
A. Jaszkiewicz (to appear). On the computational effectiveness of multiple
objective metaheuristics. 3URFHHGLQJ� RI� WKH� )RXUWK� ,QWHUQDWLRQDO� &RQIHUHQFH� RQ
WKH�0XOWL�2EMHFWLYH�3URJUDPPLQJ�DQG�*RDO�3URJUDPPLQJ�023*3
����7KHRU\�	
$SSOLFDWLRQV�� 8VWUR �� 3RODQG�� 0D\� ���-XQH� ��� ������ 6SULQJHU�9HUODJ�� %HUOLQ� �
Heidelberg.

2Q�WKH�FRPSXWDWLRQDO�HIIHFWLYHQHVV�RI�PXOWLSOH
REMHFWLYH�PHWDKHXULVWLFV

$QGU]HM�-DV]NLHZLF]
Institute of Computing Science

3R]QD �8QLYHUVLW\�RI�7HFKQRORJ\
ul. Piotrowo 3a, 60-965 3R]QD ��3RODQG

Jaszkiewicz@cs.put.poznan.pl
www-idss.cs.put.poznan.pl/~jaszkiewicz

Abstract
The paper describes a technique for comparison of computational effectiveness of
two approaches to generation of approximately Pareto-optimal solutions with the
use of metaheuristics. In the on-line generation approach the approximately
Pareto-optimal solutions are generated during the interactive process, e.g. by
optimization of some scalarizing functions. In the off-line generation approach,
the solutions are generated prior to the interactive process with the use of multiple
objective metaheuristics. The results of experiment on travelling salesperson
instances indicate that in the case of some multiple objective metheuristics the
off-line generation approach may be computationally effective alternative to the
on-line generation of approximately Pareto-optimal solutions.
Keywords Multiple objective optimization, metaheuristics, scalarizing functions,
interactive methods, computational effectiveness

Introduction

In recent years, one could observe growing interest in multiple objective analysis
of computationally hard problems, e.g. multiple objective combinatorial
optimization (MOCO) problems. In the case of such problems, the use of exact
methods that guarantee generation of exact Pareto-optimal solutions may be not
possible because of computational requirements of the methods. As single
objective metaheuristics proved to be successful on many hard optimization
problems, it seems natural to apply them to generation of approximately
Pareto-optimal solutions in multiple objective context.

A number of authors proposed multiple objective metaheuristic algorithms that
aim at effective generations of samples of approximately Pareto-optimal solutions
being approximations of the whole Pareto set. The methods are usually based on
classical single objective metaheuristics. For example, the methods of Schaffer
[21], Fonseca and Fleming [4], Horn, Nafpliotis and Goldberg [9], Srinivas and
Deb [24] are based on genetic algorithms, the methods of Serafini [22], Czyzak
and Jaszkiewicz [2], Ulungu et al. [29] are based on simulated annealing, and the
methods of Gandibleux et. al. [6] and Hansen [8] are based on tabu search.

Hwang et al. [11] proposed a classification of MOO methods taking into
account the moment of collecting the preference information with respect to the
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exploration process. They classify the MOO methods as either methods with a
priori or a posteriori, or progressive (interactive) articulation of preferences.
According to this classification the multiple objective metaheuristic algorithms
should be treated as techniques used within a posteriori articulation of preferences
approach. Note, however, that generation of a set of approximately Pareto-optimal
solutions does not necessarily allows easy selection of the best compromise by the
DM. The set of approximately Pareto-optimal solutions may contain a large
number of solutions. In the case of two objectives, the objective trade-offs may be
visualized in a two-dimensional plot allowing the DM to select the best
compromise. No such simple visualization is possible in the case of three or more
objectives. Thus, the DM analyzing a generated a priori large set of approximately
Pareto-optimal solutions may need some further support characteristic to
interactive procedures in the search for the best compromise.

Several interactive procedures for analysis of finite sets of alternatives have
been already proposed. This class of methods includes: Zionts method [32],
Korhonen, Wallenius and Zionts method [16], Köksalan, Karwan and Zionts
method [14], Korhonen method [15], Malakooti method [18], Taner and Köksalan
method [27], AIM [17], Light Beam Search-Discrete [13] and Interquad [26].
Such methods could be used for interactive analysis of large sets of approximately
Pareto-optimal solutions. The methods are usually based on well-known
interactive procedures for continuous case. In fact, the DM may not be even aware
if the solutions presented to him/her in decision phases were generated a priori or
if the solutions are generated on-line in computational phases alternating with
phases of decision. Clearly, in both cases we deal with progressive articulation of
preferences.

In results, we propose to distinguish two versions of approaches with
progressive articulation of preferences, taking into account the way of generation
of the (approximately) Pareto-optimal solutions. In the on-line approach the
solutions are generated during the interactive process, i.e. generation of solutions
alternates with articulation of DM's preferences. In contrary, in the off-line
approach the (approximately) Pareto-optimal solutions are generated prior to
interactive analysis.

On-line generation of (approximately) Pareto-optimal solutions is assumed in
most classical interactive procedures proposed for continuous case (see e.g.
reviews in [9] and [23]). The methods usually generate Pareto-optimal solutions
by optimization of some substitute problems which global optima correspond to
Pareto-optimal solutions. For example, a number of methods use, so called,
scalarizing functions that are optimized on the original set of feasible solutions. In
particular, optimization of weighted Tchebycheff scalarizing functions allows
generation of all Pareto-optimal solutions ([25], ch. 14.8; [31]). In the case of hard
MOO problems a natural approach consist in optimization of the scalarizing
functions with classical single objective metaheuristics.

Note that most of the mentioned above interactive procedures for analysis of
finite sets of alternatives also select the solutions presented to the DM applying a
scalarizing function. In this case, however, the best solution on a scalarizing
function is selected from the set of explicitly known solutions without
optimization. In the rest of the paper, we will concentrate on on-line and off-line
approaches that use scalarizing functions for selection of the approximately
Pareto-optimal solutions presented to the DM.
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Off-line generation of approximately Pareto-optimal solutions has several
advantages with respect to the on-line approach:
• It allows different types of statistical analysis, e.g. calculation of correlation

between objectives, and graphical visualization of the explicitly known set of
approximately Pareto-optimal solutions that may increase the DM’s
knowledge about the problem.

• It assures very fast interaction with the DM, as no optimization is performed
during the interactive process.

• It guarantees that all solutions presented to the DM are mutually
non-dominated. In contrary, approximate solutions generated by a heuristic
used within the on-line approach may dominate each other.

In this paper, we focus, however, on the issue of computational effectiveness of
generation of approximately Pareto-optimal solutions. We propose a technique
that allows comparing quality of solutions generated by the on-line and off-line
approaches. Then, we propose to compare computational requirements of the two
approaches needed to achieve the same quality of approximately Pareto-optimal
solutions.

The paper is organized in the following way. The next section contains problem
statement and basic definitions. The technique for comparison of computational
effectiveness of the on-line and off-line approaches to generation of approximately
Pareto-optimal solutions is described in details in the third section. In the fourth
section, computational experiments on travelling salesperson instances are
described. The conclusions are presented in the last section.

Problem statement and basic definitions

The general multiple objective optimization (MOO) problem is formulated as:
( ) ( ){ }�� ]I]I == [[  11 ,...,max (P1)

s.t. '∈[ ,
where solution [ ]�[[ ,...,1=[  is a vector of decision variables, D is the set of
feasible solutions.

A solution '∈[  is Pareto-optimal (efficient) if there is no '∈’[  such that
( ) ( )[[ ��� II ≥∀ ’  and ( ) ( )[[ �� II >’  for at least one j. The set of all

Pareto-optimal solutions is called Pareto set.
The point z* composed of the best attainable objective function values is called

the ideal point:

{ } .,...,1        |  max j
* -M=]] � =∈= ]

Range equalization factors [25] are defined in the following way:
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where Rj is the (approximate) range of objective j in the set N or D. Objective
function values multiplied by range equalization factors are called normalized
objective function values.

Weighted Tchebycheff scalarizing functions are defined in the following way:

( ) ( ){ }���� ]]V −=Λ∞
oo max,, λ]] .

In the rest of the paper we will assume that zo = z*. Each scalarizing function of
this type has at least one global optimum (minimum) belonging to the set of
Pareto-optimal solutions. For each Pareto-optimal solutions x there exists a
weighted Tchebycheff scalarizing function s∞ such that x is global optimum of s∞
[25].

Augmented weighted Tchebycheff scalarizing functions are defined in the
following way:

( ) ( ){ } ( )∑ −+−=Λ �
�������� ]]]]V *** max,, λελ]] ,

where ε is a small number greater than zero.
Weight vectors than meet the following conditions:

∑
=

=≥∀

�
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are called normalized weight vectors.

Comparison of the computational effectiveness of on-line and off-line
generation of approximately Pareto-optimal solutions

Consider a scalarizing function s used in a given iteration of an interactive
procedure. In the case of both on-line and off-line approaches, the solution
presented to the DM is not guaranteed to be optimal on s. Denote solution
obtained within the on-line approach, i.e. by optimization of s with a single
objective metaheuristic, by xs. Denote the solution obtained within the off-line
approach, i.e. by selection from the set of a priori generated approximately
Pareto-optimal solutions, by xm. The values s(xs) and s(xm) allow comparison of the
two solutions. For example, solution xs is better than xm if s(xs) < s(xm).

Of course, comparison on a single scalarizing function is meaningless. We
propose to compare the two kinds of approaches on a set S = {s1,...,sL} of randomly
selected scalarizing functions. Let xs1,...,xsL be the best solutions obtained by
optimization of s1,...,sL, respectively, with a single objective metaheuristic. Let
xm1,...,xmL be the best solutions on s1,...,sL, respectively, selected from a set PE of
potentially Pareto-optimal solutions generated by a multiple objective

metaheuristic, i.e. ( ) ( )[[[ �
� �� VV3( ≤∈∀ , l = 1,...,L. We consider the multiple

objective metaheuristic not worse than the single objective metaheuristic if:

( ) ( )( ) 0
1
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If L→∞ the above condition means that the set PE of potentially Pareto-optimal
solutions gives the same average quality of approximation over all scalarizing
functions that optimization of the functions with the single objective
metaheuristic. In practice, we use, of course, finite values of L. The parameter
plays the role of the size of statistical sample. The greater L the more significant
the result given by (*).

If condition (*) is fulfilled, we may compare computational requirements of the
single and multiple objective metaheuristics. Let CTs be the average running time
of the single objective method spent on optimization of s1,...,sL. Let CTm be the
running time of the multiple objective method needed to generate PE. We define
then effectiveness  index EI:

�

�

&7
&7(, = .

The lower EI the more effective the multiple objective metaheuristic with
respect to the single objective method.

We propose to apply effectiveness index to comparison of single and multiple
objective metaheuristics based on similar ideas. For example, multiple objective
genetic algorithms could be compared to single objective GAs, multiple objective
genetic local search could be compared to single objective genetic local search,
etc. As most multiple objective metaheuristics are some extensions/modifications
of single objective methods, the effectiveness index gives some information about
quality of this extension. Of course, in this case, it is natural to expect EI > 1.

The effectiveness index may be used to compare different multiple objective
metaheuristics based on the same single objective method.

The effectiveness index has some clear interpretation from the point of view of
interactive procedures. Assume that the interactive process requires generation of
R approximately Pareto-optimal solutions of a given problem in order meet the
stopping criteria or to reach the solution satisfying the DM. If R > L then the
overall computational requirements of the on-line generation of approximately
Pareto-optimal solutions are higher than computational requirements of the
off-line approach.

Computational experiment

Overview of the experiment

This section describes computational experiment performed on multiple objective
travelling sales person instances. The pairs of methods compared are genetic
algorithm vs. Pareto ranking based multiple objective genetic algorithm, and
genetic local search vs. multiple objective genetic local search.

We use augmented Tchebycheff scalarizing functions with ε = 0.1. Parameter L
- the number of scalarizing functions on which the pairs of methods are compared,
is equal to 50. The scalarizing functions are defined by L normalized weight
vector randomly generated with the algorithm presented in Figure 1. The
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algorithm assures that weight vectors are drawn with uniform probability
distribution p(Λ), i.e. a distribution for which:

( ) ( ) ( ) ( )ΨΨ=ΛΛΛΛΨ⊆Ψ∀ ∫∫
Ψ∈ΛΨ∈Λ

99GSGS /’/’
’

where Ψ and Ψ’ denote the set of all normalized weights and a subset of it,
respectively;  V(Ψ) and V(Ψ’) are Euclidean hyper-volumes of Ψ and Ψ’,
respectively. In other words, the probability of drawing a weight vector belonging
to Ψ’ is proportional to the hyper-volume of Ψ’.
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)LJXUH���� $OJRULWKP�RI�JHQHUDWLRQ�RI�UDQGRP�ZHLJKW�YHFWRUV�
For each instance the following experiment was performed. In the first phase 50

random scalarizing functions were optimized with a single objective method.
Then, the multiple objective method was started. After specified number of
iterations of the multiple objective method the quality of the current set of
potentially Pareto-optimal solutions was compared to the quality of solutions
generated by the single objective method with condition (*). When condition (*)
was met the multiple objective method was stopped and the effectiveness index
was calculated. Another stopping criterion of the multiple objective method was
running time greater than 500 times the average running time of the single
objective method. In the second case, we can state that the effectiveness index is ≥
500.

Methods used in the experiment

Single objective genetic local search
Genetic local search (GLS) is a method that hybridizes recombination operators
with local search. The version of GLS algorithm we use assumes complete elitism,
i.e. the current population is always composed of a sample of best known
solutions. The details of this algorithm are in Figure 2.
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Parameters: K – size of the current population, stopping criterion
Initialization:
Current population P:=∅
repeat K times

Construct randomly a new feasible solution x
Optimize locally the objective function starting from solution x
obtaining x’
Add x’  to P.

Main loop:
repeat

Draw at random with uniform probability two solutions x1 and x2 from
P.
Recombine x1 and x2 obtaining x3

Optimize locally the objective function starting from solution x3

obtaining x3’
if x3’  is better than the worst solution in P and different in the decision
space to all solutions in P then

Add x3’  to P and delete from P the worst solution
until the stopping criterion is met

)LJXUH���� $OJRULWKP�RI�WKH�EDVLF�VLQJOH�REMHFWLYH�JHQHWLF�ORFDO�VHDUFK
In the experiments described in this paper, the optimization was stopped if in

20 successive iterations current population was not changed. This value was
selected experimentally. It was observed that population that was not changed in
20 iterations gives little chance for further improvements.

Size of the current population K is the main parameter controlling the
calculation time. Generally, the larger K the larger CPU time and the better quality
of results.

In this algorithm, mutation operator is not explicitly used. The recombination
operator may introduce, however, some elements of randomness. In other cases
explicit mutation operators may be necessary.

Multiple objective genetic local search
One of the multiple objective metaheuristics used in the experiment is multiple
objective genetic local search (MOGLS) proposed in [12] on the basis of the
single objective algorithm presented in Figure 2. In each iteration, the method
draws at random a scalarizing function s for optimization. Then, two of previously
generated solutions being good on s are recombined and local search is applied to
their offspring. We use augmented weighted Tchebycheff scalarizing functions
with ε = 0.1 in this experiment.
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Parameters: K – size of the temporary population, stopping criterion
Initialization:
The set of potentially Pareto-optimal solutions PE:=∅
The current set of solutions CS:=∅
repeat until CS meets stopping condition for generation of initial solutions

Draw at random a scalarizing function s
Construct randomly a new feasible solution x
Optimize locally the scalarizing function s starting from solution x
obtaining x’
Add x’  to the current set of solutions CS
Update set PE with x’

Main loop:
repeat

Draw at random a scalarizing function s
From CS select K different solutions being the best on scalarizing
function s forming temporary population TP
Draw at random with uniform probability two solutions x1 and x2 from
TP.
Recombine x1 and x2 obtaining x3

Optimize locally the scalarizing function s starting from solution x3

obtaining x3’
if x3’  is better than the worst solution in TP and different in the decision
space to all solutions in TP then

Add x3’  to the current set of solutions CS
Add x3’  to TP and delete from TP the worst solution

Update set PE with x3’
until the stopping criterion is met

)LJXUH���� $OJRULWKP�RI�WKH�PXOWLSOH�REMHFWLYH�JHQHWLF�ORFDO�VHDUFK
The generation of initial solutions is stopped when the average quality of K best

solutions in CS over all scalarizing functions is the same as average quality of
local optima of this function. Consider x being an initial solution obtained by local
optimization of function scalarizing sx. Note that x need not be the best solutions
on sx in current set of solutions CS. Let ( ) &6V&6.% � ⊆,,, [  be the set of K best

solutions of function sx different than x. Let ( )( )�V&6.%V ,,, [  be the average

value of sx in ( )�V&6.% ,,, [ . We stop generation of the initial solutions when the

following condition is met:

( )( ) ( )( ) 0,,, ≥−∑
∈

��

�� VV&6.%V [[

Of course, the above condition could only be tested when the number of solutions
in CS is greater or equal to K + 1.

Set CS is organized as a queue of size K×S, where S is the number of initial
solutions. In each iteration, the newly generated solution is added to the beginning
of the queue if it is better than the worst solution in the temporary population and
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different to all solutions in the temporary population. If the size of the queue is
greater than K×S the last solution from the queue is removed.

The stopping criterion of the main loop is defined by maximum number of
iterations.

Updating the set of potentially Pareto-optimal solutions PE with solution x
consists of:
• adding x to PE if no solution in PE dominates x,
• removing from PE all solutions dominated by x.
Note that the set of potentially Pareto-optimal solutions is updated with local
optima only. In general, other solutions generated during the local search may also
be potentially Pareto-optimal. This approach allows, however, for significant
reduction of running time. Furthermore, a data structure called quad tree allows
for very effective implementation of this step [3], [7].

The random scalarizing functions are defined by random weight vectors
constructed with the algorithm presented in Figure 1. The weights are applied to
normalized objective function values.

Genetic algorithm
In our experiment, we used genetic algorithm presented in Figure 4.

Parameters: K – size of the genetic population, maximum number of
generations, mutation probability
Initialization:
Generate K random solutions forming the initial population
Main loop:
repeat

Select K pairs of solutions with roulette wheel selection
Recombine each pair of solutions
Mutate each of the offspring with mutation probability
Replace previous population with the new one

until the maximum number of generations is reached

)LJXUH���� *HQHWLF�DOJRULKP�

Pareto ranking based multiple objective genetic algorithm
In the experiment we used a Pareto ranking based multiple objective genetic
algorithm (Pareto MOGA) proposed in [4] without mating restrictions. In addition,
we maintain the set of potentially Pareto-optimal solutions updated with each
newly constructed solution. The details are given in Figure 5.
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Parameters: K – size of the genetic population, maximum number of
generations, mutation probability
Initialization:
The set of potentially Pareto-optimal solutions PE:=∅
Generate K random solutions forming the initial population
Update set PE with each solution from the current population
Main loop:
repeat

Assign to each solution from the current population the fitness on the
basis of Pareto ranking
Reduce fitness of close solutions by fitness sharing
Select K pairs of solutions with roulette wheel selection
Recombine each pair of solutions
Mutate each of the offspring with mutation probability
Replace previous population with the new one
Update set PE with each solution from the current population

until the maximum number of generations is reached

)LJXUH���� 3DUHWR�UDQNLQJ�EDVHG�PXOWLSOH�REMHFWLYH�JHQHWLF�DOJRULWKP�

Multiple objective symmetric travelling salesperson problem

Single objective TSP is often used to test single objective metaheuristics. It is
defined by a set of cities and cost (distance) of travel between each pair of cities.
In symmetric TSP the cost does not depend on direction of travel between two
cities. The goal is to find the lowest cost hamiltonian cycle.

In J-objective TSP, J different cost factors are defined between each pair of
cities. In practical applications, the cost factors may for example corresponds to
cost, length, travel time or tourist attractiveness. In our case, J-objective
symmetric TSPs instances are constructed from J different single objective TSP
instances. Thus, j-th cost factor, j=1,...,J, between a pair of cities comes from j-th
single objective problem. Individual optima of particular objectives are equal to
optima of corresponding single objective problems. In our case, the single
objective problems are completely independent, so, also objectives are
independent and therefore non-correlated. The same approach was used by [1] and
[12].

Also following [1] and [12] we use multiple objective problem instances based
on TSPLIB library [20]. For example, problem instance kroABC100 denotes a
three-objective problem with cost factors corresponding to the first objective taken
from kroA100, cost factors corresponding to the second objective taken from
kroB100, and cost factors corresponding to the second objective taken from
kroC100. In this way 10 different three-objective problem instance were created.
We used also 10 three-objective instances and 5 four-objective instances with 50
leading cities taken from kroA100-kroE100 instances.

The recombination operator used by all the methods is the distance-preserving
crossover introduced in [5]. An offspring is constructed in the following steps:
Step 1. Put in the offspring all arcs common to both parents
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Step 2. Complete the hamiltonian cycle with randomly selected arcs.

7DEOH���� 5HVXOWV�RI�*/6�±�02*/6�FRPSDULVRQ
(Tempo-

rary)
population

size

Average
running time

of GLS
(number of
functions’

evaluations)

Running
time of

MOGLS
(number of
functions’

evaluations)

Effectiveness
index

Number of
potentially

Pareto-optimal
solutions

generated by
MOGLS

3 objectives, 50 cities
Average 614 309 9 676 310 15.69 100310
Standard

dev.
32 877 3 043 922 4.51 235

Average 1 186 259 18 164 128 15.12 157320
Standard

dev.
57 406 13 115 967 10.38 406

Average 1 676 203 19 408 022 11.64 179030
Standard

dev.
106 760 2 314 632 1.70 219

3 objectives, 100 cities

Average 4 912 063 187 879 890 38.63 272610
Standard

dev.
238 474 91 281 659 19.42 921

Average 10 111 330 357 766 821 35.84 483720
Standard

dev.
514 896 190 908 770 20.29 1886

Average 14 837 900 557 799 727 37.89 654730
Standard

dev.
790 362 165 688 406 12.26 1800

4 objectives, 50 cities

Average 680 775 57 336 646 84.55 878510
Standard

dev.
25 605 11 756 380 19.16 2038

Average 1 183 152 96 166 142 81.05 1426720
Standard

dev.
42 735 19 870 387 15.16 3199

Average 1 750 500 116 369 545 66.44 1660230
Standard

dev.
78 749 12 193 400 5.89 1804

The local search used is based on standard 2-arcs exchange neighborhood.
While constructing the initial population, greedy local search is used. After
recombination, steepest local search is used. This combination was found to give
the best results. As local search consumes most of the CPU time, we measure the
running time in the number of functions’  evaluations (number of evaluated
solutions). In the case of 2-arcs exchange operator, neighbor solutions can be
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evaluated in very short time. In results about 1 000 000 functions’ evaluations can
be performed on 350 MHz Pentium PC in one second.

The mutation operator exchanges to randomly selected arcs.

Results

Table 1 contains results of the experiments with genetic local search and multiple
objective genetic local search. The entries in the table contain averages and
standard deviations of ten experiments on three objective instances and five
experiments on four objective instances (one experiment for each instance). As
could be expected the effectiveness index grows with the problem size and the
number of objectives. In both cases, the growth of the effectiveness index is
correlated to the growth of the size of the set of potentially Pareto-optimal
solutions.

In our opinion, the results prove that generation of approximately
Pareto-optimal solutions with the MOGLS is competitive from the computational
effectiveness point of view to generation of the solutions with single objective
GLS. Note that GLS is one of the best methods for single objective TSP [19].

Significantly different results were obtained in the case of comparison of GA
and Pareto MOGA. In none of the experiments the set of potentially
Pareto-optimal solutions generated by Pareto MOGA fulfilled the condition (*) in
running time lower or equal to 500 times the average running time of GA. Thus,
we conclude that the effectiveness index of Pareto MOGA in comparison to GA
on the TSP instances used in the experiment is greater than 500.

Conclusions

We have introduced a measure call effectiveness index that relates computational
requirements of single and multiple objective metaheuristic necessary to generate
approximately Pareto-optimal solutions of the same average quality.

The results of experiments on the TSP instances indicate that off-line
generation of approximately efficient solutions may be computationally
competitive approach. In particular multiple objective genetic local search is able
to generate high quality approximations to the whole Pareto-optimal set in running
time 11.64 - 84.55 longer than the average time needed to generate single
approximately Pareto-optimal solution with the same average quality using the
single objective genetic local search. Note that GLS is known to be very effective
method for single objective TSP. The results indicate also that the relative
effectiveness of MOGLS decreases with the growth of the number of objectives.

In the experiments with genetic algorithm and Pareto ranking based multiple
objective genetic algorithm the effectiveness index was found to be greater than
500. We conclude that from the computational point of view Pareto MOGA is not
competitive tool for generation of approximately Pareto-optimal solution in
comparison to GA on TSP instances.

Note that off-line generation of approximately Pareto-optimal solutions has a
number of additional advantages over on-line approach (see introduction section).
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Thus, computational effectiveness is not the only reason for the use of this
approach.

The two approaches for generation of approximately Pareto-optimal solutions,
are in fact extreme possibilities. In the off-line approach we assume that a single
run of a metaheuristic generates a sample of approximately Pareto-optimal
solutions approximating the whole Pareto set. In the online, approach only a single
Pareto-optimal solution by each run of a metaheuristic. It is also possible to
generate in a single run of a metaheuristic a sample of approximately
Pareto-optimal solutions approximating a promising subregion of the whole Pareto
set. In fact, many multiple objective metaheuristics can be easily used in this way.
For example in MOGLS algorithm, it is possible to draw at random scalarizing
functions from a subset of all scalarizing functions. In this case, multiple objective
metaheuristics may be computationally effective even in the case of many
objectives. An approach of this kind is proposed e.g. in [4].
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