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Abstract. This paper examines two repair schemes (i.e., Lamarckian and 
Baldwinian) through computational experiments on multiobjective 0/1 
knapsack problems. First we compare Lamarckian and Baldwinian with each 
other. Experimental results show that the Baldwinian repair outperforms the 
Lamarckian repair. It is also shown that these repair schemes outperform a 
penalty function approach. Then we examine partial Lamarckianism where the 
Lamarckian repair is applied to each individual with a prespecified probability. 
Experimental results show that a so-called 5% rule works well. Finally partial 
Lamarckianism is compared with an island model with two subpopulations 
where each island has a different repair scheme. Experimental results show that 
the island model slightly outperforms the standard single-population model 
with the 50% partial Lamarckian repair in terms of the diversity of solutions. 


1  Introduction 


Since 1990s, multiobjective 0/1 knapsack problems have been frequently used to 
evaluate the performance of various multiobjective metaheuristics including 
evolutionary multiobjective optimization (EMO) algorithms [4-7, 11, 16, 18]. When 
EMO algorithms are applied to multiobjective 0/1 knapsack problems, unfeasible 
solutions are often generated by genetic operations. That is, generated solutions do 
not always satisfy the constraint conditions. Thus several constraint handling methods 
have been examined in the application of EMO algorithms to multiobjective 0/1 
knapsack problems (e.g., Ishibuchi & Kaige [4], Mumford [11], and Zydallis & 
Lamont [18]). Constraint handling methods for multiobjective 0/1 knapsack problems 
can be roughly classified into the following three categories: 
Greedy Repair: An unfeasible solution is repaired by removing items until all the 
constraint conditions are satisfied. The order in which items are removed is pre-
specified based on a heuristic measure for evaluating each item. 
Penalty Function: Objective functions are penalized when constraint conditions are 
violated.  
Permutation Coding: Each solution is not represented by a binary string but a 
permutation of items. That is, the order of items is used as a string to represent each 
solution. A feasible solution is obtained from each permutation-type string by adding 







items to the knapsacks in the order specified by that string. 
 In this paper, we concentrate on the comparison between two implementation 
schemes of greedy repair: Lamarckian and Baldwinian. In the Lamarckian 
implementation, a feasible solution is generated from an unfeasible one by removing 
items until all the constraint conditions are satisfied. That is, the genetic information 
of the unfeasible solution is modified by greedy repair as shown in Fig. 1. As a result, 
each population includes no unfeasible solutions. Since Zitzler & Thiele [16], the 
Lamarckian implementation has been implicitly used in almost all computational 
experiments of EMO algorithms with greedy repair on multiobjective 0/1 knapsack 
problems [4-7, 11, 18]. 
 On the other hand, the genetic information of an unfeasible solution is not changed 
in the Baldwinian implementation where greedy repair is used only to evaluate the 
fitness value of each solution. As shown in Fig. 2, the same feasible solution as in Fig. 
1 is generated from the unfeasible solution by greedy repair. This feasible solution is 
used only to assign the fitness value to the unfeasible solution. As a result, each 
population becomes a mixture of feasible and unfeasible solutions. 
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Fig. 1. Illustration of the Lamarckian implementation of greedy repair. 
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Fig. 2. Illustration of the Baldwinian implementation of greedy repair. 


 In this paper, we first briefly explain multiobjective 0/1 knapsack problems and 
two repair methods examined in Ishibuchi & Kaige [4] and Zydallis & Lamont [18]. 
The two repair methods are the maximum ratio repair and the weighted scalar repair. 
Next we examine the two implementation schemes (i.e., Lamarckian and Baldwinian) 
of these repair methods. The two implementation schemes are compared with each 
other through computational experiments on multiobjective 0/1 knapsack problems in 
Zitzler & Thiele [16] using the NSGA-II algorithm of Deb et al. [2]. While better 







results can be obtained by memetic EMO algorithms (e.g., MOGLS [6]) for 
multiobjective 0/1 knapsack problems, we use the NSGA-II algorithm because it 
seems to be the most frequently used EMO algorithm in the literature. Experimental 
results show that the Baldwinian repair outperforms the Lamarckian repair as in many 
other studies on single-objective combinatorial optimization problems (e.g., Liu et al. 
[9] and Orvosh & Davis [12,13]). We also evaluate the performance of the repair 
methods in comparison with a penalty function approach where objective functions 
are penalized when constraint conditions are violated. Then we examine the 
performance of partial Lamarckianism where the Lamarckian repair is applied to each 
unfeasible solution with a prespecified probability. When the Lamarckian repair is not 
applied, the unfeasible solution is handled by the Baldwinian repair. 
 Partial Lamarckianism has been examined in some studies on single-objective 
optimization problems. For example, Orvosh & Davis [12,13] found that good results 
were obtained for combinatorial optimization problems by the application of the 
Lamarckian repair to each unfeasible solution with a 5% probability while 
Michalewicz & Nazhiyath [10] used a 20% probability for continuous optimization 
problems. On the other hand, Houck et al. [3] showed that good results were obtained 
from 20% and 40% partial Lamarckianism search strategies on a number of test 
problems. Our experimental results show that a so-called 5% rule [12,13] works well 
on multiobjective 0/1 knapsack problems. Finally partial Lamarckianism is compared 
with an island model with two subpopulations where each island has a different repair 
scheme (i.e., Lamarckian or Baldwinian). Experimental results show that the island 
model slightly outperforms the standard single-population model with the 50% partial 
Lamarckian repair in terms of the diversity of solutions. 


2  Multiobjective 0/1 Knapsack Problems 


The following k-objective 0/1 knapsack problem with k knapsacks and n items was 
used in Zitzler & Thiele [16] where an objective function as well as a constraint 
condition was related to each knapsack: 
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In this formulation, x is an n-dimensional binary vector (i.e., n
nxxx }1,0{)...,,,( 21 ∈ ), 


ijp  is the profit of item j according to knapsack i, ijw  is the weight of item j 
according to knapsack i, and ic  is the capacity of knapsack i. Each solution x is 
handled by a binary string of length n in our computational experiments. As a test 
problem, we use a two-objective 500-item (i.e., 2-500) knapsack problem in [16]. 







3  Repair Methods 


Zitzler & Thiele [16] used a greedy repair method where items were removed in the 
ascending order of the maximum profit/weight ratio jq  over all knapsacks: 


   },...,2,1|max{ kiwpq ijijj == , nj ,...,2,1= .           (4) 


The maximum profit/weight ratio jq  in (4) has been used in many studies on EMO 
algorithms (e.g., Knowles & Corne [7]). In this paper, we refer to this repair method 
as maximum ratio repair. 
 While Pareto ranking was used to evaluate each solution in many EMO algorithms 
(e.g., Deb et al. [2] and Zitzler & Thiele [16]), the following weighted scalar fitness 
function was used in some EMO algorithms (e.g., Jaszkiewicz [5, 6]): 
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 In a multiobjective genetic local search (MOGLS) algorithm of Jaszkiewicz [5, 6], 
the weighted scalar fitness function in (5) was used in the following manner. When a 
pair of parent solutions is to be selected, first the weight vector )...,,( 1 kλλ=λ  is 
randomly specified. Next the best K solutions are selected from the current population 
using the weighted scalar fitness function with the current weight vector. Then a pair 
of parent solutions is randomly chosen from those K solutions in order to generate an 
offspring by genetic operations from the selected pair. The same weighted scalar 
fitness function with the current weight vector is used in the repair for the generated 
offspring where items are removed in the ascending order of the following ratio: 
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We refer to this repair method as weighted scalar repair. A local search procedure is 
applied to the repaired offspring using the same scalar fitness function with the 
current weight vector. The weighted scalar repair is also used in the local search phase.  
 It should be noted that the weighted scalar repair is directly applicable only to the 
MOGLS with the weighted scalar fitness function. In the application to the NSGA-II 
algorithm [2] in this paper, we use the weighted scalar repair by randomly updating 
the weight vector )...,,( 1 kλλ=λ  for each unfeasible solution. That is, a different 
weight vector is assigned to each unfeasible solution.  
 For illustrating each repair method, we randomly generate an n-dimensional binary 
vector )...,,( 1 nxx=x  by assigning 0 with the probability 0.4 and 1 with the 
probability 0.6 to each jx . Then we generate a feasible solution using one of the two 
repair methods if the randomly generated binary vector is unfeasible. When the 
randomly generated binary vector is feasible, we return to the first step in order to 







generate another binary vector. The random generation of an unfeasible solution and 
the application of a repair method to the generated unfeasible solution are iterated to 
obtain a prespecified number of feasible solutions. We can draw the trajectory from 
each unfeasible solution to its repaired one in the objective space. 
 In Fig. 3 (a), we show the trajectories from 10 unfeasible solutions by the 
maximum ratio repair for the 2-500 test problem. In this figure, unfeasible and 
feasible solutions are denoted by open circles and closed circles, respectively. It 
should be noted that the same order of items specified by (4) is always used for all the 
10 unfeasible solutions in the case of the maximum ration repair. Thus the directions 
of the trajectories are similar to each other in Fig. 3 (a). On the other hand, Fig. 3 (b) 
shows the trajectories from the same 10 unfeasible solutions by the weighted scalar 
repair. In the weighted scalar repair, a different order of items is used for each 
unfeasible solution because the weight vector )...,,( 1 kλλ=λ  in (7) is randomly 
updated for each unfeasible solution. As a result, we observe various directions of the 
trajectories in Fig. 3 (b). 
 From the comparison between Fig. 3 (a) and Fig. 3 (b), one may think that the 
weighted scalar repair has a positive effect on the diversity of obtained solution sets 
by EMO algorithms. Our computational experiments in the next section show that 
better solution sets with larger diversity are actually obtained from the weighted 
scalar repair than the maximum ratio repair. Similar results have been reported with 
respect to the performance of the two repair methods in the literature [4, 18]. 
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       (a) Maximum ratio repair         (b) Weighted scalar repair 


Fig. 3. Unfeasible solutions (open circles) and repaired solutions (closed circles). 


 Each repair method is implemented in the two implementation schemes: 
Lamarckian and Baldwinian. This means that we examine the four combinations of 
the two repair methods and the two implementation schemes. We also implement a 
partial Lamarckian repair strategy, which can be viewed as a hybrid version of the 
Lamarckian and Baldwinian implementation schemes. 







 Just for comparison, we also examine the performance of a penalty function 
approach. Using a positive constant α  representing a unit penalty with respect to the 
violation of each constraint condition, we formulate the following k-objective 
optimization problem with no constraint conditions from the original k-objective 0/1 
knapsack problem in (1)-(3): 
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In this formulation, each objective )(xif  is penalized when the corresponding 
constraint condition is violated. The application of EMO algorithms to the k-objective 
optimization problem in (8)-(9) is straightforward because no constraint conditions 
are involved. When we evaluate the performance of an EMO algorithm with the 
penalty function approach, we only examine feasible solutions in the final solution set 
obtained by each run of the EMO algorithm (i.e., unfeasible solutions of the original 
knapsack problem are not taken into account in the performance evaluation). 


4  Computational Experiments 


4.1  Conditions of Computational Experiments 


We incorporate each of the four combinations of the two repair methods and the two 
implementation schemes into the NSGA-II algorithm [2]. As a test problem, we use 
the two-objective 500-item knapsack problem (i.e., 2-500 test problem) in Zitzler & 
Thiele [16]. Each solution is coded as a binary string of length 500. Each of the four 
variants of the NSGA-II algorithm is applied to the test problem under the following 
parameter specifications:  


Crossover probability (one-point crossover): 0.8,  
Mutation probability (bit-flip mutation): 4/500, 
Population size: 200, 
Stopping condition: 500 generations. 


The average performance of each variant was calculated over 30 runs with different 
initial populations. 
 A number of performance measures have been proposed for evaluating a set of 
non-dominated solutions in the literature. As explained in Knowles & Corne [8] and 
Zitzler et al. [17], no performance measure can simultaneously evaluate various 
aspects of a solution set. In this paper, we visually compare each variant of the 
NSGA-II algorithm by drawing the 50% attainment surface in the two-dimensional 
objective space over 30 runs. We also use two performance measures that are 







applicable to simultaneous comparison of many solution sets. Let S be a solution set 
obtained by an EMO algorithm. The proximity of the solution set S to the Pareto front 
is evaluated by the generational distance (GD) as follows [15]:  
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where *S  is a reference solution set (i.e., the set of all Pareto-optimal solutions) and 
xyd  is the distance between a solution x and a reference solution y in the k-


dimensional objective space ( =k 2 in our computational experiments): 
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 For evaluating both the diversity of solutions in the solution set S and the 
convergence to the Pareto front, we calculate the RD1  measure as follows [1]: 
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It should be noted that )(D1R S  is the average distance from each reference solution y 
in *S  to its nearest solution in S while )(GD S  in (10) is the average distance from 
each solution x in S to its nearest reference solution in *S . The generational distance 
evaluates the proximity of the solution set S to the reference solution set *S . On the 
other hand, the RD1  measure evaluates how well the solution set S approximates the 
reference solution set *S . Since all the Pareto-optimal solutions are known for the 2-
500 test problem, we can use them as the reference solution set *S . 


4.2  Comparison of Two Implementation Schemes: Lamarckian and Baldwinian 


Experimental results are summarized in Table 1 where the average value of each 
performance measure over 30 runs is shown together with the corresponding standard 
deviation in parentheses. It should be noted that smaller values of each performance 
measure mean better results. In Table 1, the better result between the two 
implementation schemes (i.e., Lamarckian and Baldwinian) is indicated by boldface 
for each combination of the two performance measures and the two repair methods. 
From Table 1, we can see that the Baldwinian implementation consistently 
outperforms the Lamarckian implementation for all the four combinations of the two 
performance measures and the two repair methods. We can also see from Table 1 that 
much better results are obtained from the weighted scalar repair than the maximum 
ratio repair as we expected from the trajectories by each repair method in Fig. 3. For 
visually demonstrating the above-mentioned observations, we show in Fig. 4 the 50% 
attainment surface over 30 runs for each combination of the two implementation 
schemes and the two repair methods. We can see from Fig. 4 that better results are 
obtained from the Baldwinian implementation scheme and the weighted scalar repair.  







Table 1. Average value of each performance measure over 30 runs and the corresponding 
standard deviation in parentheses.  


Generational distance (GD) D1R measure 
Repair method 


Lamarckian Baldwinian Lamarckian Baldwinian 
Maximum ratio 324 (32) 239 (24) 632 (42) 502 (47) 
Weighted scalar 155 (17) 100 (19) 269 (26) 103 (18) 


 
 


Pareto optimal solution
Lamarckian
Baldwinian


Total profit (knapsack 1)


To
ta


l p
ro


fit
 (k


na
ps


ac
k 


2)


15000 16000 17000 18000 19000 20000
16000


17000


18000


19000


20000


21000


    


Pareto optimal solution
Lamarckian
Baldwinian


Total profit (knapsack 1)


To
ta


l p
ro


fit
 (k


na
ps


ac
k 


2)


15000 16000 17000 18000 19000 20000
16000


17000


18000


19000


20000


21000


 
      (a) Maximum ratio repair           (b) Weighted scalar repair 


Fig. 4. Pareto front of the 2-500 test problem and the 50% attainment surface obtained from 30 
runs using each combination of the two implementation schemes and the two repair methods. 


 In order to further examine the two implementation schemes, we monitor the 
number of feasible solutions among 200 individuals in each generation. The number 
of feasible solutions in each generation is shown in Fig. 5 (a) for a single run with the 
maximum ratio repair. As we have already explained, all the 200 individuals at each 
generation are always feasible in the case of the Lamarckian implementation scheme. 
On the contrary, the number of feasible solutions rapidly decreases to zero in the early 
stage of evolution in the case of the Baldwinian implementation scheme in Fig. 5 (a).  
 We also monitor the average number of items in each solution during the same 
computational experiments as Fig. 5 (a). Experimental results are summarized in Fig. 
5 (b). From Fig. 5 (b), we can see that much more items are included in each solution 
in the case of the Baldwinian repair than the Lamarckian repair. We can also see that 
the increase in the average number of items is very slow after the 100th generation 
even in the case of the Baldwinian repair where all solutions are infeasible after the 
3rd generation as shown in Fig. 5 (a). 
 Furthermore, we monitor the number of removed items from each individual in 
each generation during the same computational experiments as Fig. 5. It should be 
noted that excess items are not actually removed from individuals in the case of the 







Baldwinian repair. We monitor the number of excess items that are tentatively 
removed to evaluate each individual in the case of the Baldwinian repair. The 
maximum number and the average number of removed items over 200 individuals in 
each generation are shown in Fig. 6 (a) and Fig. 6 (b), respectively. From Fig. 6 (b), 
we can see that only a few items are removed in the case of the Lamarckian repair on 
average while each individual includes about 60 excess items in the case of the 
Baldwinian repair. 
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Fig. 5. Experimental results of a single run with the maximum ratio repair. 
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Fig. 6. Maximum and average numbers of excess items removed by each implementation 
scheme of the maximum ratio repair. 


 In the same manner as Fig. 5 and Fig. 6, experimental results by the weighted 
scalar repair are shown in Fig. 7 and Fig. 8. From Figs. 5-8, we can see that the 
number of excess items consistently increases over 500 generations only when we use 
the Baldwinian implementation of the weighted scalar repair (see Fig. 8 (b)). As a 
result, much more items are included in each individual in this case. Even when the 
weighted scalar repair is used, only a few excess items are included in each individual 







in the case of the Lamarckian implementation (see Fig. 8 (b)). The difference in the 
average number of excess items between the two repair methods can be explained by 
the increase in the diversity of solutions by the weighted scalar repair. As shown in 
Fig. 3 (b), the weighted scalar repair spreads each individual over a wide range of the 
objective space. Thus the increase in the number of excess items contributes to the 
increase in the diversity of solutions in the objective space when we use the 
Baldwinian implementation of the weighted scalar repair. This explanation is 
consistent with the good result of the 50% attainment surface by the Baldwinian 
implementation of the weighted scalar repair in Fig. 4 (b). 
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Fig. 7. Experimental results of a single run with the weighted scalar repair. 
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Fig. 8. Maximum and average numbers of excess items removed by each implementation 
scheme of the weighted scalar repair. 


4.3  Comparison with Penalty Function Approach 


In the same manner as in Subsection 4.2, we apply the NSGA-II algorithm to the 2-
500 test problem 30 times using the penalty function approach in (8)-(9). We examine 







the various specifications of the unit penalty α : =α 1.0, 1.2, 1.4, ..., 3.0. Average 
results over 30 runs are depicted by open circles in Fig. 9 where we also show the 
average results by the Baldwinian implementation of the two repair methods in 
Subsection 4.2. It should be noted that smaller values mean better results in Fig. 9. 
From Fig. 9, we can see that good results are not obtained by the penalty function 
approach while we examine a wide range of parameter values. More specifically, we 
can see from Fig. 9 (a) that the convergence to the Pareto front degrades as the unit 
penalty α  increases. On the other hand, we can observe in Fig. 9 (b) that the diversity 
of obtained solutions degrades as the unit penalty α  decreases. 
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Fig. 9. Average results by the penalty function approach with various parameter values. 


4.4  Partial Lamarckianism 


It has been demonstrated in the literature [3, 10, 12, 13] that a partial Lamarckianism 
search strategy outperforms both pure Lamarckian and pure Baldwinian. We examine 
the effect of the partial Lamarckian implementation where the Lamarckian repair is 
applied to each individual with a prespecified probability (say LP %). When the 
Lamarckian repair is not applied, the individual is handled in the framework of the 
Baldwinian repair. We examine such a partial Lamarckian implementation for several 
specifications of the probability LP  of the Lamarckian repair: =LP 0, 20, 40, 60, 80, 
100 (%). It should be noted that =LP 0 and =LP 100 mean the pure Baldwinian 
repair and the pure Lamarckian repair, respectively. Experimental results are shown in 
Fig. 10 for the case of the maximum ratio repair. Fig. 10 (a) and Fig. 10 (b) show the 
average values of the generational distance (GD) and the RD1  measure over 30 runs, 
respectively. From Fig. 10, we can see that the quality of obtained solution sets is 
degraded by increasing the probability of the Lamarckian repair. 
 In order to examine the validity of a so-called 5% rule [12, 13], we perform 
exhaustive computational experiments using various values of the probability of the 
Lamarckian repair between 0% and 20%. Average results over 500 runs are shown in 







Fig. 11. From this figure, we can see that the partial Lamarckian repair improves the 
RD1  measure of the pure Baldwinian repair when the probability of the Lamarckian 


repair is specified around 5%. That is, the diversity of obtained solutions is improved 
by invoking the Lamarckian repair with a low probability. This observation supports 
the validity of the 5% rule in the implementation of a partial Lamarckianism repair for 
multiobjective 0/1 knapsack problems.  
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Fig. 10. Average results by the partial Lamarckian implementation of the maximum ratio repair  
over 30 runs. 


Probability of the Lamarckian repair (%)


A
ve


ra
ge


 v
al


ue
 o


f t
he


 G
D


 m
ea


su
re


Pure Baldwinian


0 5 10 15 20220


230


240


250


260


270


   Probability of the Lamarckian repair (%)


A
ve


ra
ge


 v
al


ue
 o


f t
he


 D
1 R


 m
ea


su
re


Pure Baldwinian


0 5 10 15 20500


510


520


530


540


 
        (a) Generational distance (GD)            (b) D1R measure 


Fig. 11. Further examination of the partial Lamarckian implementation of the maximum ratio 
repair through computational experiments with 500 runs. 


4.5  Comparison between Partial Lamarckianism and Island Model 


Recently Skolicki & De Jong [14] clearly demonstrated high search ability of multi-
representation island models for single-objective continuous optimization problems 







where each island used a different coding method. We examine a similar idea using 
the two implementation schemes of greedy repair (i.e., Lamarckian and Baldwinian). 
That is, we examine an island model with two subpopulations where one island uses 
the Lamarckian repair and the other island uses the Baldwinian repair. A prespecified 
number of individuals are randomly chosen from non-dominated solutions in each 
island (i.e., each subpopulation) at intervals of a prespecified number of generations. 
Then their copies are inserted to the other island. This island model is executed using 
the following parameter specifications: 


Subpopulation size: 100 (individuals), 
Migration interval: 10, 50, 100 (generations), 
Number of migrants: 10, 20, 50 (individuals). 


The other parameter values are the same as the previous computational experiments. 
The size of each subpopulation is specified as 100 so that the total number of 
individuals (i.e., 1002× ) is the same as the population size in the previous 
computational experiments. This specification is for comparing the island model with 
the standard single-population model with the 50% partial Lamarckian repair under 
the same computation load.  
 Experimental results by the island model are shown in Table 2 where the average 
values of the generational distance (GD) and the D1R measure are calculated over 30 
runs. We also show average results by the standard single-population model with the 
50% partial Lamarckian repair. The maximum ratio repair is used in Table 2. The best 
result for each performance measure is indicated by boldface. From this table, we can 
see that the island model improves the diversity of obtained solutions (see the fourth 
column labeled as D1R) while it degrades the convergence to the Pareto front (see the 
third column labeled as GD). 


Table 2. Average results over 30 runs by the island model with various parameter 
specifications. The maximum ratio repair is used in computational experiments in this table. 


Migration 
interval


Number of 
migrants GD D1R 


10 10 296 556 
10 20 290 579 
10 50 313 594 
50 10 288 566 
50 20 285 568 
50 50 300 560 


100 10 295 570 
100 20 296 549 
100 50 291 561 


50% Lamarckian 277 586 
 







5  Concluding Remarks 


We examined two implementation schemes (i.e., Lamarckian and Baldwinian) of 
greedy repair through computational experiments on multiobjective 0/1 knapsack 
problems using the NSGA-II algorithm. While the Lamarckian implementation has 
been almost always used in the application of EMO algorithms to multiobjective 0/1 
knapsack problems in the literature, better results were obtained by the Baldwinian 
implementation in this paper. The main contribution of this paper is that the 
superiority of the Baldwinian implementation over the Lamarckian implementation 
was clearly demonstrated through computational experiments on multiobjective 0/1 
knapsack problems. This observation is consistent with some reported results on 
single-objective optimization problems [9, 10, 12, 13]. 
 We also compared two greedy repair methods (i.e., maximum ratio repair and 
weighted scalar repair) with each other using the two implementation schemes. 
Independent of the choice of an implementation scheme, better results were obtained 
by the weighted scalar repair than the maximum ratio repair. This observation is 
consistent with some reported results [4, 5, 6, 18]. For comparison, we also examined 
the performance of the penalty function approach. In our computational experiments, 
better results could not be obtained from the penalty function approach in comparison 
with greedy repair. 
 In addition to pure Lamarckian and pure Baldwinian, we also examined their 
hybrid version (i.e., partial Lamarckianism search strategy) where the Lamarckian 
repair was applied to each individual with a prespecified probability. Some of our 
experimental results supported a so-called 5% rule where the Lamarckian repair and 
the Baldwinian repair were applied to each individual with 5% and 95% probabilities, 
respectively. That is, only 5% unfeasible solutions were actually repaired. Finally, we 
examined the performance of an island model with two subpopulations where each 
island used a different implementation scheme (i.e., Lamarckian or Baldwinian). In 
our computational experiments, we did not observe clear improvement by such an 
island model from the standard single-population model with the 50% partial 
Lamarckian repair. The use of the island model slightly improved the diversity of 
solutions. 
 While we empirically showed the superiority of the Baldwinian implementation 
over the Lamarckian implementation through computational experiments on 
multiobjective 0/1 knapsack problems, we could not clearly explain why the 
Baldwinian implementation outperformed the Lamarckian implementation in the 
application of EMO algorithms to multiobjective 0/1 knapsack problems. We did not 
examine the performance of the two implementation schemes for other test problems, 
either. Further empirical studies as well as theoretical studies are left for future 
research with respect to the comparison between the two implementation schemes for 
multiobjective optimization problems. 
 The authors would like to thank the financial support from Japan Society for the 
Promotion of Science (JSPS) through Grand-in-Aid for Scientific Research (B): 
KAKENHI (14380194). 
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