

Comparison between Lamarckian and Baldwinian
Repair on Multiobjective 0/1 Knapsack Problems

Hisao Ishibuchi, Shiori Kaige, and Kaname Narukawa

Department of Industrial Engineering, Osaka Prefecture University
1-1 Gakuen-cho, Sakai, Osaka, 599-8531, Japan

{hisaoi, shiori, kaname}@ie.osakafu-u.ac.jp

Abstract. This paper examines two repair schemes (i.e., Lamarckian and
Baldwinian) through computational experiments on multiobjective 0/1
knapsack problems. First we compare Lamarckian and Baldwinian with each
other. Experimental results show that the Baldwinian repair outperforms the
Lamarckian repair. It is also shown that these repair schemes outperform a
penalty function approach. Then we examine partial Lamarckianism where the
Lamarckian repair is applied to each individual with a prespecified probability.
Experimental results show that a so-called 5% rule works well. Finally partial
Lamarckianism is compared with an island model with two subpopulations
where each island has a different repair scheme. Experimental results show that
the island model slightly outperforms the standard single-population model
with the 50% partial Lamarckian repair in terms of the diversity of solutions.

1 Introduction

Since 1990s, multiobjective 0/1 knapsack problems have been frequently used to
evaluate the performance of various multiobjective metaheuristics including
evolutionary multiobjective optimization (EMO) algorithms [4-7, 11, 16, 18]. When
EMO algorithms are applied to multiobjective 0/1 knapsack problems, unfeasible
solutions are often generated by genetic operations. That is, generated solutions do
not always satisfy the constraint conditions. Thus several constraint handling methods
have been examined in the application of EMO algorithms to multiobjective 0/1
knapsack problems (e.g., Ishibuchi & Kaige [4], Mumford [11], and Zydallis &
Lamont [18]). Constraint handling methods for multiobjective 0/1 knapsack problems
can be roughly classified into the following three categories:
Greedy Repair: An unfeasible solution is repaired by removing items until all the
constraint conditions are satisfied. The order in which items are removed is pre-
specified based on a heuristic measure for evaluating each item.
Penalty Function: Objective functions are penalized when constraint conditions are
violated.
Permutation Coding: Each solution is not represented by a binary string but a
permutation of items. That is, the order of items is used as a string to represent each
solution. A feasible solution is obtained from each permutation-type string by adding

items to the knapsacks in the order specified by that string.
 In this paper, we concentrate on the comparison between two implementation
schemes of greedy repair: Lamarckian and Baldwinian. In the Lamarckian
implementation, a feasible solution is generated from an unfeasible one by removing
items until all the constraint conditions are satisfied. That is, the genetic information
of the unfeasible solution is modified by greedy repair as shown in Fig. 1. As a result,
each population includes no unfeasible solutions. Since Zitzler & Thiele [16], the
Lamarckian implementation has been implicitly used in almost all computational
experiments of EMO algorithms with greedy repair on multiobjective 0/1 knapsack
problems [4-7, 11, 18].
 On the other hand, the genetic information of an unfeasible solution is not changed
in the Baldwinian implementation where greedy repair is used only to evaluate the
fitness value of each solution. As shown in Fig. 2, the same feasible solution as in Fig.
1 is generated from the unfeasible solution by greedy repair. This feasible solution is
used only to assign the fitness value to the unfeasible solution. As a result, each
population becomes a mixture of feasible and unfeasible solutions.

1 1 0 1 1 1 1 1 1 0 1 0 0 1

Repair

Unfeasible solution
generated by genetic operations

Feasible solution
in the next population

* *

Fig. 1. Illustration of the Lamarckian implementation of greedy repair.

1 1 0 1 1 1 1 1 1 0 1 0 0 1
Repair

Unfeasible solution
generated by genetic operations Feasible solution

* *

1 1 0 1 1 1 1
Unfeasible solution

in the next population

Fitness value

Fitness evaluation

Fig. 2. Illustration of the Baldwinian implementation of greedy repair.

 In this paper, we first briefly explain multiobjective 0/1 knapsack problems and
two repair methods examined in Ishibuchi & Kaige [4] and Zydallis & Lamont [18].
The two repair methods are the maximum ratio repair and the weighted scalar repair.
Next we examine the two implementation schemes (i.e., Lamarckian and Baldwinian)
of these repair methods. The two implementation schemes are compared with each
other through computational experiments on multiobjective 0/1 knapsack problems in
Zitzler & Thiele [16] using the NSGA-II algorithm of Deb et al. [2]. While better

results can be obtained by memetic EMO algorithms (e.g., MOGLS [6]) for
multiobjective 0/1 knapsack problems, we use the NSGA-II algorithm because it
seems to be the most frequently used EMO algorithm in the literature. Experimental
results show that the Baldwinian repair outperforms the Lamarckian repair as in many
other studies on single-objective combinatorial optimization problems (e.g., Liu et al.
[9] and Orvosh & Davis [12,13]). We also evaluate the performance of the repair
methods in comparison with a penalty function approach where objective functions
are penalized when constraint conditions are violated. Then we examine the
performance of partial Lamarckianism where the Lamarckian repair is applied to each
unfeasible solution with a prespecified probability. When the Lamarckian repair is not
applied, the unfeasible solution is handled by the Baldwinian repair.
 Partial Lamarckianism has been examined in some studies on single-objective
optimization problems. For example, Orvosh & Davis [12,13] found that good results
were obtained for combinatorial optimization problems by the application of the
Lamarckian repair to each unfeasible solution with a 5% probability while
Michalewicz & Nazhiyath [10] used a 20% probability for continuous optimization
problems. On the other hand, Houck et al. [3] showed that good results were obtained
from 20% and 40% partial Lamarckianism search strategies on a number of test
problems. Our experimental results show that a so-called 5% rule [12,13] works well
on multiobjective 0/1 knapsack problems. Finally partial Lamarckianism is compared
with an island model with two subpopulations where each island has a different repair
scheme (i.e., Lamarckian or Baldwinian). Experimental results show that the island
model slightly outperforms the standard single-population model with the 50% partial
Lamarckian repair in terms of the diversity of solutions.

2 Multiobjective 0/1 Knapsack Problems

The following k-objective 0/1 knapsack problem with k knapsacks and n items was
used in Zitzler & Thiele [16] where an objective function as well as a constraint
condition was related to each knapsack:

 Maximize))(...,),(),(()(21 xxxxf kfff= , (1)

 subject to ∑
=

≤
n

j
ijij cxw

1
, ki ...,,2,1= , (2)

where

 ∑
=

=
n

j
jiji xpf

1
)(x , ki ...,,2,1= . (3)

In this formulation, x is an n-dimensional binary vector (i.e., n
nxxx }1,0{)...,,,(21 ∈),

ijp is the profit of item j according to knapsack i, ijw is the weight of item j
according to knapsack i, and ic is the capacity of knapsack i. Each solution x is
handled by a binary string of length n in our computational experiments. As a test
problem, we use a two-objective 500-item (i.e., 2-500) knapsack problem in [16].

3 Repair Methods

Zitzler & Thiele [16] used a greedy repair method where items were removed in the
ascending order of the maximum profit/weight ratio jq over all knapsacks:

 },...,2,1|max{ kiwpq ijijj == , nj ,...,2,1= . (4)

The maximum profit/weight ratio jq in (4) has been used in many studies on EMO
algorithms (e.g., Knowles & Corne [7]). In this paper, we refer to this repair method
as maximum ratio repair.
 While Pareto ranking was used to evaluate each solution in many EMO algorithms
(e.g., Deb et al. [2] and Zitzler & Thiele [16]), the following weighted scalar fitness
function was used in some EMO algorithms (e.g., Jaszkiewicz [5, 6]):

 ∑
=

=
k

i
ii ff

1
)(),(xx λλ , (5)

where

 0≥∀ ii λ and 1
1

=∑
=

k

i
iλ . (6)

 In a multiobjective genetic local search (MOGLS) algorithm of Jaszkiewicz [5, 6],
the weighted scalar fitness function in (5) was used in the following manner. When a
pair of parent solutions is to be selected, first the weight vector)...,,(1 kλλ=λ is
randomly specified. Next the best K solutions are selected from the current population
using the weighted scalar fitness function with the current weight vector. Then a pair
of parent solutions is randomly chosen from those K solutions in order to generate an
offspring by genetic operations from the selected pair. The same weighted scalar
fitness function with the current weight vector is used in the repair for the generated
offspring where items are removed in the ascending order of the following ratio:

 ∑∑
==

=
k

i
ij

k

i
ijij wpq

11
λ , nj ,...,2,1= . (7)

We refer to this repair method as weighted scalar repair. A local search procedure is
applied to the repaired offspring using the same scalar fitness function with the
current weight vector. The weighted scalar repair is also used in the local search phase.
 It should be noted that the weighted scalar repair is directly applicable only to the
MOGLS with the weighted scalar fitness function. In the application to the NSGA-II
algorithm [2] in this paper, we use the weighted scalar repair by randomly updating
the weight vector)...,,(1 kλλ=λ for each unfeasible solution. That is, a different
weight vector is assigned to each unfeasible solution.
 For illustrating each repair method, we randomly generate an n-dimensional binary
vector)...,,(1 nxx=x by assigning 0 with the probability 0.4 and 1 with the
probability 0.6 to each jx . Then we generate a feasible solution using one of the two
repair methods if the randomly generated binary vector is unfeasible. When the
randomly generated binary vector is feasible, we return to the first step in order to

generate another binary vector. The random generation of an unfeasible solution and
the application of a repair method to the generated unfeasible solution are iterated to
obtain a prespecified number of feasible solutions. We can draw the trajectory from
each unfeasible solution to its repaired one in the objective space.
 In Fig. 3 (a), we show the trajectories from 10 unfeasible solutions by the
maximum ratio repair for the 2-500 test problem. In this figure, unfeasible and
feasible solutions are denoted by open circles and closed circles, respectively. It
should be noted that the same order of items specified by (4) is always used for all the
10 unfeasible solutions in the case of the maximum ration repair. Thus the directions
of the trajectories are similar to each other in Fig. 3 (a). On the other hand, Fig. 3 (b)
shows the trajectories from the same 10 unfeasible solutions by the weighted scalar
repair. In the weighted scalar repair, a different order of items is used for each
unfeasible solution because the weight vector)...,,(1 kλλ=λ in (7) is randomly
updated for each unfeasible solution. As a result, we observe various directions of the
trajectories in Fig. 3 (b).
 From the comparison between Fig. 3 (a) and Fig. 3 (b), one may think that the
weighted scalar repair has a positive effect on the diversity of obtained solution sets
by EMO algorithms. Our computational experiments in the next section show that
better solution sets with larger diversity are actually obtained from the weighted
scalar repair than the maximum ratio repair. Similar results have been reported with
respect to the performance of the two repair methods in the literature [4, 18].

Total profit (knapsack 1)

To
ta

l p
ro

fit
 (k

na
ps

ac
k

2)

13000 14000 15000 16000 17000

14000

15000

16000

17000

18000

 Total profit (knapsack 1)

To
ta

l p
ro

fit
 (k

na
ps

ac
k

2)

13000 14000 15000 16000 17000

14000

15000

16000

17000

18000

 (a) Maximum ratio repair (b) Weighted scalar repair

Fig. 3. Unfeasible solutions (open circles) and repaired solutions (closed circles).

 Each repair method is implemented in the two implementation schemes:
Lamarckian and Baldwinian. This means that we examine the four combinations of
the two repair methods and the two implementation schemes. We also implement a
partial Lamarckian repair strategy, which can be viewed as a hybrid version of the
Lamarckian and Baldwinian implementation schemes.

 Just for comparison, we also examine the performance of a penalty function
approach. Using a positive constant α representing a unit penalty with respect to the
violation of each constraint condition, we formulate the following k-objective
optimization problem with no constraint conditions from the original k-objective 0/1
knapsack problem in (1)-(3):

 Maximize))(...,),(),(()(21 xxxxg kggg= , (8)

where

 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−⋅−= ∑

=
i

n

j
jijii cxwfg

1
,0max)()(αxx , ki ...,,2,1= . (9)

In this formulation, each objective)(xif is penalized when the corresponding
constraint condition is violated. The application of EMO algorithms to the k-objective
optimization problem in (8)-(9) is straightforward because no constraint conditions
are involved. When we evaluate the performance of an EMO algorithm with the
penalty function approach, we only examine feasible solutions in the final solution set
obtained by each run of the EMO algorithm (i.e., unfeasible solutions of the original
knapsack problem are not taken into account in the performance evaluation).

4 Computational Experiments

4.1 Conditions of Computational Experiments

We incorporate each of the four combinations of the two repair methods and the two
implementation schemes into the NSGA-II algorithm [2]. As a test problem, we use
the two-objective 500-item knapsack problem (i.e., 2-500 test problem) in Zitzler &
Thiele [16]. Each solution is coded as a binary string of length 500. Each of the four
variants of the NSGA-II algorithm is applied to the test problem under the following
parameter specifications:

Crossover probability (one-point crossover): 0.8,
Mutation probability (bit-flip mutation): 4/500,
Population size: 200,
Stopping condition: 500 generations.

The average performance of each variant was calculated over 30 runs with different
initial populations.
 A number of performance measures have been proposed for evaluating a set of
non-dominated solutions in the literature. As explained in Knowles & Corne [8] and
Zitzler et al. [17], no performance measure can simultaneously evaluate various
aspects of a solution set. In this paper, we visually compare each variant of the
NSGA-II algorithm by drawing the 50% attainment surface in the two-dimensional
objective space over 30 runs. We also use two performance measures that are

applicable to simultaneous comparison of many solution sets. Let S be a solution set
obtained by an EMO algorithm. The proximity of the solution set S to the Pareto front
is evaluated by the generational distance (GD) as follows [15]:

 ∑
∈

∈=
S

Sd
S

S
x

xy y }|min{
||

1)(GD * , (10)

where *S is a reference solution set (i.e., the set of all Pareto-optimal solutions) and
xyd is the distance between a solution x and a reference solution y in the k-

dimensional objective space (=k 2 in our computational experiments):

 22
11))()(())()((yxyxxy kk ffffd −+⋅⋅⋅+−= . (11)

 For evaluating both the diversity of solutions in the solution set S and the
convergence to the Pareto front, we calculate the RD1 measure as follows [1]:

 ∑
∈

∈=
*

}|min{
||

1)(D1 *R
S

Sd
S

S
y

xy x . (12)

It should be noted that)(D1R S is the average distance from each reference solution y
in *S to its nearest solution in S while)(GD S in (10) is the average distance from
each solution x in S to its nearest reference solution in *S . The generational distance
evaluates the proximity of the solution set S to the reference solution set *S . On the
other hand, the RD1 measure evaluates how well the solution set S approximates the
reference solution set *S . Since all the Pareto-optimal solutions are known for the 2-
500 test problem, we can use them as the reference solution set *S .

4.2 Comparison of Two Implementation Schemes: Lamarckian and Baldwinian

Experimental results are summarized in Table 1 where the average value of each
performance measure over 30 runs is shown together with the corresponding standard
deviation in parentheses. It should be noted that smaller values of each performance
measure mean better results. In Table 1, the better result between the two
implementation schemes (i.e., Lamarckian and Baldwinian) is indicated by boldface
for each combination of the two performance measures and the two repair methods.
From Table 1, we can see that the Baldwinian implementation consistently
outperforms the Lamarckian implementation for all the four combinations of the two
performance measures and the two repair methods. We can also see from Table 1 that
much better results are obtained from the weighted scalar repair than the maximum
ratio repair as we expected from the trajectories by each repair method in Fig. 3. For
visually demonstrating the above-mentioned observations, we show in Fig. 4 the 50%
attainment surface over 30 runs for each combination of the two implementation
schemes and the two repair methods. We can see from Fig. 4 that better results are
obtained from the Baldwinian implementation scheme and the weighted scalar repair.

Table 1. Average value of each performance measure over 30 runs and the corresponding
standard deviation in parentheses.

Generational distance (GD) D1R measure
Repair method

Lamarckian Baldwinian Lamarckian Baldwinian
Maximum ratio 324 (32) 239 (24) 632 (42) 502 (47)
Weighted scalar 155 (17) 100 (19) 269 (26) 103 (18)

Pareto optimal solution
Lamarckian
Baldwinian

Total profit (knapsack 1)

To
ta

l p
ro

fit
 (k

na
ps

ac
k

2)

15000 16000 17000 18000 19000 20000
16000

17000

18000

19000

20000

21000

Pareto optimal solution
Lamarckian
Baldwinian

Total profit (knapsack 1)

To
ta

l p
ro

fit
 (k

na
ps

ac
k

2)

15000 16000 17000 18000 19000 20000
16000

17000

18000

19000

20000

21000

 (a) Maximum ratio repair (b) Weighted scalar repair

Fig. 4. Pareto front of the 2-500 test problem and the 50% attainment surface obtained from 30
runs using each combination of the two implementation schemes and the two repair methods.

 In order to further examine the two implementation schemes, we monitor the
number of feasible solutions among 200 individuals in each generation. The number
of feasible solutions in each generation is shown in Fig. 5 (a) for a single run with the
maximum ratio repair. As we have already explained, all the 200 individuals at each
generation are always feasible in the case of the Lamarckian implementation scheme.
On the contrary, the number of feasible solutions rapidly decreases to zero in the early
stage of evolution in the case of the Baldwinian implementation scheme in Fig. 5 (a).
 We also monitor the average number of items in each solution during the same
computational experiments as Fig. 5 (a). Experimental results are summarized in Fig.
5 (b). From Fig. 5 (b), we can see that much more items are included in each solution
in the case of the Baldwinian repair than the Lamarckian repair. We can also see that
the increase in the average number of items is very slow after the 100th generation
even in the case of the Baldwinian repair where all solutions are infeasible after the
3rd generation as shown in Fig. 5 (a).
 Furthermore, we monitor the number of removed items from each individual in
each generation during the same computational experiments as Fig. 5. It should be
noted that excess items are not actually removed from individuals in the case of the

Baldwinian repair. We monitor the number of excess items that are tentatively
removed to evaluate each individual in the case of the Baldwinian repair. The
maximum number and the average number of removed items over 200 individuals in
each generation are shown in Fig. 6 (a) and Fig. 6 (b), respectively. From Fig. 6 (b),
we can see that only a few items are removed in the case of the Lamarckian repair on
average while each individual includes about 60 excess items in the case of the
Baldwinian repair.

Generation

N
um

be
r o

f f
ea

si
bl

e
so

lu
tio

ns

Lamarckian

Baldwinian

1 2 3 4 5 6 7 8 9 100

50

100

150

200

 Generation

A
ve

ra
ge

 n
um

be
r o

f i
te

m
s

Lamarckian

Baldwinian

100 200 300 400 5001
250

300

350

400

 (a) Number of feasible solutions (b) Average number of items in each solution

Fig. 5. Experimental results of a single run with the maximum ratio repair.

Baldwinian

Generation

M
ax

im
um

 n
um

be
r o

f r
em

ov
ed

 it
em

s

Lamarckian

100 200 300 400 5000

20

40

60

80

100

Baldwinian

Generation

A
ve

ra
ge

 n
um

be
r o

f r
em

ov
ed

 it
em

s

Lamarckian
100 200 300 400 5000

20

40

60

80

100

 (a) Maximum number (b) Average number

Fig. 6. Maximum and average numbers of excess items removed by each implementation
scheme of the maximum ratio repair.

 In the same manner as Fig. 5 and Fig. 6, experimental results by the weighted
scalar repair are shown in Fig. 7 and Fig. 8. From Figs. 5-8, we can see that the
number of excess items consistently increases over 500 generations only when we use
the Baldwinian implementation of the weighted scalar repair (see Fig. 8 (b)). As a
result, much more items are included in each individual in this case. Even when the
weighted scalar repair is used, only a few excess items are included in each individual

in the case of the Lamarckian implementation (see Fig. 8 (b)). The difference in the
average number of excess items between the two repair methods can be explained by
the increase in the diversity of solutions by the weighted scalar repair. As shown in
Fig. 3 (b), the weighted scalar repair spreads each individual over a wide range of the
objective space. Thus the increase in the number of excess items contributes to the
increase in the diversity of solutions in the objective space when we use the
Baldwinian implementation of the weighted scalar repair. This explanation is
consistent with the good result of the 50% attainment surface by the Baldwinian
implementation of the weighted scalar repair in Fig. 4 (b).

Generation

N
um

be
r o

f f
ea

si
bl

e
so

lu
tio

ns

Lamarckian

Baldwinian

1 2 3 4 5 6 7 8 9 100

50

100

150

200

 Generation

A
ve

ra
ge

 n
um

be
r o

f i
te

m
s

Lamarckian

Baldwinian

100 200 300 400 5001
250

300

350

400

 (a) Number of feasible solutions (b) Average number of items in each solution

Fig. 7. Experimental results of a single run with the weighted scalar repair.

Baldwinian

Generation

M
ax

im
um

 n
um

be
r o

f r
em

ov
ed

 it
em

s

Lamarckian

100 200 300 400 5000

20

40

60

80

100

120

140

Baldwinian

Generation

A
ve

ra
ge

 n
um

be
r o

f r
em

ov
ed

 it
em

s

Lamarckian
100 200 300 400 5000

20

40

60

80

100

120

140

 (a) Maximum number (b) Average number

Fig. 8. Maximum and average numbers of excess items removed by each implementation
scheme of the weighted scalar repair.

4.3 Comparison with Penalty Function Approach

In the same manner as in Subsection 4.2, we apply the NSGA-II algorithm to the 2-
500 test problem 30 times using the penalty function approach in (8)-(9). We examine

the various specifications of the unit penalty α : =α 1.0, 1.2, 1.4, ..., 3.0. Average
results over 30 runs are depicted by open circles in Fig. 9 where we also show the
average results by the Baldwinian implementation of the two repair methods in
Subsection 4.2. It should be noted that smaller values mean better results in Fig. 9.
From Fig. 9, we can see that good results are not obtained by the penalty function
approach while we examine a wide range of parameter values. More specifically, we
can see from Fig. 9 (a) that the convergence to the Pareto front degrades as the unit
penalty α increases. On the other hand, we can observe in Fig. 9 (b) that the diversity
of obtained solutions degrades as the unit penalty α decreases.

Value of the unit penalty:α

A
ve

ra
ge

 v
al

ue
 o

f t
he

 G
D

 m
ea

su
re

Weighted scalar repair

Maximum ratio repair

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.00

200

400

600

800

 Value of the unit penalty:α

A
ve

ra
ge

 v
al

ue
 o

f t
he

 D
1 R

m
ea

su
re

Weighted scalar repair

Maximum ratio repair

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.00

200

400

600

800

1000

1200

 (a) Generational distance (GD) (b) D1R measure

Fig. 9. Average results by the penalty function approach with various parameter values.

4.4 Partial Lamarckianism

It has been demonstrated in the literature [3, 10, 12, 13] that a partial Lamarckianism
search strategy outperforms both pure Lamarckian and pure Baldwinian. We examine
the effect of the partial Lamarckian implementation where the Lamarckian repair is
applied to each individual with a prespecified probability (say LP %). When the
Lamarckian repair is not applied, the individual is handled in the framework of the
Baldwinian repair. We examine such a partial Lamarckian implementation for several
specifications of the probability LP of the Lamarckian repair: =LP 0, 20, 40, 60, 80,
100 (%). It should be noted that =LP 0 and =LP 100 mean the pure Baldwinian
repair and the pure Lamarckian repair, respectively. Experimental results are shown in
Fig. 10 for the case of the maximum ratio repair. Fig. 10 (a) and Fig. 10 (b) show the
average values of the generational distance (GD) and the RD1 measure over 30 runs,
respectively. From Fig. 10, we can see that the quality of obtained solution sets is
degraded by increasing the probability of the Lamarckian repair.
 In order to examine the validity of a so-called 5% rule [12, 13], we perform
exhaustive computational experiments using various values of the probability of the
Lamarckian repair between 0% and 20%. Average results over 500 runs are shown in

Fig. 11. From this figure, we can see that the partial Lamarckian repair improves the
RD1 measure of the pure Baldwinian repair when the probability of the Lamarckian

repair is specified around 5%. That is, the diversity of obtained solutions is improved
by invoking the Lamarckian repair with a low probability. This observation supports
the validity of the 5% rule in the implementation of a partial Lamarckianism repair for
multiobjective 0/1 knapsack problems.

Probability of the Lamarckian repair (%)

A
ve

ra
ge

 v
al

ue
 o

f t
he

 G
D

 m
ea

su
re

Pure Baldwinian

Pure Lamarckian

0 20 40 60 80 100200

250

300

350

 Probability of the Lamarckian repair (%)

A
ve

ra
ge

 v
al

ue
 o

f t
he

 D
1

 m
ea

su
re

Pure Baldwinian

Pure Lamarckian

R

0 20 40 60 80 100500

550

600

650

 (a) Generational distance (GD) (b) D1R measure

Fig. 10. Average results by the partial Lamarckian implementation of the maximum ratio repair
over 30 runs.

Probability of the Lamarckian repair (%)

A
ve

ra
ge

 v
al

ue
 o

f t
he

 G
D

 m
ea

su
re

Pure Baldwinian

0 5 10 15 20220

230

240

250

260

270

 Probability of the Lamarckian repair (%)

A
ve

ra
ge

 v
al

ue
 o

f t
he

 D
1 R

 m
ea

su
re

Pure Baldwinian

0 5 10 15 20500

510

520

530

540

 (a) Generational distance (GD) (b) D1R measure

Fig. 11. Further examination of the partial Lamarckian implementation of the maximum ratio
repair through computational experiments with 500 runs.

4.5 Comparison between Partial Lamarckianism and Island Model

Recently Skolicki & De Jong [14] clearly demonstrated high search ability of multi-
representation island models for single-objective continuous optimization problems

where each island used a different coding method. We examine a similar idea using
the two implementation schemes of greedy repair (i.e., Lamarckian and Baldwinian).
That is, we examine an island model with two subpopulations where one island uses
the Lamarckian repair and the other island uses the Baldwinian repair. A prespecified
number of individuals are randomly chosen from non-dominated solutions in each
island (i.e., each subpopulation) at intervals of a prespecified number of generations.
Then their copies are inserted to the other island. This island model is executed using
the following parameter specifications:

Subpopulation size: 100 (individuals),
Migration interval: 10, 50, 100 (generations),
Number of migrants: 10, 20, 50 (individuals).

The other parameter values are the same as the previous computational experiments.
The size of each subpopulation is specified as 100 so that the total number of
individuals (i.e., 1002×) is the same as the population size in the previous
computational experiments. This specification is for comparing the island model with
the standard single-population model with the 50% partial Lamarckian repair under
the same computation load.
 Experimental results by the island model are shown in Table 2 where the average
values of the generational distance (GD) and the D1R measure are calculated over 30
runs. We also show average results by the standard single-population model with the
50% partial Lamarckian repair. The maximum ratio repair is used in Table 2. The best
result for each performance measure is indicated by boldface. From this table, we can
see that the island model improves the diversity of obtained solutions (see the fourth
column labeled as D1R) while it degrades the convergence to the Pareto front (see the
third column labeled as GD).

Table 2. Average results over 30 runs by the island model with various parameter
specifications. The maximum ratio repair is used in computational experiments in this table.

Migration
interval

Number of
migrants GD D1R

10 10 296 556
10 20 290 579
10 50 313 594
50 10 288 566
50 20 285 568
50 50 300 560

100 10 295 570
100 20 296 549
100 50 291 561

50% Lamarckian 277 586

5 Concluding Remarks

We examined two implementation schemes (i.e., Lamarckian and Baldwinian) of
greedy repair through computational experiments on multiobjective 0/1 knapsack
problems using the NSGA-II algorithm. While the Lamarckian implementation has
been almost always used in the application of EMO algorithms to multiobjective 0/1
knapsack problems in the literature, better results were obtained by the Baldwinian
implementation in this paper. The main contribution of this paper is that the
superiority of the Baldwinian implementation over the Lamarckian implementation
was clearly demonstrated through computational experiments on multiobjective 0/1
knapsack problems. This observation is consistent with some reported results on
single-objective optimization problems [9, 10, 12, 13].
 We also compared two greedy repair methods (i.e., maximum ratio repair and
weighted scalar repair) with each other using the two implementation schemes.
Independent of the choice of an implementation scheme, better results were obtained
by the weighted scalar repair than the maximum ratio repair. This observation is
consistent with some reported results [4, 5, 6, 18]. For comparison, we also examined
the performance of the penalty function approach. In our computational experiments,
better results could not be obtained from the penalty function approach in comparison
with greedy repair.
 In addition to pure Lamarckian and pure Baldwinian, we also examined their
hybrid version (i.e., partial Lamarckianism search strategy) where the Lamarckian
repair was applied to each individual with a prespecified probability. Some of our
experimental results supported a so-called 5% rule where the Lamarckian repair and
the Baldwinian repair were applied to each individual with 5% and 95% probabilities,
respectively. That is, only 5% unfeasible solutions were actually repaired. Finally, we
examined the performance of an island model with two subpopulations where each
island used a different implementation scheme (i.e., Lamarckian or Baldwinian). In
our computational experiments, we did not observe clear improvement by such an
island model from the standard single-population model with the 50% partial
Lamarckian repair. The use of the island model slightly improved the diversity of
solutions.
 While we empirically showed the superiority of the Baldwinian implementation
over the Lamarckian implementation through computational experiments on
multiobjective 0/1 knapsack problems, we could not clearly explain why the
Baldwinian implementation outperformed the Lamarckian implementation in the
application of EMO algorithms to multiobjective 0/1 knapsack problems. We did not
examine the performance of the two implementation schemes for other test problems,
either. Further empirical studies as well as theoretical studies are left for future
research with respect to the comparison between the two implementation schemes for
multiobjective optimization problems.
 The authors would like to thank the financial support from Japan Society for the
Promotion of Science (JSPS) through Grand-in-Aid for Scientific Research (B):
KAKENHI (14380194).

References

1. Czyzak, P. and Jaszkiewicz, A.: Pareto-Simulated Annealing – A Metaheuristic Technique
for Multi-Objective Combinatorial Optimization. Journal of Multi-Criteria Decision
Analysis 7 (1998) 34-47.

2. Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T.: A Fast and Elitist Multiobjective
Genetic Algorithm: NSGA-II. IEEE Trans. on Evolutionary Computation 6 (2002) 182-197.

3. Houck, C. R., Joines, J. A., Kay, M. G., and Wilson, J. R.: Empirical Investigations of the
Benefits of Partial Lamarckianism. Evolutionary Computation 5 (1997) 31-60.

4. Ishibuchi, H. and Kaige, S.: Effects of Repair Procedures on the Performance of EMO
Algorithms for Multiobjective 0/1 Knapsack Problems. Proc. of 2003 Congress on
Evolutionary Computation (2003) 2254-2261.

5. Jaszkiewicz, A.: Comparison of Local Search-based Metaheuristics on the Multiple
Objective Knapsack Problem. Foundations of Computing and Decision Sciences 26 (2001)
99-120.

6. Jaszkiewicz, A.: On the Performance of Multiple-Objective Genetic Local Search on the
0/1 Knapsack Problem - A Comparative Experiment. IEEE Trans. on Evolutionary
Computation 6 (2002) 402-412.

7. Knowles, J. D. and Corne, D. W.: A Comparison of Diverse Approaches to Memetic
Multiobjective Combinatorial Optimization. Proc. of 2000 Genetic and Evolutionary
Computation Conference Workshop Program (2000) 103-108.

8. Knowles, J. D. and Corne, D. W.: On Metrics for Comparing Non-dominated Sets. Proc. of
2002 Congress on Evolutionary Computation (2002) 711-716.

9. Liu, B., Haftka, R. T., Akgun, M. A., and Todoroki, A.: Permutation Genetic Algorithm for
Stacking Sequence Design of Composite Laminates. Computer Methods in Applied
Mechanics and Engineering 186 (2000) 357-372.

10. Michalewicz, Z. and Nazhiyath, G.: Genocop III: A Co-evolutionary Algorithm for
Numerical Optimization Problems with Nonlinear Constraints. Proc. of 2nd IEEE
International Conference on Evolutionary Computation 2 (1995) 647-651.

11. Mumford, C. L.: Comparing Representations and Recombination Operators for the Multi-
Objective 0/1 Knapsack Problem. Proc. of 2003 Congress on Evolutionary Computation
(2003) 854-861.

12. Orvosh, D. and Davis, L.: Shall We Repair? Genetic Algorithms, Combinatorial
Optimization, and Feasibility Constraints. Proc. of 5th International Conference on Genetic
Algorithms (1993) 650.

13. Orvosh, D. and Davis, L.: Using Genetic Algorithms to Optimize Problems with Feasibility
Constraints. Proc. of 1st IEEE Conference on Evolutionary Computation (1994) 548-553.

14. Skolicki, Z. and De Jong, K.: Improving Evolutionary Algorithms with Multi-
representation Island Models. Lecture Notes in Computer Science, Vol. 3242 (Proc. of
PPSN VIII), Springer, Berlin (2004) 420-429.

15. Van Veldhuizen, D. A.: Multiobjective Evolutionary Algorithms: Classifications, Analyses,
and New Innovations. Ph. D dissertation, Air Force Institute of Technology (1999).

16. Zitzler, E. and Thiele, L.: Multiobjective Evolutionary Algorithms: A Comparative Case
Study and the Strength Pareto Approach. IEEE Trans. on Evolutionary Computation 3
(1999) 257-271.

17. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C. M., and da Fonseca, V. G.: Performance
Assessment of Multiobjective Optimizers: An Analysis and Review. IEEE Trans. on
Evolutionary Computation 7 (2003) 117- 132.

18. Zydallis, J. B. and Lamont, G. B.: Explicit Building-Block Multiobjective Evolutionary
Algorithms for NPC Problems. Proc. of 2003 Congress on Evolutionary Computation
(2003) 2685-2695.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /KOR <FEFFace0d488c9c8c7580020d504b9acd504b808c2a40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e0020c7740020c124c815c7440020c801c6a9d558b824ba740020ae00af340020d3ecd5680020ae30b2a5c7440020c0acc6a9d574c57c0020d569b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee575284e8e9ad88d2891cf76845370524d6253537030028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f0030028fd94e9b8bbe7f6e89816c425d4c51655b574f533002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c9069752865bc9ad854c18cea76845370524d521753703002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f300290194e9b8a2d5b9a89816c425d4c51655b57578b3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

