problems (i.e., when n is small). Thus no 

prescreening of candidate rules is necessary. On the other hand, we need some prescreening procedure in 

the application of our approach to high-dimensional pattern classification problems since the total number 

of possible combinations of antecedent fuzzy sets exponentially increases with the dimensionality of 

pattern spaces. Our idea is to use rule evaluation measures in data mining for decreasing the number of 

candidate fuzzy if-then rules. 

2.2 Confidence and Support of Fuzzy If-Then Rules 

 In the area of data mining, two measures called confidence and support have often been used for 

evaluating association rules [2]. Our fuzzy if-then rule in (1) can be viewed as a kind of association rule 

of the form  where . We use these two measures for prescreening 

candidate fuzzy if-then rules. In this subsection, we show how the definitions of these two measures can 

be extended to the case of the fuzzy if-then rule  [16]. 

qq C⇒A )...,,( 1 qnqq AA=A

qq C⇒A

 Let D be the set of the m training patterns )...,,( 1 pnpp xx=x , mp ...,2,1=  in our pattern 

classification problem. Thus the cardinality of D is m (i.e., mD =|| ). The confidence of  is 

defined as follows [2]: 

qq C⇒A

   
|)(|

|)()(|
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q

qq
qq D

CDD
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I
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where |  is the number of training patterns that are compatible with the antecedent , and 

 is the number of training patterns that are compatible with both the antecedent  

and the consequent . The confidence c indicates the grade of the validity of . That is, c 

(× 100%) of training patterns that are compatible with the antecedent  are also compatible with the 

consequent . In the case of standard association rules in data mining, both the antecedent  and the 

consequent  are not fuzzy. Thus the calculations of  and  can be 

performed by simply counting compatible training patterns. On the other hand, each training pattern has a 

different compatibility grade 

)(| qD A qA

|)()(| qq CDD IA qA

qC qq C⇒A

qA

qC qA

qC |)(| qD A |)()(| qq CDD IA

)( pq
xAµ  with the antecedent  when  is a fuzzy if-then qA qq C⇒A
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rule. Thus such a compatibility grade should be taken into account. Since the consequent  is not fuzzy 

(i.e.,  is a class label), the confidence in (2) can be rewritten as follows [16]: 

qC

qC
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I

.  (3) 

The compatibility grade )( pq
xAµ  is usually defined by the minimum operator or the product operator. 

In this paper, we use the product operator as 

   )()()( 11 pnApAp xx
qnqq

µµµ ×⋅⋅⋅×=xA ,     (4) 

where )( ⋅
qiAµ  is the membership function of the antecedent fuzzy set . qiA

 On the other hand, the support of  is defined as follows [2]: qq C⇒A

   
||

|)()(|
)(

D

CDD
Cs

qq
qq

IA
A =⇒ .     (5) 

The support s indicates the grade of the coverage by . That is, s (qq C⇒A × 100%) of all the training 

patterns are compatible with the association rule  (i.e., compatible with both the antecedent 

 and the consequent ). In the same manner as the confidence in (3), the support in (5) can be 

rewritten as follows [16]:  

qq C⇒A

qA qC
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2.3 Prescreening of Candidate Rules 

 The confidence and the support can be used as prescreening criteria for finding a tractable number of 

candidate fuzzy if-then rules. We also use the product of these two measures as another prescreening 

criterion. For generating candidate rules, we first determine the consequent class  for each 

combination  of antecedent fuzzy sets using the confidence measure as  

qC

)...,,( 1 qnqq AA=A
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   .  (7) )}Class(...,),1Class(max{)( MccCc qqqq ⇒⇒=⇒ AAA

It should be noted that the same class  is obtained for  when we use the support instead of the 

confidence in (7):  

qC qA

   .  (8) )}Class(...,),1Class(max{)( MssCs qqqq ⇒⇒=⇒ AAA

This is because the following relation holds between the confidence and the support from their 

definitions: 

   
||

|)(|
)Class()lassC(

D

D
tcts

q
qq

A
AA ×⇒=⇒ ,  Mt ,...,2,1= .  (9) 

Since the second term (i.e., ) of the right-hand side is independent of the consequent class, 

the class with the maximum confidence in (7) is the same as the class with the maximum support in (8). 

The same class also has the maximum product of these two measures. Thus usually we can uniquely 

specify the consequent class  for each combination  of antecedent fuzzy sets independent of the 

choice of a prescreening criterion among the three measures (i.e., confidence, support, and their product). 

Only when multiple classes have the same maximum value (including the case of no compatible training 

pattern with the antecedent part : 

||/|)(| DD qA

qC qA

qA 0)Class( =⇒ ts qA  for all classes), we cannot specify the 

consequent class  for . In this case, we do not generate the corresponding fuzzy if-then rule . qC qA qR

 The generated fuzzy if-then rules are divided into M groups according to their consequent classes. 

Fuzzy if-then rules in each group are sorted in descending order of a prescreening criterion (i.e., 

confidence, support, or their product). For selecting N candidate rules, the first  rules are chosen 

from each of the M groups. In this manner, we can choose an arbitrarily specified number of candidate 

fuzzy if-then rules (i.e., N candidate rules). It should be noted that the aim of the candidate rule 

prescreening is not to construct a fuzzy rule-based system but to find candidate rules, from which a small 

number of fuzzy if-then rules are selected. For using a variety of candidate rules in rule selection, we 

choose the same number of fuzzy if-then rules  (i.e.,  candidate rules) for each class. While the 

same number of candidate rules are chosen, a different number of fuzzy if-then rules may be finally 

selected for each class by genetic algorithm-based rule selection. 

MN /

MN /

 As we have already mentioned, the total number of possible combinations of antecedent fuzzy sets is 

 for an n-dimensional pattern classification problem. Thus it is impractical to )1()1( 1 +×⋅⋅⋅×+ nKK
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examine all combinations when n is large. In this case, we examine only short fuzzy if-then rules with a 

small number of antecedent conditions (i.e., with a large number of don’t care conditions). When each 

attribute has K fuzzy sets (i.e.,  for all i’s), the number of fuzzy if-then rules of the length L is 

calculated as . Even when n is large,  is not so large for a small L. This means 

that the number of short fuzzy if-then rules is not so large even when the total number of possible rules is 

huge.  

KK i =

L
Ln KC × L

Ln KC ×

2.4 Computer Simulations   

 We illustrate our prescreening procedure through computer simulations on wine data available from 

the UCI Machine Learning Repository (http://www.ics.uci.edu/~mlearn/MLSummary.html). The wine 

data include 178 patterns with 13 continuous attributes from three classes. First we normalized each 

attribute value into a real number in the unit interval [0, 1]. Thus the wine data set was handled as a three-

class pattern classification problem in the 13-dimensional unit hypercube . We used the five 

linguistic values in Fig. 1 (d) for each attribute.  

13]1,0[

 The total number of possible combinations of antecedent fuzzy sets is  since 

we used the five linguistic values and don’t care for each of the 13 attributes. The examination of all 

combinations of antecedent fuzzy sets is time-consuming. Thus we generated only fuzzy if-then rules of 

the length three or less. The number of generated fuzzy if-then rules of each length is summarized in 

Table 1. As we have already mentioned,  combinations of antecedent fuzzy sets were 

examined for generating fuzzy if-then rules of the length L. Fuzzy if-then rules were not generated when 

their consequent classes cannot be uniquely specified by (7).  

1013 1031.1)15( ×=+

L
LC 513 ×

Table 1. The number of generated fuzzy if-then rules of each length for the wine data. 

Length of rules 0 1 2 3 

Number of rules 1 65 1,768 25,589

 The generated 27423 fuzzy if-then rules were divided into three groups according to their consequent 

classes. The number of fuzzy if-then rules of each group was as follows: 

   Class 1:   7,554 rules,  

   Class 2: 12,464 rules, 

   Class 3:   7,405 rules. 

Fuzzy if-then rules in each group were sorted in descending order of a prescreening criterion. When 
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multiple rules had the same value of the prescreening criterion, those rules were randomly ordered. That 

is, such a tie situation was randomly broken (i.e., random tiebreak). Then the first  rules were chosen 

from each of the three groups for finding N candidate rules.  

3/N

 For examining the classification performance of the selected N candidate rules, we used a single 

winner rule method in the classification phase as in our previous studies on fuzzy rule-based classification 

systems [10-16]. Let S be the set of the selected N fuzzy if-then rules. Thus S can be viewed as a fuzzy 

rule-based classification system. For classifying an input pattern )...,,( 1 pnpp xx=x  by this 

classification system, a singe winner rule  is selected from the rule set S as *qR

   }|)(max{)( **
SRCFCF qqpqp qq

∈⋅=⋅ xx AA µµ .   (10) 

That is, the winner rule has the maximum product of the compatibility grade )( pq
xAµ  and the rule 

weight . When multiple fuzzy rules with different consequent classes have the same maximum 

product in (10), the classification of  is rejected. 

qCF

px

 There are several alternative methods for determining the rule weight of each fuzzy if-then rule. One 

method is to directly use the confidence as the rule weight: 

   .        (11) )( qqq CcCF ⇒= A

This definition was used in Cordon et al.[5]. In our former studies [10-16], we used a different definition. 

Our previous definition can be rewritten using the confidence measure as  

   cCcCF qqq −⇒= )( A ,       (12) 

where c  is the average confidence over the )1( −M  classes except for the consequent class : qC

   ∑
≠
=

⇒
−

=
M

Ct
t

q

q

tc
M

c
1

)Class(
1

1 A .      (13) 

In the definition in (12), the rule weight  is discounted by the average confidence qCF c  of fuzzy if-then 

rules with the same antecedent  and different consequent classes. In this paper, we propose the 

following definition: 

qA
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   )()( **qqqqq CcCcCF ⇒−⇒= AA ,     (14) 

where  is the class with the second largest confidence for the antecedent : **qC qA

   };,...,2,1|)Class(max{)( ** qqqq CtMttcCc ≠=⇒=⇒ AA .  (15) 

This definition of the rule weight  is the same as (12)-(13) when pattern classification problems 

involve only two classes (i.e., when 

qCF

2=M ). In addition to these three definitions, we also examine the 

case of no rule weights. This case is examined by assigning the same rule weight to all fuzzy if-then rules 

(i.e.,  for all rules).  0.1=qCF

 Using the four definitions of rule weights and the single winner method, we examined the 

classification performance of selected fuzzy if-then rules by each of the three prescreening criteria. When 

we examined the classification performance on training data, all the 178 patterns in the wine data were 

used for rule generation and performance evaluation. The average classification rate was calculated over 

1000 runs for each combination of a rule weight definition and a prescreening criterion. Such a large 

number of runs were performed for decreasing the effect of the random tiebreak in the sorting of fuzzy if-

then rules on simulation results. On the other hand, we used the leaving-one-out (LV1) procedure [29] for 

examining the classification performance on test data. In the LV1 procedure, 177 patterns were used as 

training data for rule generation. The remaining single pattern was used as test data for performance 

evaluation. This train-and-test procedure was iterated 178 times so that each of the 178 patterns was used 

as test data once. The whole LV1 procedure (i.e., 178 runs) was iterated 20 times for decreasing the effect 

of the random tiebreak on simulation results. Average classification rates by selected fuzzy if-then rules 

on training data and test data are summarized in Table 2 and Table 3, respectively. From those tables, we 

can see that the best performance was obtained from the combination of the product criterion ( sc ⋅ ) and 

the definition in (14)-(15) when the number of selected fuzzy if-then rules are not too large (e.g., 

300). Thus we use this combination in this paper hereafter. Good results were also obtained from the 

combination of the product criterion (

≤N

sc ⋅ ) and the definition in (14)-(15) in computer simulations on 

other data sets (e.g., iris data and credit data) while we do not report them here. The iris data and the 

credit data will be used in computer simulations for examining the generalization ability of fuzzy rule-

based systems in Section 5.  
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Table 2  Simulation results on training data. The best result in each column is indicated by “*”. 

 
Number of selected fuzzy rules  Prescreening 

criterion 
Weight 

definition 3 6 9 30 60 90 300 600 900 27423
c (11) 8.5 15.8 22.0 49.9 68.1 77.2 93.6 97.8* 99.0* 94.9 
c (12)-(13) 8.5 15.8 22.0 49.9 68.1 77.2 93.6 97.8* 99.0* 96.6 
c (14)-(15) 8.5 15.8 22.0 49.9 68.1 77.2 93.6 97.8* 99.0* 99.4*
c No weights 8.5 15.8 22.0 49.9 68.1 77.2 93.6 97.8* 99.0* 37.1 
s (11) 49.4 52.2 78.1 84.3 89.3 89.9 91.6 92.7 92.1 94.9 
s (12)-(13) 60.7 57.3 88.8 89.9 92.7 92.7 93.3 92.7 93.3 96.6 
s (14)-(15) 54.5 48.9 88.8 91.0 94.4 94.9* 96.1* 94.4 96.1 99.4*
s No weights 39.9 39.9 39.9 39.9 39.9 39.9 39.9 39.3 39.3 37.1 
sc ⋅  (11) 87.6 82.0 91.0 93.8 91.0 91.6 92.1 92.7 92.1 94.9 
sc ⋅  (12)-(13) 89.3 88.8 93.8 94.9 92.7 93.8 93.3 93.3 93.8 96.6 
sc ⋅  (14)-(15) 91.0* 91.0* 94.9* 96.1* 95.5* 94.9* 95.5 96.1 96.1 99.4*
sc ⋅  No weights 81.5 39.9 39.9 39.9 39.9 39.9 39.9 39.9 39.9 37.1 

 

Table 3  Simulation results on test data. The best result in each column is indicated by “*”. 

 
Number of selected fuzzy rules  Prescreening 

criterion 
Weight 

definition 3 6 9 30 60 90 300 600 900 27423
c (11) 7.1 14.5 19.9 47.1 65.1 73.8 89.5 92.8* 93.8* 90.4 
c (12)-(13) 7.1 14.5 19.9 47.1 65.1 73.8 89.5 92.8* 93.8* 91.6 
c (14)-(15) 7.1 14.5 19.9 47.1 65.1 73.8 89.5 92.8* 93.8* 93.3*
c No weights 7.1 14.5 19.9 47.1 65.1 73.8 89.5 92.8* 93.8* 36.0 
s (11) 36.0 45.5 71.3 82.0 88.2 88.2 89.3 90.4 90.4 90.4 
s (12)-(13) 47.2 57.3 76.4 89.3 92.1 92.1 92.1 92.1 91.6 91.6 
s (14)-(15) 21.3 36.5 77.0 89.3 92.1 93.3* 93.3* 92.7 92.1 93.3*
s No weights 39.9 39.9 39.9 39.9 39.9 39.9 39.9 39.3 39.3 36.0 
sc ⋅  (11) 87.1 79.8 86.5 89.9 89.3 88.8 89.9 90.4 90.4 90.4 
sc ⋅  (12)-(13) 88.8 89.3 93.3* 94.9 92.1 91.6 92.1 92.7 91.6 91.6 
sc ⋅  (14)-(15) 90.4* 90.4* 93.3* 95.5* 93.8* 92.7 93.3* 92.7 92.1 93.3*
sc ⋅  No weights 81.5 28.7 39.9 39.9 39.9 39.9 39.9 39.9 39.3 36.0 

 From Table 2 and Table 3, we can see that rule weights have a significant effect on the classification 

performance of selected fuzzy if-then rules. When we did not use rule weights, classification rates were 

low. See [11] for further discussions on the effect of rule weights on the performance of fuzzy rule-based 

classification systems. Among the three definitions of rule weights, the direct use of the confidence in 

(11) is inferior to the other two definitions. Let us consider three fuzzy if-then rules A , 1 Class⇒q
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2 Class⇒qA 3 Class⇒qA q

q qq C⇒A

q

3/

p qC

p q

 and  with the same antecedent A  and different consequent classes. 

Among these three rules, only a single fuzzy if-then rule R  (i.e., ) with the maximum 

confidence is generated by our rule generation method before the prescreening procedure. When these 

three rules have almost the same (but not exactly the same) confidence values, the rule weight CF  of 

 is about 1  in the direct use of the confidence in (11) while CF  is almost zero in the other two 

definitions. In such a situation, we are not sure that an input pattern x  is from  even when the 

compatibility of x  with  is high. This means that the reliability of R  is very low. Thus the rule 

weight is decreased to almost zero by the confidence values of the other rules in the definitions in (12)-

(13) and (14)-(15) while it is about 1/3 in (11). This difference between the direct use of the confidence as 

the rule weight and the other two definitions leads to the difference in average classification rates. When 

we use the confidence criterion (c) for candidate rule prescreening, all the selected rules have high 

confidence. For example, the confidence of all the selected 900 fuzzy if-then rules in Table 2 is 1.00. This 

means that their rule weights are also 1.00 independent of the choice of a rule weight definition. Thus the 

same results were obtained from the four different definitions of rule weights in Table 2 and Table 3. 

qR q

qA

 The difference between (12)-(13) and (14)-(15) is subtle. In the above-mentioned situation, almost 

the same rule weights are obtained by these two definitions (i.e., almost zero). For discussing the 

difference between (12)-(13) and (14)-(15), let us consider another situation. Now we assume that the 

confidence of  is zero and the other two rules have almost the same  (but not exactly the 

same) confidence values. In this case, the rule weight  of  is almost zero in (14)-(15) because the 

largest two confidence values are almost the same. On the other hand, the rule weight is about 0.25 in 

(12)-(13). When the largest two confidence values are almost the same, we are not sure that an input 

pattern  is from  even when the compatibility of  with  is high. Thus the rule weight is 

decreased to almost zero by the second largest confidence value in (14)-(15) while it is decreased to about 

0.25 by the average confidence in (12)-(13). This difference between the definitions in (12)-(13) and (14)-

(15) leads to the difference in average classification rates. 

⇒qA 3 Class

qCF qR

px qC px qA

 It is also shown in Table 2 and Table 3 that the product criterion outperforms the other prescreening 

criteria independent of the choice of a rule weight definition. For examining this observation further, we 

calculated the average length of selected 30 fuzzy if-then rules by each criterion in Table 2: 

    Confidence criterion: 2.93, 

    Support criterion: 1.13, 

    Product criterion: 1.47. 
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The confidence criterion tends to select long fuzzy if-then rules that have high confidence but low support. 

Such a fuzzy if-then rule can cover only a small number of patterns while its classification accuracy is 

high. Thus a small number of fuzzy if-then rules cannot classify many training patterns. This leads to low 

classification rates in Table 2 and Table 3 when a small number of fuzzy if-then rules were selected by 

the confidence criterion (c). While the best results were obtained from the confidence criterion (c) in 

Table 3 when a large number of candidate rules were selected (i.e., =N 900), we do not use this criterion 

for the candidate rule prescreening. This is because our final aim is to construct a fuzzy rule-based system 

by selecting a small number of fuzzy if-then rules from candidate rules. Since candidate rules selected by 

the confidence criterion (c) are very specific, high classification rates are not likely to be obtained by a 

small number of fuzzy if-then rules in the case of the confidence criterion (see Table 2 and Table 3).  

 On the other hand, the support criterion (s) tends to select short fuzzy if-then rules that have high 

support but low confidence. Such a fuzzy if-then rule may misclassify some patterns while it can cover 

many patterns. Good rule selection criteria may be obtained from the combination of the confidence and 

the support by finding a good tradeoff between the specificity and the generality. The product criterion 

( sc ⋅ ) is an attempt to find such a good tradeoff. Actually better results were obtained by the product 

criterion ( sc ⋅ ) in Table 2 and Table 3 than the confidence criterion (c) and the support criterion (s) when 

the number of selected candidate rules was not too large.  

3. Rule Selection  

 We have already explained how an arbitrarily specified number of fuzzy if-then rules can be 

generated from numerical data as candidate rules for rule selection. In this section, we describe a multi-

objective genetic algorithm (MOGA) that is designed for finding non-dominated rules sets with respect to 

three objectives of our rule selection problem. Our MOGA will be extended to a multi-objective genetic 

local search (MOGLS) algorithm in the next section. 

3.1 Three-Objective Optimization Problem 

 Let us assume that we have N candidate fuzzy if-then rules. Our task is to select a small number of 

simple fuzzy if-then rules with high classification performance. This task is performed by maximizing the 

classification accuracy, minimizing the number of selected rules, and minimizing the total rule length. 

That is, we formulate our rule selection problem as follows [12]: 

    Maximize )( , minimize , and minimize ,   (16) 1 Sf )(2 Sf )(3 Sf

where  is the number of correctly classified training patterns by a rule set S,  is the )(1 Sf )(2 Sf
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number of fuzzy if-then rules in S, and  is the total rule length of fuzzy if-then rules in S. )(3 Sf

 Usually there is no optimal rule set with respect to all the above three objectives. Thus our task is to 

find multiple rule sets that are not dominated by any other rule sets. A rule set  is said to dominate 

another rule set  (i.e.,  is better than : ) if all the following inequalities hold: 

BS

AS BS AS BA SS p

   ,    ,    ,  (17) )()( 11 BA SfSf ≤ )()( 22 BA SfSf ≥ )()( 33 BA SfSf ≥

and at least one of the following inequalities holds: 

   ,    ,    .  (18) )()( 11 BA SfSf < )()( 22 BA SfSf > )()( 33 BA SfSf >

The first condition (i.e., all the three inequalities in (17)) means that no objective of  is worse than 

 (i.e.,  is not worse than ). The second condition (i.e., one of the three equalities in (18)) means 

that at least one objective of  is better than . When a rule set  is not dominated by any other rule 

sets (i.e., any other subsets of the N candidate rules), S is said to be a Pareto-optimal solution of our three-

objective rule selection problem in (15). In many cases, it is impractical to try to find true Pareto-optimal 

solutions. Thus, multi-objective genetic algorithms usually show non-dominated rule sets among 

examined ones as approximate Pareto-optimal solutions.  

BS

AS BS AS

BS AS S

3.2 Implementation of MOGA 

 Many evolutionary multi-criterion optimization (EMO) algorithms have been proposed (see [30,31]). 

Since each rule set can be represented by a binary string, we can apply those algorithms to our rule 

selection problem. In this paper, we use a slightly modified version of a multi-objective genetic algorithm 

(MOGA) in our former studies [10,12] because our MOGA is easy to implement. It is also easy to extend 

our MOGA to hybrid algorithms with local search and rule weight learning as shown in the next section. 

Our MOGA has two characteristic features. One is to use a scalar fitness function with random weights 

for evaluating each solution (i.e., each rule set). Random weights are updated whenever a pair of parent 

solutions is selected for crossover. That is, each selection is governed by different weights. Genetic search 

in various directions in the three-dimensional objective space is realized by this random weighting 

scheme. The other characteristic feature is to store all non-dominated solutions as a secondary population 

separately from a current population. This secondary population is updated at every generation. A small 

number of non-dominated solutions are randomly chosen from the secondary population and their copies 

are added to the current population as elite solutions. The convergence speed of the current population to 

Pareto-optimal solutions is improved by this elitist strategy. Other parts of our MOGA are the same as a 
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standard single-objective genetic algorithm.  

 An arbitrary subset S of the N candidate rules can be represented by a binary string of the length N as 

   ,         (19) NsssS ⋅⋅⋅= 21

where  means that the q-th candidate rule  is not included in the rule set S  while 0=qs qR 1=qs  

means that  is included in S . An initial population is constructed by randomly generating a pre-

specified number of binary strings of the length N.  

qR

 The first objective  of each string S  is calculated by classifying all the given training patterns 

by S. Since we use the single winner rule method, the classification is performed by finding a single 

winner rule for each pattern. Thus it is possible that some rules are not chosen as winner rules for any 

patterns. We can remove those rules without degrading the classification accuracy of the rule set S. At the 

same time, the second and third objectives are improved by removing unnecessary rules. Thus we remove 

all fuzzy if-then rules that are not selected as winner rules of any patterns from the rule set S. The removal 

of unnecessary rules is performed for each string of the current population by changing the corresponding 

1’s to 0’s. From the combinatorial nature of our rule selection problem, some rules with no contribution in 

one rule set may have large contribution in another rule set. Thus we cannot remove any rules from all the 

strings in the current population without examining each string. The second and third objectives are 

calculated for each string after unnecessary rules are removed.  

)(1 Sf

 When the three objectives of each string in the current population are calculated, the secondary 

population is updated so that it includes all the non-dominated strings among examined ones during the 

execution of our MOGA. That is, each string in the current population is examined whether it is 

dominated by other strings in the current and secondary populations. If it is not dominated by any other 

strings, its copy is added to the secondary population. Then all strings dominated by the newly added one 

are removed from the secondary population. In this manner, the secondary population is updated at every 

generation.  

 The fitness value of each string S  (i.e., each rule set S) in the current population is defined by the 

three objectives as  

   )()()()( 332211 SfwSfwSfwSfitness ⋅−⋅−⋅= ,    (20) 

where ,  and  are weights satisfying the following conditions: 1w 2w 3w

   ,         (21) 0,, 321 ≥www
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   .        (22) 1321 =++ www

As we have already mentioned, one characteristic feature of our MOGA is to randomly specify these 

weights whenever a pair of parent strings is selected from the current population. In our former studies 

[10,12], we used a roulette wheel for selecting parent strings. Thus we had to calculate (20) for all strings 

in the current population to select a pair of parent strings. For selecting another pair of parent strings, we 

had to calculate (20) for all strings in the current population again using different weights. This is time-

consuming especially when the population size is large. In this paper, we use binary tournament selection 

with replacement instead of roulette wheel selection to avoid such a time-consuming calculation. We have 

to calculate (20) for only four strings when a pair of parent strings is selected using the binary tournament 

selection (i.e., two strings for each parent). A pre-specified number of pairs are selected from the current 

population using the binary tournament selection. 

 Uniform crossover is applied to each pair of parent strings to generate a new string. Biased mutation 

is applied to the generated string for efficiently decreasing the number of fuzzy if-then rules included in 

each string. That is, different mutation probabilities are used for the mutation from 1 to 0 and that from 0 

to 1. For example, the mutation from 1 to 0 may have a probability 0.1 even when the mutation 

probability from 0 to 1 is 0.001. A larger probability is assigned to the mutation from 1 to 0 than that from 

0 to 1 for efficiently decreasing the number of fuzzy if-then rules (i.e., the number of 1’s) included in each 

string. Both the biased mutation and the above-mentioned removal of unnecessary rules are used for 

efficiently decreasing the number of fuzzy if-then rules in each string. As we will show in the next 

subsection, the reduction in computation time by these two heuristics is significant. Without them, we 

cannot apply our MOGA to a large number of candidate rules. This is because the computation time 

required for the evaluation of each string strongly depends on the number of fuzzy if-then rules (i.e., 

because the computation time required for the classification of each training pattern strongly depends on 

the number of fuzzy if-then rules). At the same time, these two heuristics may have a negative effect on 

the evolutionary search for rule sets. That is, they may provoke the premature convergence of the 

population to strings with a small number of fuzzy if-then rules but low accuracy. Such a negative effect, 

however, is not clear in our computer simulations reported in the next subsection. This is because the 

storage of non-dominated strings in the secondary population and the use of them as elite strings prevent 

the genetic search from losing the variety of the population. Of course, the two heuristics are not always 

necessary especially when the number of candidate rules is small as shown in the next subsection. We use 

these two heuristics for handling a large number of candidate rules.  

 The next population consists of the newly generated strings by the selection, crossover, and mutation. 

Some non-dominated strings in the secondary population are randomly selected as elite solutions and their 
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copies are added to the new population. 

 Our MOGA is summarized as follows: 

Step 0: Parameter Specification. 

 Specify the population size , the number of elite solutions  that are randomly selected 

from the secondary population and added to the current population, the crossover probability , two 

mutation probabilities  and , and the stopping condition. 

popN eliteN

cp

)01( →mp )10( →mp

Step 1: Initialization. 

 Randomly generate popN  binary strings of the length N  as an initial population. For generating 

each initial string, 0 and 1 are randomly chosen with the equal probability (i.e., 0.5). Calculate the three 

objectives of each string. In this calculation, unnecessary rules are removed from each string. Find non-

dominated strings in the initial population. A secondary population consists of copies of those non-

dominated strings.  

Step 2: Genetic Operations. 

 Generate  strings by genetic operations (i.e., binary tournament selection, uniform 

crossover, biased mutation) from the current population. 

)( elitepop NN −

Step 3: Evaluation. 

 Calculate the three objectives of each of the newly generated )( elitepop NN −  strings. In this 

calculation, unnecessary rules are removed from each string. The current population consists of the 

modified strings. 

Step 4: Secondary Population Update.  

 Update the secondary population by examining each string in the current population as mentioned 

above. 

Step 5: Elitist Strategy. 

 Randomly select eliteN  strings from the secondary population and add their copies to the current 

population. 

Step 6. Termination Test. 

 If the stopping condition is not satisfied, return to Step 2. Otherwise terminate the execution of the 

algorithm. All the non-dominated strings among examined ones in the execution of the algorithm are 

stored in the secondary population. 

3.3 Effect of Prescreening of Candidate Rules 

 We applied our MOGA to the three-objective rule selection problem. All the 178 patterns in the wine 

data set were used as training data in computer simulations of this subsection. As candidate rules, we used 
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900 fuzzy if-then rules generated in Subsection 2.4 using the product criterion (see Table 2). Parameter 

values were specified in Step 0 of our MOGA as 

   Population size: 50=popN , 

   Number of elite solutions: =eliteN 5, 

   Crossover probability: 9.0=cp , 

   Mutation probability: 1.0)01( =→mp  and Npm /1)10( =→ , 

   Stopping condition: 10,000 generations. 

These parameter specifications are almost the same as our former study [12] except for the stopping 

condition. We iterated our MOGA much longer than [12] where the stopping condition was 1000 

generations. This is because we also applied our MOGA to the rule selection problem with much more 

candidate rules as shown in this subsection later. Simulation results are summarized in Table 4. This table 

shows non-dominated solutions with high classification rates (i.e., higher than 90%) obtained by a single 

trial of our MOGA. We can obtain multiple non-dominated rule sets by a single run of our MOGA. This 

is one advantage of our multi-objective approach to rule selection over single-objective ones. From the 

comparison between Table 2 (i.e., rule selection by the prescreening criteria) and Table 4 (by our MOGA), 

we can see that our MOGA could find rule sets with much higher classification rates than the rule 

prescreening criteria. As shown in Table 2, the 900 candidate rules selected by the product criterion 

( sc ⋅ ) have a 96.1% classification rate on the training data. Our MOGA found a rule set of seven fuzzy if-

then rules with a 100% classification rate from those candidate rules in Table 4. While the maximum 

classification rate by six fuzzy if-then rules was 91.0% in Table 2, it is 99.4% in Table 4. These 

observations suggest the possibility that the GA-based rule selection can improve the quality of extracted 

rule sets by data mining techniques. 
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Table 4  Non-dominated rule sets obtained from 900 candidate rules. 

 

Number of rules 
 )(2 Sf

Average rule length 
 ||/)(3 SSf

Classification rate 
mSf /)(100 1×  (%) 

3 1.00 91.6 
3 1.33 93.3 
4 1.00 95.5 
4 1.25 96.1 
4 1.50 97.2 
5 1.40 97.8 
5 1.60 98.3 
6 1.33 98.9 
6 2.00 99.4 
7 1.57 99.4 
7 2.00 100.0 

 For examining the effect of the prescreening procedure on the search ability of our MOGA, we also 

performed the same computer simulation using various specifications of the number of candidate rules: 

9, 90, and 27423 where the product criterion was used for prescreening. Since candidate rules were 

selected from 27423 fuzzy if-then rules (see Subsection 2.4), the specification of N as 27423 means 

that no prescreening was used. Simulation results are summarized in Table 5 ~ Table 7. In Table 5, seven 

fuzzy if-then rules have a 96.1% classification rate while the classification rate of the nine candidate rules 

was 94.9% in Table 2. This means that the classification rate was improved by removing two candidate 

rules by the MOGA. One the other hand, seven fuzzy if-then rules in Table 6 have a 99.4% classification 

rate while the classification rate of the 90 candidate rules was 94.9% in Table 2. In this case, the 4.5% 

increase in the classification rate was obtained by removing 83 candidate rules. These observations 

suggest that better results can be obtained from the combination of the heuristic rule prescreening and the 

genetic algorithm-based rule selection than the heuristic rule prescreening only.  

=N

=N

 

Table 5  Non-dominated rule sets obtained from 9 candidate rules.  

Number of rules 
 )(2 Sf

Average rule length 
 ||/)(3 SSf

Classification rate 
mSf /)(100 1×  (%) 

3 1.00 91.6 
4 1.00 94.9 
5 1.00 95.5 
7 0.86 96.1 
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Table 6  Non-dominated rule sets obtained from 90 candidate rules.  

Number of rules 
 )(2 Sf

Average rule length 
 ||/)(3 SSf

Classification rate 
mSf /)(100 1×  (%) 

3 1.00  91.6  
3 1.33  93.3  
4 1.00  94.9  
4 1.25  96.1  
4 1.50  96.6  
5 1.00  97.2  
5 1.40  98.3  
6 1.00  97.8  
7 1.14  98.9  
7 1.29  99.4  

 

Table 7  Non-dominated rule sets obtained from 27423 candidate rules with no prescreening.  

Number of rules 
 )(2 Sf

Average rule length 
 ||/)(3 SSf

Classification rate 
mSf /)(100 1×  (%) 

3 1.00  91.6  
3 1.33  93.3  
4 1.00  95.5  
4 1.25  96.1  
4 1.50  96.6  
5 1.20  97.2  
5 1.40  97.8  
5 1.80  98.3  
6 1.33  98.3  
6 1.67  98.9  
6 2.00  99.4  
7 1.43  99.4  
7 2.14  100.0  
8 1.63  100.0  

 

 From these tables, we can see that good results were obtained when  was 90 in Table 6. Simulation 

results in Table 5 with 9 are slightly inferior to those with 

N

=N =N =N90 and 900. This means that the 

performance of our rule selection method was slightly deteriorated when the number of candidate rules 

was too small. From careful comparison between Table 4 and Table 7, we can see that three rule sets in 

Table 7 are dominated by rule sets in Table 4. That is, the performance of our rule selection method was 

slightly deteriorated when the number of candidate rules was too large. This observation suggests the 

necessity of the prescreening of candidate rules in our rule selection method. 
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 The necessity of the prescreening becomes clear by examining computation time of our genetic 

algorithm-based fuzzy rule selection method. In our MOGA, the size of the search space is  because 

each solution is denoted by a binary string of the length N. When N is too large, it is difficult to find good 

solutions in the huge search space of the size . Thus we could not easily obtain good results when we 

did not use any prescreening procedure. CPU time required for each computer simulation is shown in 

Table 8 for the following four versions of our MOGA: 

N2

N2

MOGA: Our MOGA. 

MOGA-B: A version of our MOGA where the mutation is not biased. 

MOGA-R: A version of our MOGA where the removal of unnecessary rules is not used. 

MOGA-BR: A version of our MOGA where the mutation is not biased and the removal of 

unnecessary rules is not used. 

From this table, we can see that the biased mutation and the removal of unnecessary rules have significant 

effects on the decrease in the computation time. When we used neither of these two heuristics (i.e., 

MOGA-BR), the computation time was about 19 hours in the case of 27423 candidate rules. Note that the 

computation time was about 19 minutes when both heuristics were used (i.e., MOGA) in Table 8. We also 

see from Table 8 that the prescreening of candidate rules decreased the CPU time of our MOGA. Let 

 be a Pareto-optimal rule set when the number of candidate rules is N. Theoretically, we can see 

that  is never dominated by any other rule set  because N candidate 

rules are chosen from the 27423 rules. This means that the best results would be obtained in the case of 

 if there were no restrictions on computation time for executing our MOGA. Thus we are 

likely to obtain good rule sets from a large value of N when long computation time is available. This is 

not always the case in practical situations. Actually, some rule sets obtained in the case of 

)(* NS

)27423(* =NS )27423(* <NS

27423=N

=N 27423 in 

Table 7 are dominated by rule sets in the case of <N 27423 in Tables 4-6. For example, the seventh rule 

set in Table 7 with a 97.8% classification rate is dominated by the seventh rule set in Table 6 with a 

98.3% classification rate.  

Table 8  CPU time of our MOGA with various specification of the number of candidate rules. 

CPU time (minutes) The number of 
candidate rules MOGA MOGA-B MOGA-R MOGA-BR 

9 2.38 2.30 1.10 1.08 
90 3.29 4.00 1.73 2.22 

900 4.03 4.73 2.42 4.12 
27,423 19.12 20.18 19.16 1112.12 
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 For further examining the relation between the efficiency of our MOGA and the number of candidate 

rules N, we monitored the highest classification rate of non-dominated rule sets with three fuzzy if-then 

rules at each generation during the execution of our MOGA for various specifications of the number of 

candidate rules N. Average simulation results over 20 trials with different initial populations are 

summarized in Fig. 2. From this figure, we can see that our MOGA could quickly find good rule sets in 

early generations when the number of candidate rules was small. 
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Fig. 2  The highest classification rate of rule sets with three rules at each generation. 

 For comparison, we performed the same computer simulation using randomly selected 90 candidate 

fuzzy if-then rules from the generated 27423 rules. The randomly selected 90 rules were used as 

candidate rules in our MOGA. Simulation results are summarized in Table 9. This table shows non-

dominated rule sets with classification rates higher than 85%. From the comparison between Table 6 and 

Table 9, we can see that much better results were obtained in the case of prescreening using the product 

criterion than the case of random selection of candidate rules.  
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Table 9  Non-dominated rule sets obtained from randomly selected 90 candidate rules.  

Number of rules 
 )(2 Sf

Average rule length 
 ||/)(3 SSf

Classification rate 
mSf /)(100 1×  (%) 

9 3.00  85.4  
10 3.00  86.5  
12 2.83  87.1  
12 3.00  87.6  
13 2.85  88.2  
13 3.00  89.3  
19 2.95  89.9  
20 2.95  90.4  

 

3.4 Use of Various Partitions for Each Input 

 In the previous computer simulation, we used the same fuzzy partition with the five linguistic values 

in Fig. 1 (d) for all the 13 attributes of the wine data. In many cases, an appropriate fuzzy partition for 

each attribute is not the same. Moreover, we do not always know an appropriate fuzzy partition for each 

attribute. Such a situation can be handled by simultaneously using multiple fuzzy partitions for each 

attribute. For example, we can use the four fuzzy partitions in Fig. 1 for each attribute. In this case, each 

antecedent fuzzy set can be one of the 14 linguistic values in Fig. 1 or don’t care. Thus the total number 

of possible combinations of antecedent fuzzy sets is  for the wine data.  13)114( +

 As in Section 2, we generated fuzzy if-then rules of the length 3 or less. The number of the generated 

fuzzy if-then rules was 711727. It is difficult to handle all the generated fuzzy if-then rules as candidate 

rules in our MOGA. Thus we chose 900 candidate rules using the product criterion. Our MOGA was 

applied to those candidate rules. Simulation results are summarized in Table 10. From the comparison 

between Table 4 and Table 10, we can see that better results were obtained in Table 10 from 900 

candidate rules with various fuzzy partitions. For example, the highest classification rate of three rules in 

Table 10 is 98.3% while it was 93.3% in Table 4.  
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Table 10  Non-dominated rule sets obtained from a single trial with 900 candidate rules and various fuzzy 

partitions. 

Number of rules 
 )(2 Sf

Average rule length 
 ||/)(3 SSf

Classification rate 
mSf /)(100 1×  (%) 

3 1.00  92.7  
3 1.33  96.1  
3 1.67  97.8  
3 2.33  98.3  
4 0.75  93.8  
4 1.50  98.3  
4 1.75  98.9  
4 2.00  99.4  
4 2.25  100.0  

 

 

 For further examining non-dominated rule sets of our fuzzy rule selection problem with various fuzzy 

partitions, we performed the above computer simulation 20 times using different initial populations. 

Obtained rule sets from the 20 trials were compared with one another. When a rule set was dominated by 

another rule set, the dominated one was discarded. In this manner, we found non-dominated rule sets from 

the 20 trials. Table 11 shows the non-dominated rule sets obtained from the 20 trials. Slightly better rules 

sets are included in Table 11 than Table 10. Three rules with the 94.9 classification rate in Table 11 are 

shown in Fig. 3. From this figure, we can see that our rule selection method found a very simple fuzzy 

rule-based system. The compactness of fuzzy rule-based systems and the simplicity of each rule are the 

main advantage of our fuzzy rule selection method because these two criteria are directly optimized by 

our three-objective genetic algorithm. It should be noted that only the three attributes in Fig. 3 have 

antecedent conditions (i.e., all the other attributes have don’t care conditions in all the three rules). On the 

other hand, Fig. 4 shows three rules with the 100 % classification rate in Table 11. The three rules in Fig. 

4 with higher classification ability are longer than those in Fig. 3. Another advantage of our approach is 

that multiple rule sets with different complexity can be obtained. That is, a tradeoff between accuracy and 

interpretability of fuzzy rule-based systems is clearly shown by obtained rule sets.    
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Table 11  Non-dominated rule sets obtained from 20 trials. 

Number of rules 
 )(2 Sf

Average rule length 
 ||/)(3 SSf

Classification rate 
mSf /)(100 1×  (%) 

3 1.00  94.9  
3 1.33  96.1  
3 1.67  98.3  
3 2.00  99.4  
3 2.33  100.0  
4 0.75  96.1  
4 1.00  97.2  
4 1.25  98.9  
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Fig. 3  Selected three fuzzy if-then rules with a 94.9% classification rate. 
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Fig. 4  Selected three fuzzy if-then rules with a 100% classification rate. 

4. Extension to Hybrid Algorithms 

4.1 Hybridization with Local Search 

 While genetic algorithms have high global search ability, their local search ability is not high. That is, 

their convergence speed to optimal solutions is not high while they can avoid being trapped in local 

solutions. One standard approach for improving the convergence speed is to try to find a good valance 



 -84-

between exploration and exploitation in the implementation of genetic algorithms. Another approach is to 

combine local search with genetic algorithms. Hybridization of MOGAs with local search was proposed 

in [8]. It was shown through computer simulation in several studies [9,17,18] that the hybridization 

improved the convergence speed of populations in MOGAs to Pareto-optimal solutions.  

 In multi-objective genetic local search (MOGLS) algorithms, local search is applied to newly 

generated strings by genetic operations. For implementing an MOGLS algorithm for our rule selection 

problem, first we have to specify an objective function to be optimized by local search. As in the previous 

studies [8,9,17,18] on MOGLS algorithms, we use the scalar fitness function in (20) with random weights. 

In those studies, the weights specified for the selection of a pair of parent stings were also used in local 

search for their offspring. That is, local search for each offspring was governed by the randomly specified 

weights for the selection of its parent strings. One drawback of this weight specification scheme is that the 

inherited weights from parents are not always appropriate for their offspring. Another drawback is that 

local search is applied to all offspring independent of their performance. It may be waste of CPU time to 

apply local search to poor offspring. For overcoming these drawbacks, we modify the above-mentioned 

weight specification scheme in the local search part of our MOGLS algorithm as follows. In our proposed 

scheme, we randomly specify the weights in the scalar fitness function in (20) for choosing an initial 

solution for local search and specifying the local search direction for the selected one. We choose an 

initial solution from the current population using tournament selection with replacement based on the 

scalar fitness function. The weights are randomly updated whenever a new initial solution is selected. 

This mean that local search from each initial solution is governed by the scalar fitness function with 

different weights. In our computer simulations, the tournament size was specified as four. 

 For implementing a MOGLS algorithm for our rule selection problem, we also have to specify a 

mechanism for generating a neighboring solution from the current solution in local search. We use the 

following three mechanisms: 

(1) Generate a neighboring solution of the current solution S by removing a single rule from S. The 

number of neighboring solutions of S is , i.e., the number of rules in S. || S

(2) Generate a neighboring solution of S by adding a single rule to S. The number of neighboring 

solutions of S is  where N is the number of candidate rules. || SN −

(3) Generate a neighboring solution of S by removing a single rule from S and add another rule to S. The 

number of neighboring solutions of S is |)|(|| SNS −× . 

The total number of neighboring solutions of the current solution is |)|(|| SNSN −×+ . If we do not 

restrict the number of examined solutions, at least |)|(|| SNSN −×+  neighboring solutions have to be 

examined in the execution of local search for each initial solution generated by genetic operations. Thus 
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almost all the available computation time is spent by local search. In this case, our MOGLS algorithm is 

almost the same as a multi-start local search algorithm because only a few generation updates are 

performed.  

 For decreasing the computation load of local search, we only examine three neighboring solutions of 

the current solution in our MOGLS algorithm in this paper. A single neighboring solution is randomly 

generated using each of the above three mechanisms. If none of the three neighboring solutions is better 

than the current solution, local search for the current solution is terminated. Otherwise, the current 

solution is replaced with the best one among the examined three solutions. In this case, local search 

continues to examine three neighboring solutions of the new current solution in the same manner.  

 The local search part of our MOGLS algorithm is executed by iterating the following three steps for 

 times: )( elitepop NN −

1. Randomly specify the weights of the scalar fitness function. 

2. Select an initial solution from the current population by the tournament selection of the tournament size 

four with replacement using the scalar fitness function. 

3. Apply the above-mentioned local search algorithm to the selected initial solution. 

This local search part is used after the genetic operations (i.e., Step 2 of our MOGA). 

 We applied our MOGLS algorithm to our rule selection problem with 900 candidate rules generated 

from various fuzzy partitions in Subsection 3.4. For fair comparison, our MOGLS algorithm was 

terminated when 500000 rule sets were examined. Thus the computation load of our MOGLS algorithm 

in this subsection is the same as that of the MOGA in Subsection 3.4. Non-dominated solutions obtained 

from 20 trials are summarized in Table 12. We can see that the five rule sets with three rules in Table 12 

are the same as those in Table 11. That is, the hybridization with local search did not clearly improve the 

search ability of the MOGA. This is mainly because good non-dominated rule sets had already been 

obtained by the MOGA in Table 11. Note that the elimination procedure of unnecessary rules in the 

MOGA works as a kind of local search. In Table 12, no rule sets with four rules were obtained while three 

rule sets were obtained in Table 11 by the MOGA. The decrease in the variety of obtained non-dominated 

solutions is a negative effect of the hybridization with local search. This negative effect, however, is not 

severe in our simulation results because rule sets with three rules have high classification rates in Table 

12. One advantage of the MOGLS algorithm over the MOGA is less computation time. The average CPU 

time for a single trial was decreased from 4.08 minutes in Table 11 to 1.68 minutes in Table 12 by the 

hybridization of the MOGA with local search. This is because local search can be more efficiently 

executed than genetic search. In our computer simulations, the MOGA in Table 11 and the MOGLS in 

Table 12 were compared under the same number of examined rule sets. Of course, the MOGLS spends 

much more computation time than the MOGA if we compare them under the same number of generation 
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updates. In this case, much more rule sets are examined by the MOGLS than the MOGA.  

Table 12  Simulation results by our MOGLS algorithm. 

Number of rules 
 )(2 Sf

Average rule length 
 ||/)(3 SSf

Classification rate 
mSf /)(100 1×  (%) 

3 1.00  94.9  
3 1.33  96.1  
3 1.67  98.3  
3 2.00  99.4  
3 2.33  100.0  

 

4.2 Combination with Weight Learning  

 As shown in [11,23], the classification accuracy of fuzzy rule-based systems can be improved by 

adjusting the rule weight of each fuzzy if-then rule. We use a simple reward-and-punishment scheme [23]. 

When a training pattern  is correctly classified by the winner rule  in a rule set, its rule weight 

 is increased as  

px *qR

*qCF

)1( *1**
Old

q
old

q
New

q CFCFCF −+= η ,         (23) 

where 1η  is a learning rate for increasing rule weights. The rule weights of the other rules in the rule set 

are not changed. On the other hand, when the training pattern  is misclassified by the winner rule , 

its rule weight  is decreased as  

px *qR

*qCF

Old
q

old
q

New
q CFCFCF *2** η−= ,          (24) 

where 2η  is a learning rate for decreasing rule weights. The rule weights of the other rules are not 

changed. In our computer simulations, 1η  and 2η  were specified as =1η 0.001 and =2η 0.1 as in [23], 

respectively. 

 This learning procedure is applied to all strings in the current population after local search. All the 

given training patterns are examined in a single iteration of our learning procedure for each string. Thus 

our learning procedure may be time-consuming if it is iterated many times. In our computer simulations, 

we iterated our learning procedure just twice for each string in the current population. Note that the 
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adjusted rule weights in each generation are not inherited to the next generation. 

 We applied our MOGLS algorithm with rule weight learning to the wine data in the same manner as 

in the previous subsection. Simulation results of 20 trials are summarized in Table 13. We can see that 

obtained non-dominated rule sets in Table 13 are almost the same as those in Table 11 and Table 12. This 

is because good non-dominated rule sets had already been obtained by the MOGA in Table 11 using the 

best heuristic definition of rule weights. The average CPU time increased from 1.68 minutes in Table 12 

to 2.52 minutes in Table 13 by combining our MOGLS algorithm with rule weight learning. The increase 

in the CPU time by the hybridization with rule weight learning was not significant because the number of 

iterations of the learning algorithm was just two for each rule set.  

Table 13  Simulation results by our MOGLS algorithm with rule weight learning.  

Number of rules 
 )(2 Sf

Average rule length 
 ||/)(3 SSf

Classification rate 
mSf /)(100 1×  (%) 

3 1.00  92.7  
3 1.33  96.6  
3 1.67  98.3  
3 2.00  99.4  
3 2.67  100.0  
4 1.00  97.2  

 The effect of the hybridization with rule weight learning becomes clear if we use a different heuristic 

definition of rule weights. In our previous computer simulations, we used the best heuristic definition 

chosen in Section 2 (i.e., the proposed heuristic definition in (14)-(15)). We also performed computer 

simulations using the previous heuristic definition of rule weights in (12)-(13). The highest classification 

rate of rule sets with three fuzzy if-then rules was 99.4% by the MOGA, 99.4% by the MOGLS, and 

100% by the MOGLS with rule weight learning. These simulation results show that rule weight learning 

improved the classification ability of obtained rule sets.  

5. Performance Evaluation of Selected Rules 

 Through the previous computer simulations in this paper, we have already shown that the 

prescreening of candidate rules using the product criterion improved the efficiency of our MOGA for rule 

selection. We have also implemented and examined hybrid algorithms of our MOGA with local search 

and rule weight learning. In those computer simulations, we only calculated classification rates of selected 

rule sets on training patterns. In this section, we examined classification rates on unseen test patterns for 
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evaluating the generalization ability of selected rule sets. 

5.1 Data Sets and Simulation Conditions 

 The iris data and the Australian credit approval data in the UCI Machine Learning Repository were 

used in our computer simulations in this section in addition to the wine data used in the previous sections. 

The iris data set is a three-class pattern classification problem involving 150 patterns with four continuous 

attributes. We used the iris data set in our computer simulations because it is one of the most frequently 

used test problems in the literature. Each attribute value was normalized in a real number in the closed 

interval . Thus the iris data set was handled as a three-class problem in the four-dimensional unit 

hypercube . Since the iris data set is not a high-dimensional classification problem, we examined 

all the possible combinations of 14 linguistic values in Fig. 1 and don’t care (i.e.,  

combinations) for generating candidate rules. Using the product criterion, we chose 900 candidate rules 

from the generated fuzzy if-then rules.  

]1,0[

4]1,0[

4)114( +

 The credit data set is a two-class pattern classification problem involving 690 patterns with 14 

attributes. Among the 14 attributes, four are binary, and two are ternary. One attribute involves nine 

discrete values. Another one has 14 discrete values. The other six are continuous attributes. This data set 

is also well known because it has often been used in the literature such as Quinlan’s C4.5 book [26]. All 

attribute values (including discrete ones) were normalized into real numbers in the unit interval [0, 1]. For 

example, we used {0, 1} and {0, 0.5, 1} for binary and ternary attributes, respectively. Thus the credit 

data set was handled as a two-class problem in the 14-dimensional unit hypercube . When we 

generated candidate fuzzy if-then rules, we used only two linguistic values  and  in Fig. 1 (a) and 

don’t care for the binary attributes. For the ternary attributes, we used five linguistic values in Fig. 1 (a)-

(b) and don’t care. For the other attributes, we used all the 14 linguistic values in Fig. 1 and don’t care. 

We generated 900 candidate rules from the credit data in the same manner as the computer simulations on 

the wine data in Subsection 3.4. 

14]1,0[

2S 2L

 For calculating average classification rates on test data for the wine data and the iris data, we used the 

leaving-one-out (LV1) technique [29]. The whole LV1 procedure was iterated ten times for calculating 

average classification rates of selected rule sets for each of the iris and wine data sets. For the credit data 

set, we use the 10-fold cross-validation (10-CV) technique [29]. In the 10-CV technique, the credit data 

set was divided into ten subsets of the same size. Nine subsets were used as training data, and the other 

subset was used as test data. This train-and-test procedure was iterated ten times so that all the ten subsets 

were used as test data once. The whole 10-CV procedure was iterated 50 times using different partitions 

of the credit data into ten subsets for calculating average classification rates on test data. In all computer 
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simulations in this section, we used our MOGLS algorithm with rule weight learning.  

5.2 Simulation Results on Wine Data 

 Simulation results on the wine data set with 178 patterns are summarized in Table 14. As we have 

already mentioned, the whole LV1 procedure was iterated ten times. This means that the rule selection 

was performed 1780 times. The last column of Table 14 shows the number of trials where the 

corresponding combination of the number of rules and the average rule length was obtained. In Table 14, 

we only show frequently obtained combinations (i.e., more than 500 trials) of the number of rules and the 

average rule length. Rule sets with less than three rules are not shown in Table 14 because the wine data 

with three classes need at least three rules (i.e., at least one rule for each class). 

 For the wine data set, Setnes & Roubos [28] reported a 98.3% classification rate on training data by 

three fuzzy if-then rules. Our results on training data in the previous sections (e.g., a 100% classification 

rate by three rules) were better than the reported result in [28]. Castillo et al. [3] reported a 96.76% 

average classification rate on test data (30% of the wine data) where the average number of fuzzy if-then 

rules was 5.2 over five independent trials. Since their SLAVE algorithm used a union (i.e., disjunction) of 

multiple linguistic values as a single antecedent fuzzy set, the number of fuzzy if-then rules can be 

decreased. For example, the fuzzy if-then rule “If  is small or medium and  is medium or large then 

Class 2” was handled as a single rule in [3] while it is handled as four rules in this paper. From Table 14, 

we can see that our approach found rule sets with fewer rules than the SLAVE algorithm. Classification 

rates on test data by our approach are comparable to the reported result by the SLAVE algorithm (i.e., 

96.76%) when fuzzy rules are not too short in Table 14 (i.e., 96.1% and 97.2%). It should be noted that 

our fuzzy rules are much simpler than those in the SLAVE with arbitrary conjunctions of linguistic values 

in the antecedent part (see Fig. 3 and Fig. 4 in Section 3).  

1x 2x

Table 14  Classification rates on test data for the wine data set.  

Number of rules 
 )(2 Sf

Average rule length 
 ||/)(3 SSf

Classification rate  
on test data (%) 

Number of runs 
among 1,780 runs 

3 1.00 86.3  1,660 
3 1.33 90.1  1,743 
3 1.67 92.8  1,688 
3 2.00 93.9  1,618 
3 2.33 96.1  1,419 
3 2.67 97.2  503 

 

5.3 Simulation Results on Iris Data 

 Simulation results on the iris data set are summarized in Table 15 in the same manner as Table 14 in 
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the previous subsection. For the iris data set, a 97.3% classification rate on test data (75 patterns) and a 

100% classification rate on training data (75 patterns) were obtained from three fuzzy if-then rules with 

ellipsoidal regions, which were generated by a clustering technique and tuned by an analytical learning 

scheme in Abe & Thawonmas [1]. In Nauck & Kruse [22], a 96.0% classification rate on test data (75 

patterns) and a 97.3% classification rate on training data (75 patterns) were obtained from three fuzzy if-

then rules, which were generated and tuned by a neuro-fuzzy technique after heuristically selecting two 

attributes out of the given four attributes. The generalization ability of selected three rules with the 

average length two (i.e., a 96.4% classification rate) in Table 15 is comparable to the 96.0% classification 

rate in [22] and slightly inferior to the 97.3% classification rate in [1]. Note that our approach uses given 

linguistic values with no modification while antecedent fuzzy sets in [1] were generated from numerical 

data and tuned using neuro-fuzzy techniques. When we use many fuzzy if-then rules with no rule 

selection, high classification rates can be obtained without tuning antecedent fuzzy sets (e.g., 98.0% on 

test data in [23]).  

Table 15  Classification rates on test data for the iris data set.  

Number of rules 
 )(2 Sf

Average rule length 
 ||/)(3 SSf

Classification rate  
on test data (%) 

Number of runs 
among 1,500 runs 

3 1 94.9  1,491 
3 1.3333 94.5  1,429 
3 1.6667 94.9  1,052 
3 2 96.4  690 

 

5.5 Simulation Results on Credit Data 

 Simulation results on the credit data are summarized in Table 16. This table shows combinations of 

the number of rules and the average rule length obtained in more than 300 among 500 trials (i.e., 50 

iterations of the 10-CV procedures). In Quinlan [26], the C4.5 algorithm was applied to the credit data. 

The following results were reported in [26] as classification rates on test data by the C4.5 algorithm with 

various parameter specifications. The best result was 85.8%, the average result was 84.3%, and the worst 

result was 82.5% (see Table 9-1 of [26]). Our results in Table 16 are comparable to those results by the 

C4.5 algorithm. Note that very simple rule sets with only a few fuzzy rules were obtained in Table 16 by 

our approach. 
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Table 16  Classification rates on test data for the credit data. 

Number of rules 
 )(2 Sf

Average rule length 
 ||/)(3 SSf

Classification rate  
on test data (%) 

Number of runs 
among 500 runs 

2 0.50 85.5  468 
2 1.00 85.2  495 
2 1.50 85.0  356 
2 2.00 84.6  305 
3 1.67 85.2  362 
3 2.00 84.8  357 

 

6. Concluding Remarks 

 In this paper, we proposed an idea of using rule evaluation measures (i.e., confidence, support, and 

their product) as rule selection criteria for prescreening candidate fuzzy if-then rules used in rule selection. 

In our approach, first a number of candidate rules were selected using the product criterion. That is, fuzzy 

if-then rules with large values of this criterion were chosen as candidate rules. Then non-dominated 

subsets of the candidate rules were found by our multi-objective genetic algorithm (MOGA) with three 

objectives: to maximize the classification accuracy, to minimize the number of rules, and to minimize the 

total rule length. Through computer simulations, we demonstrated that the prescreening of candidate rules 

significantly improved the efficiency of our rule selection method. That is, better rule sets were obtained 

in shorter CPU time by our approach than the case with no candidate rule prescreening. Simulation results 

also showed that better results were obtained by our GA-based rule selection than heuristic rule selection 

using the three rule evaluation measures. This is because the performance of rule sets was not taken into 

account when rule selection was performed based on the rule evaluation measures. That is, only the 

performance of each individual rule was taken into account independently of other rules in the same rule 

set. Our approach, however, can choose a small number of fuzzy if-then rules by evaluating the 

classification performance of rule sets. For improving the classification ability of fuzzy rule-based 

systems, we also proposed a heuristic specification method of rule weights (i.e., certainty factors) of fuzzy 

if-then rules. Simulation results showed that the proposed heuristic method outperformed other existing 

methods. 

 Our MOGA in our former studies [10,12] was extended to a multi-objective genetic local search 

(MOGLS) algorithm by the hybridization with local search. The efficiency of our MOGA was improved 

by this hybridization with respect to CPU time. This is because local search can be executed more 

efficiently than genetic search. At the same time, the hybridization with local search has a negative effect 

on the search ability of our MOGA. Local search tends to decrease the diversity of populations. We 
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further combined our MOGLS algorithm with rule weight learning. This hybridization improved the 

classification performance of selected rule sets when heuristic specifications of rule weights were not 

appropriate. Finally, we examined the generalization ability of selected rule sets by our MOGLS 

algorithm with rule weight learning. Through computer simulations on the wine data, the iris data and the 

credit data, it was shown that the generalization ability of selected rule sets was comparable to reported 

results in the literature by other approaches while membership functions of antecedent fuzzy sets were not 

tuned in our approach. While we used the MOGLS with rule weight learning in our computer simulations, 

our MOGA may also work well because the number of candidate rules was not large (i.e., 900 candidate 

rules) and the rule weight of each fuzzy if-then rule was appropriately specified by the proposed 

definition.  

 One advantage of our approach is that compact rule sets with very simple fuzzy if-then rules can be 

obtained. That is, obtained rule sets have high interpretability. Another advantage is that multiple rule sets 

with different complexity can be obtained. That is, a tradeoff between interpretability and accuracy of 

fuzzy rule-based systems can be examined by our approach. Simulation results clearly show these 

advantages of our approach. Currently we are examining the application of our approach to real-world 

credit data with 28 attributes and more than 3000 cases. Our approach is applicable to such a large data 

set because the number of candidate rules is decreased by the prescreening procedure based on the rule 

evaluation measures in data mining. Our preliminary results on this data set are promising when we use 

inhomogeneous fuzzy partitions. We will report complete simulation results in another paper.  

 Our approach can be further improved in several aspects. One is the sophistication of the candidate 

rule prescreening procedure. In our computer simulations of this paper, we first generated fuzzy if-then 

rules of the length L or less where L is a user-definable parameter. Next the generated fuzzy if-then rules 

were divided into M groups according to their consequent classes where M is the number of classes. Then 

 candidate rules were chosen from each of the M groups where N is a user-definable parameter. In 

this candidate rule prescreening procedure, the generation of all the fuzzy if-then rules of the length L or 

less is not necessary. The sorting of all the fuzzy if-then rules in each group is not necessary, either. This 

is because the aim of the candidate rule prescreening is not to order all the fuzzy if-then rules of the length 

L or less but to find N candidate rules. That is, we do not have to generate and sort poor fuzzy if-then 

rules. The computation time for generating candidate rules may be significantly decreased by examining 

only promising fuzzy if-then rules. In such a sophisticated prescreening procedure, the specification of the 

value of L may be unnecessary because long fuzzy if-then rules (i.e., specific fuzzy if-then rules) are not 

likely to be selected as candidate rules by the product criterion of the confidence and the support. Another 

topic for future research is the improvement of the local search procedure. The effect of local search 

strongly depends on the choice of a neighborhood structure that is used for generating neighboring 

MN /
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solutions of the current one. In this paper, we generated three neighboring solutions. The procedure for 

generating neighboring solutions may be improved in future research. The search ability of our MOGA 

can be also improved by using state-of-the-art evolutionary algorithms for multi-objective optimization 

problems (e.g., see [30,31]) because our MOGA is very simple. 
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