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Abstract

The paper describes a comparative study of multiple-objective metaheuristics on the
bi-objective set covering problem. Ten representative methods based on genetic algorithms,
multiple start local search, hybrid genetic algorithms and simulated annealing are evaluated in
the computational experiment. Nine of the methods are well known from the literature. The
paper introduces also a new hybrid genetic algorithm called Pareto memetic algorithm. The
results of the experiment indicate very good performance of hybrid genetic algorithms,
however, no algorithm was able to outperform all other methods on all instances.
Furthermore, the results indicate that the performance of multiple-objective metaheuristics
may differ radically even if the methods are based on the same single objective algorithm and
use exactly the same problem-specific operators.

Keywords: multiple-objective optimization, metaheuristics, set covering problem.

1. Introduction

In recent years one could observe a growing interest in multiple-objective metaheuristics. The
goal of such methods is to generate in a single run a set of solutions approximating whole or a
part of the nondominated set. Methods of this kind are applied to various computationally
hard multiple-objective problems, e.g. combinatorial optimization problems and nonlinear
programming problems.

Although, authors of multiple-objective metaheuristics often claim that their methods may
effectively solve large-scale problems, a relatively low number of comparative experiments,
in particular involving multiple-objective combinatorial optimization (MOCO) problems, has
been published in the literature.

In this paper, we compare ten multiple-objective metaheuristics on the bi-objective set
covering problem. Nine of the methods are well known from the literature. The methods are:
the multiple-objective genetic local search algorithm (MOGLS) proposed by us [14], [16],
Ishibuchi's and Murata's multiple-objective genetic local search (IMMOGLS) [12], Serafini's
multiple-objective simulated annealing (SMOSA) [23], multiple-objective simulated
annealing proposed by Ulungu et al. (MOSA) [28], Pareto simulated annealing (PSA)
proposed by us [2], nondominated sorting genetic algorithm (NSGA) [25], controlled elitist
non-dominated sorting genetic algorithm (CENSGA) [3], strength Pareto evolutionary
algorithm (SPEA) [30], and a simple multiple-objective multiple start local search
(MOMSLS) with random weight vectors [15], [16]. In addition, we introduce a new
multiple-objective metaheuristic called Pareto memetic algorithm (PMA).

All methods were implemented in C++ with the use of MOMHLib++ library [11]. Their
implementations shared significant fractions of common code. The code of all methods used
in this experiment is freely available at http://www-idss.cs.put.poznan.pl/~jaszkiewicz/moscp.

Set covering problem is an NP-complete combinatorial optimization problem [6] often used to
test single objective metaheuristics. It finds many practical applications especially in crew
scheduling [24]. In practice, solutions of set covering problem often cannot be evaluated with
a single objective only. For example, in the case of crew scheduling it may be necessary to
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take into account both the cost and the quality of work. Other objectives important in the case
of crew scheduling are discussed in [20].

The paper is organized in the following way. In the next section, some basic definitions are
given. The Pareto memetic algorithm is described in the third section. In the fourth section,
other methods used in the experiment are briefly characterized. Adaptation of the methods to
multiple-objective set covering problem is presented in the fifth section. In the sixth section,
the experiment design is described. The approach used to evaluate quality of obtained results
is presented in the seventh section. In the eighth section, results of the experiments are
presented and discussed. Concluding remarks are given in the ninth section.

2. Basic definitions

The general multiple-objective optimization (MOO) problem is formulated as:

( ) ( ){ }JJ zfzf == xx 11 ,...,maximize (P1)

s.t. D∈x ,

where: solution [ ]Ixx ,...,1=x is a vector of decision variables, D is the set of feasible
solutions. If the variables are discrete the MOO problem is called multiple-objective
combinatorial optimization (MOCO) problem.

The image of a solution x in the objective space is a point [ ] ( )xfz xxx == Jzz ,...,1 , such that
x
jz = fj(x), j=1,..,J.

Point z1 dominates z2, z1
fz2, if ∀j 21

jj zz ≥ and 21
jj zz > for at least one j. Solution x1 dominates

x2 if the image of x1 dominates the image of x2.

A solution D∈x is Pareto-optimal (efficient) if there is no D∈'x that dominates x. Point
being an image of a Pareto-optimal solution is called nondominated. The set of all
Pareto-optimal solutions is called the Pareto-optimal set. The image of the Pareto-optimal set
in the objective space is called the nondominated set or Pareto front.

An approximation of the nondominated set is a set A of feasible points (and corresponding
solutions) such that 2121 thatsuch, zzzz fA∈¬∃ , i.e. set A is composed of mutually
nondominated points.

The point z* composed of the best attainable objective function values is called the ideal
point:

( ){ } .,...,1|max* JjDfz jj =∈= xx

Range equalization factors ([26], ch. 8.4.2) are defined in the following way:

j
j R

1=π , j=1, …, J

where Rj is the (approximate) range of objective zj in the nondominated set, or D or A.
Objective function values multiplied by range equalization factors are called normalized
objective function values.
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Weighted linear scalarizing functions are defined in the following way:

( ) ( )xz j

J

j
jj

J

j
jl fzs ∑∑

==

==Λ
11

, λλ

where [ ]Jλλ ,...,1=Λ is a weight vector such that jj ∀≥ 0λ .

Weighted Tchebycheff scalarizing functions are defined in the following way:

( ) ( ){ } ( )( ){ }xzz jjj
j

jjj
j

fzzzs −=−=Λ∞
000 maxmax,, λλ ,

where z0 is a reference point, [ ]Jλλ ,...,1=Λ is a weight vector such that jj ∀≥ 0λ . Each

weighted Tchebycheff scalarizing function has at least one global optimum (minimum)
belonging to the set of Pareto-optimal solutions. Note, however, that if the optimum is not
unique then some of the optima may be dominated, but must have at least one objective
component equal to a Pareto-optimal solution. For each Pareto-optimal solution x there exists
a weighted Tchebycheff scalarizing function s such that x is a global optimum (minimum) of s
([26], ch. 14.8).

Weight vectors that meet the following conditions:

∑
=

=≥∀
J

j
jjj

1
1,0 λλ ,

are called normalized weight vectors.

Minimization of the weighted Tchebycheff scalarizing function corresponds to a min-max
problem. The problem can be, however, transformed to the following one:

minimize α (P2)

s.t.

( ) ( )( ) Jjfzzz jjjjjj ,...,1,00 =−=−≥ xλλα ,

D∈x .

The bi-objective set covering problem (BOSCP) is the problem of covering the rows of a
L-row, I-column, zero-one matrix (alj) by a subset of the columns minimizing two cost-type
objectives. Defining xi=1 if column i (with costs 1

ic , 2
ic > 0) is selected in the solution and

xi=0, otherwise the BOSCP is:

minimize {z1 = ∑
=

I

i
ii xc

1

1 , z2 = ∑
=

I

i
ii xc

1

2 }

s.t. ∑
=

≥
I

i
ili xa

1
1, l=1,...,L

xi ∈ {0, 1}, j=1,...,J

In BOSCP both objectives are minimized, however, the problem can be easily transformed to
the form of problem (P1) by changing signs of the objectives. Thus, all definition introduced
above remain valid for BOSCP.
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3. Pareto memetic algorithm

Hybrid genetic algorithms (HGAs) are relatively new metaheuristics that hybridize
recombination operators with local search, or more generally, with other local heuristics.
Other frequently used names are memetic algorithms or genetic local search. Methods of this
type often perform very well on combinatorial optimization problems, e.g., on travelling
salesperson problem [22], graph coloring problem [7], and quadratic assignment problem
[27]. They perform also very well on single objective set covering problem [1]. Thus, the
development of multiple-objective versions of HGAs is one of the most promising directions
of research.

Pareto memetic algorithm introduced in this paper has been developed on the basis of
previously proposed multiple-objective genetic local search (MOGLS) algorithm [14], [16].
The general scheme of PMA, MOGLS, as well as of IMMOGLS [12], may be summarized by
the algorithm presented in Figure 1. The three algorithms differ by the way in which solutions
are drawn for recombination. In the case of MOGLS, a relatively small temporary elite
population TE composed of a number (e.g. 10) of solutions being the best on the current
scalarizing function is selected from the current set of solutions. Then, two solutions are
drawn for recombination from the temporary elite population with uniform probability. In this
way the solutions recombined are assured to be very good on the current scalarizing function.
This process in repeated in each iteration.

Generate the initial set of solutions

repeat

Draw at random a weight vector Λ defining the current
scalarizing function

Select probabilistically two previously generated solutions
being good on the current scalarizing function

Recombine the two solutions

Apply a local heuristic to the offspring

until the stopping criterion is met

Figure 1. General scheme of the multiple-objective genetic local search algorithm

The selection process used in MOGLS, is however, time consuming. MOGLS was originally
applied to multiple-objective traveling salesperson problem using 2-opt local search [16]. In
this case the time needed for selection of recombined solutions is meaningless with respect to
local search time. In general, however, MOGLS could also be used with relatively simple and
fast heuristics (see e.g. [13]). In this case, solutions selection time significantly influences
overall running time.

PMA uses another faster approach based on tournament selection to select good solutions for
recombination. Let CS denote current set of solutions. In each iteration, a sample T is drawn at
random with repetitions from CS. Then, two best solutions in T are winners of the tournament
and are selected for recombination. The size of T is set in order to obtain expected rank
induced by the current scalarizing function of recombined solutions similar as in the case of
MOGLS. Current scalarizing function s induces a rank in set CS with the best solution on s
having rank 1. For simplicity assume that no two solutions in CS have equal value of s. In the
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case of MOGLS, the expected rank of recombined solutions is obviously |TE|/2+0.5. Below
we analyze expected rank in the case of tournament selection.

Consider a solution x having rank r and selected for the tournament. There are r-1 better
solutions and |CS|-r+1 not better solutions (including x). The probability P1 that x is the best
solution in T under condition that x is selected for the tournament is equal to the probability of
drawing |T|-1 times a solution not better than x:
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The probability P2 that x is drawn for the tournament is equal to:
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thus, the probability P3 that x is the best solution in the tournament is:
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and the expected rank of the best solution in the tournament Er1 is:
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In a similar way one may calculate expected rank of the second best solution. In this case, the
probability P4 that a solution x having rank r and selected for the tournament is the second
best solution is calculated from Bernoulli distribution and is equal to:
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Thus, the expected rank of the second best solution Er2 is equal to:
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In result, the expected rank of recombined solutions Er is equal to:
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The above formula, although quite complicated, is within typical ranges of |CS| and Er, i.e.
|CS| >> Er ≥ 5, well approximated by the following formula:
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T

CS
Er

2

3
≈ .

In PMA, the expected rank of recombined solutions is used as a parameter of the method and
the size of the tournament sample T is set in the following way:

Er

CS
T

2

3
≈ .

In general, low values of Er result in very high selection pressure but may cause a premature
convergence. The algorithm of PMA is summarized in Figure 2.

The set of potentially Pareto-optimal solutions PP is the outcome of the method and is an
approximation of the nondominated set. It is empty at the beginning and is updated whenever
a new solution is generated by the local heuristic. Updating the set of potentially
Pareto-optimal solutions with solution x consists of:

• adding f(x) to PP if no point in PP dominates f(x),

• removing from PP all points dominated by f(x).

In this experiment we used weighted Techbycheff scalarizing functions in PMA and other
hybrid genetic algorithms. The scalarizing functions used a reference point based on the set of
potentially Pareto-optimal solutions defined in the following way (note that in the case of
BOSCP signs of the objectives were changed, see section 2):

( ) { } { } { }( ) JjPPzPPzPPzPPz jjjj ,...,1|min|max0.1|max** =∈−∈+∈= zzz .

Set CS is organized as a queue of size N×S, where S is the number of initial solutions and N is
a parameter of the method typically equal to 2Er-1 (a value assuring compatibility with
approach used in MOGLS). New solutions are added to the beginning of the queue. If the size
of the queue is bigger than N×S then the last solution from the queue is removed. In our
experiment, however, a value of N = 2Er-1 allowed to store all generated solution in CS until
the end of the algorithm run.
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Parameters: Er – expected rank of recombined solutions, S – number of initial solutions or
K - parameter used in condition (1), stopping criterion

Initialization:

The set of potentially Pareto-optimal solutions PP:=∅

The current set of solutions CS:=∅
Generation of the first approximation of the ideal point:

for each objective fj

Construct a new feasible solution x by a randomized algorithm

Apply a local heuristic optimizing objective fj to solution x obtaining x’

Add x’ to the current set of solutions CS

Update set PP with x’

Generation of the initial set of solutions:

repeat

Draw at random a weight vector Λ
Construct a new feasible solution x by a randomized algorithm

Apply a local heuristic optimizing ( )Λ,...,zs to solution x obtaining x’

Add x’ to the current set of solutions CS

Update set PP with x’

until S initial solutions are generated or condition (1) is fulfilled

Main loop:

repeat

Draw at random a weight vector Λ

From CS draw at random with uniform probability a sample T of ErCS 23 solutions

Recombine the best and the second best solution on ( )Λ,...,zs obtaining x1

Apply a local heuristic optimizing ( )Λ,...,zs to solution x1 obtaining x1’

if x1’ is better on ( )Λ,...,zs than the second best solution in T then

Add x1’ to the current set of solutions CS

Update set PP with x1’

until the stopping criterion is met

Figure 2. The algorithm of Pareto memetic algorithm. ( )Λ,...,zs stands for either

( )( )Λ∞ ,, ** PPs zz or ( )Λ,zls . The former version is used in this experiment

The initial solutions are generated by local optimization of randomly selected scalarizing
functions. The number of the initial solutions S is an additional parameter of the method. We
use also another approach that allows automatically stopping generation of initial solutions.
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Single objective hybrid genetic algorithms often start by generation of a number of solution
by local optimization. In the multiple-objective case, we propose to stop generating the initial
solutions when average quality of K best solutions in the set of initial solutions over all
scalarizing functions is the same as the average quality of solutions generated by the local
heuristic used for optimization of these functions. Precisely, the generation of initial solutions
is stopped when the following condition is met (minimization of the scalarizing function is
assumed):

( )( ) ( )( ) 0,,,
1 ≤−∑

∈CSx
xxx ssCSKBs

CS
xx , (1)

where x is an initial solution being obtained by local optimization of a scalarizing function sx

(note that x does not need to be the best solution on sx in the set CS because solutions obtained
by local optimization of other functions may be better on sx), ( ) CSsCSKB x ⊆,,, x is the set

of K best solutions of function sx different from x and ( )( )xx sCSKBs ,,, x is the average value

of sx in ( )xsCSKB ,,, x :

( )( )
( )

( )
K

s

sCSKBs xsCSKB
x

xx

∑
∈= ,,,

,,,
xy

y

x .

In order to draw at random a weight vector the algorithm presented in Figure 3 is used. The
algorithm uniformly samples the whole set of normalized weight vectors [17]. Note that by
changing the algorithm for drawing the weight vectors one can concentrate the method on a
subregion of the nondominated set [13].

In real-life applications the ranges of objectives usually differ a lot, often by many levels of
magnitude. So, the normalized weight vectors should be applied to normalized objective
values (see section 2). The range equalization factors are updated on-line from the ranges of
particular objectives in the set of potentially Pareto-optimal solutions.
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l
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Figure 3. Algorithm for generating random normalized weight vectors. Function rand()
returns a random value from the range <0,1> with uniform probability

4. Other methods tested in the experiment

Because of limited space only basic information about other algorithms tested in the
experiment is given. Further details may be found in the literature.

As it was mentioned in the previous section, PMA normalizes the objective values with range
equalization factors calculated on-line from the ranges of particular objectives in the set of
potentially Pareto-optimal solutions. Although descriptions of some algorithms do not refer to
this issue, we use objective values normalization in all algorithms that use scalarizing
functions or distance measures in the objective space.
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4.1. Hybrid genetic algorithms

Three hybrid genetic algorithms have been tested in the experiment. The Pareto memetic
algorithm (PMA) has been described in section 3. Multiple-objective genetic local search
algorithm (MOGLS) has also been briefly described in that section.

Ishibuchi's and Murata's multiple-objective genetic local search (IMMOGLS) [12] was the
first multiple-objective hybrid genetic algorithm described in the literature. As it was already
mentioned in section 3, its general scheme is the same as of PMA and MOGLS and is
presented in figure Figure 1. The method stores relatively small number of solutions in a
standard genetic population. New population replaces the old one but some elite solutions are
preserved. The solutions are selected for recombination according to the roulette wheel
scheme, with fitness depending on the current scalarizing function. This results in some
pressure towards recombination of solutions good on the current scalarizing function but, in
general, the solutions recombined are worse on this function that in the case of MOGLS and
PMA.

4.2. Multiple-objective multiple start local search (MOMSLS)

The method corresponds to the Generation of the initial set of solutions phase of PMA and
other hybrid genetic algorithms. The method repeatedly draws a scalarizing function and uses
a local heuristic to optimize the function starting from a random solution.

4.3. Simulated annealing algorithms

The first multiple-objective version of simulated annealing has been proposed by Serafini
[23]. The method is called Serafini's multiple-objective simulated annealing (SMOSA). The
algorithm of the method is almost the same as the algorithm of single objective SA. The
method uses a single current solution. Serafini considered a number of multiple-objective
rules for acceptance of new solutions. In this experiment, a new neighborhood solution is
accepted with an acceptance rule that may be interpreted as the local use of the weighted
linear scalarizing function. In each iteration, the weight vector used in the acceptance rule is
modified randomly. Each weight is allowed to change by no more than 10%.

Ulungu et al. [28] proposed a method called multiple-objective simulated annealing (MOSA).
The method uses a number of generating solutions exploring different regions of the
nondominated set. With each of the solutions a predefined weight vector is associated. The
weight vectors do not change during the run of the method. The acceptance rule of new
solutions is the same as in the case of SMOSA.

Pareto simulated annealing (PSA) [2] also uses a sample of generating solutions. Weight
vectors associated with the generating solutions are modified in each iteration in order to
induce a repulsion mechanism assuring dispersion of the solutions over all regions of the
nondominated set. The method uses the same acceptance rule as the two above algorithms.

Summarizing, all simulated annealing algorithms use locally scalarizing functions in
acceptance rules, and use different weight vectors, either predefined or updated during the run
of the algorithm, in order to assure dispersion of the search over all regions of the
nondominated set.
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4.4. Genetic algorithms

Nondominated sorting genetic algorithm (NSGA) [25] is a relatively simple Pareto-ranking
based multiple-objective GA. Its scheme is very similar to the single objective GA with
generations replacements. The only difference is in fitness assignment that is based on a
ranking induced by the dominance relation. In each iteration, NSGA assigns rank 1 to all
solutions nondominated in the current population. Then, the nondominated solutions are
temporarily removed from the population and the next rank is assigned to the solutions
nondominated in the remaining part of the population. The process is continued until all
solutions in the population are ranked. The method uses fitness sharing in order to avoid
convergence of all solutions to a small region of the nondominated set caused by the genetic
drift.

Controlled elitist non-dominated sorting genetic algorithm (CENSGA) [3] is a modification of
NSGA that preserves good solutions from the current population. In order to assure
diversification of the population it preserves not only solutions nondominated in the current
population but also some dominated solutions. CENSGA uses also more effective way for
rank assignment.

In strength Pareto evolutionary algorithm (SPEA) [30] both solutions from the current
population and from the set of potentially Pareto-optimal solutions participate in the selection
which is also based on Pareto ranking. In addition, the method uses a new Pareto-based
niching method to preserve diversity of the population.

Original versions of NSGA and CENSGA do not use the external set of potentially
Pareto-optimal solutions and outcomes of the methods are the final populations. In our case,
we used, however, such set in all methods. The set was updated with each newly generated
solution.

5. Adaptation of the methods to multiple-objective set
covering problem

Metaheuristics are often used to solve single objective set covering problem. Various
adaptations of metaheuristics to this problem are described for example in [1], [4], [19] and
[21]. Thus, we base our adaptation of multiple-objective metaheuristics to BOSCP on these
works. Note, that although we use bi-objective instances in this experiment, the adaptation
may be used in the case of general multiple-objective set covering problem.

Solutions encoding

In our case, a solution x is encoded as a set of columns, i.e. x ⊆C, where C is the set of all
columns in matrix (alj) (see section 2). Of course, this encoding is equivalent to a binary
representation using I binary variables or genes (see e.g. [1]), but this binary representation is
not used directly in our implementation.

Generation of initial solutions

Initial solutions are constructed in a way similar to that proposed in [4]. At first, we consider
each row l∈1,…,L, starting from a randomly selected row. If l is not covered yet, a column i
that covers l is drawn at random. A column i covers row l if alj=1. Solutions obtained in this
way may include many redundant columns, i.e. columns that can be removed without
violating feasibility. Thus, in the next step the redundant columns are removed iteratively
until no redundant column remains in the solution. In the case of methods that use scalarizing
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functions (simulated annealing algorithms, hybrid genetic algorithms and MOMSLS), in each
iteration, the redundant column with the highest ratio of:

scalarizing function value improvement caused be removal of the column
the number of non zero elements in the column

is removed. In the case of genetic algorithms, in each iteration, a randomly selected redundant
column is removed.

Neighborhood operator

We use a neighborhood operator that is guided by a scalarizing function. At first, a randomly
selected column is removed from the solution. In result an unfeasible solution is obtained.
Then, the solution is repaired in greedy manner by inserting columns with the lowest ratio of:

scalarizing value decline caused by insertion of the column
the number of uncovered rows covered by the column

The column removed in the first step is not considered by the greedy procedure, thus, the
neighborhood operator always produces a new solution.

Local search

Local search is guided by a scalarizing function. We use the steepest version of local search,
i.e. the whole neighborhood of the current solution is tested and the best local move is
performed. Local search ends when no improving move may be found in the neighborhood of
the current solution. In order to test the whole neighborhood removal of each column is
considered in the neighborhood operator.

Recombination operator

We use a recombination operator that produces a single offspring from two recombined
solutions (parents). The operator is based on the idea of distance preserving crossover [22],
i.e. it preserves elements common to both parents. At first, we place in the offspring all
columns that are included in both recombined solutions. The columns that appear in one of
the parents only are placed in the offspring with 50% probability. This, in general, does not
guarantees covering of all rows. Then, all uncovered rows with randomly selected columns.
After that, rows are selected for mutation with 5% probability. The mutation consists in
drawing a random column covering the mutated row and adding it to the solution. In the case
of genetic algorithms, redundant columns are then removed in random order. In the case of
hybrid genetic algorithms, local search assures removal of redundant columns.

6. Computational experiment design

Evaluation of metaheuristics should involve at least two criteria – the quality of obtained
results and running time. The way we evaluate the quality of results is described in section 7.
In order to measure running time two main approaches are usually used: the number of
generated solutions/number of function evaluations (see e.g. [30]) or CPU time (see e.g. [1]).
The advantage of CPU time is that it takes into account differences in time needed to generate
new solutions by different operators and any CPU time overload introduced by a given
method (e.g. time needed for selection of solutions for recombination). CPU time has also the
highest practical importance among running time measures. The disadvantage of CPU time is
that it is influenced by computer, programming language and implementation style
characteristics. In our case, however, we were able to test all methods on the same computer,
implemented in the same language and with the use of the same library. In result, most lines
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of code used by each method were shared with other methods. Thus, we decided to use CPU
time measure in this experiment.

We used 44 instances of BOSCP generated by Gandibleux and available at
http://www.univ-valenciennes.fr/ROAD/MCDM/ListMOSCP.html. The instances differ not
only by size but also by other characteristics. The instances have from 10 to 200 rows and
from 100 to 1000 columns. There are four sets of the instances. In the case of instances from
set A, costs were generated randomly and independently. In the case of instances from set B,
only coefficients of the first objective were generated randomly while the coefficients of the
second objectives were set in the following way:

1
1

2
+−= iIi cc , i=1,...,I.

In the case of instances from set C, columns are divided into several subsets. All columns
from one subset have the same coefficients on both objectives. Set D of instances combines
characteristics of sets B and C.

Because of limited space we do not report all results, but only results obtained for 12
representative instances. All results, as well as all generated approximations, are available at
http://www-idss.cs.put.poznan.pl/~jaszkiewicz/moscp.

Table 1. Characteristics of the test instances

Instance Number of rows Number of columns Set
2scp41A A
2scp41B B
2scp41C C
2scp41D

40 200

D
2scp81A A
2scp81B B
2scp81C C
2scp81D

80 800

D
2scp201A A
2scp201B B
2scp201C C
2scp201D

200 1000

D

On each instance, each method was run 10 times. Each method was allowed to run for the
same time. Since the instances differ significantly it would not be a good approach to use the
same CPU time for all instances. Thus, at first, PMA was run ten times with parameters
described below and average running time of PMA was used as the stopping criterion for all
other methods.

The parameters of all methods were selected experimentally on the basis of the best choice
principle. We did not tune, however, the parameters to particular instances, but set the
parameters in order to obtain a relatively good performance on all instances.

The number of initial solutions was set in the same way for all hybrid genetic algorithms. We
used the automatic approach described in section 3. Since, the number of initial solutions
obtained in this way is not deterministic (although usually is characterized by a low dispersion
[16]) we decided to use the same number of initial solutions in all runs of the three HGAs.
The condition (1) was tested only once and then the same number of initial solutions was used
in all other runs of PMA, MOGLS and IMMOGLS on the same instance. The parameter K
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was set to 10. The size of temporary elite population used by MOGLS was set to 15. In the
case of PMA, the expected rank Er was set to 7.5. PMA was allowed to perform ten times
more recombinations than the number of initial solutions. In the case of IMOMGLS, the size
of genetic population was set equal to the number of initial solutions and the elite size was set
equal to 10% of the population size.

In all multiple-objective genetic algorithms we used populations of size 100 which is quite
typical value used in such methods [29]. The neighborhood distance used in NSGA was set to
0.2. The reduction rate in CENSGA was set to 0.8. The nondominated population size of
SPEA was set to 100, and clustering was performed when the size of the population exceeded
150.

In all simulated annealing algorithms the starting temperature was set to 0.05 and final
temperature to 0.0005. After each temperature plateau the temperature was multiplied 0.9. In
result, 44 temperature plateaus were obtained. To each temperature plateau 1/44 of the
average running time of PMA was allocated. The number of generating solutions used in PSA
and the number of predefined weight vectors used in MOSA was set to 8. The weights change
coefficient used in PSA was set to 0.0003.

7. Quality evaluation

As the quality measure of approximations of the nondominated set we use average best value
of the weighted Tchebycheff scalarizing function over a set of systematically generated
normalized weight vectors [8], [15], [14]. We use all normalized weight vectors in which each

individual weight takes on one of the following values: { }klk
l ,...,0, = , where k is a sampling

parameter. The set of such weight vectors is denoted by Ψs and defined mathematically as:

[ ] { }{ }1,1,...,2,1,0|,...,1 k
k

kkjJs
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where Ψ is the set of all normalized weight vectors.
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In our experiment we used sampling parameter k equal to 100, i.e. 101 weight vectors were
used.

In the case of 16 instances with up to 40 rows and 400 columns we found exact ideal points
optimizing each objective individually using Lingo [9] and Frontline Premium [10] IP solvers.
The ideal points were used as reference points z0 in the quality measure. In the case of other
instances, we used upper approximations of the ideal points obtained by optimization of
individual objectives on relaxed version of BOSCP. The relaxed version was obtained by
allowing variables xi to take continuous values from range <0,1>. Before applying the quality
measure all objective values were normalized using objective ranges observed during
individual optimization of the objectives, i.e. the range one of the objectives objective was
equal to the difference between its best value found by optimization of this objective and the
value of this objective found by optimization of the other objective.
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The measure achieves the best (minimum) value on the nondominated set. However, the best
value may be found without generating the whole nondominated set if one is able to find the
optimum value of the weighted Tchebycheff scalarizing function for each weight vector in set
Ψs, which requires solving problem (P2). We used to this end the mentioned above two
solvers. Because of time requirements we were able to find the best values of the measure
only for 16 instances with up to 40 rows and 400 columns. An interesting observation was
that instances from sets C and D were more difficult for the solvers than instances from sets A
and B. The average running time of the solvers was about 4 times higher on instances from
sets C and D. We have also noticed that instances from sets C and D contain much fewer
nondominated points (cf. Figure 5 and Figure 6). In the case of other 28 instances, we have
found lower bounds on the quality measure by solving relaxed version of problem (P2) for
each weight vector. The relaxed version was obtained by allowing variables xi to take
continuous values from range <0,1>.

8. Results and discussion

Table 2 presents running times and numbers of solutions generated by particular algorithms
on the 12 representative instances. All calculations were run on a 400 MHz PC. Note that in
the case of HGAs and MOMSLS we count only local optima (we do not count intermediate
solutions generated during local search), so, the numbers of generated solutions are naturally
much lower than in the case of other algorithms. In the case of simulated annealing, we count
accepted solutions only. Thus, the results should rather be used to compare algorithms from
the same class.

Results of the experiment on the 12 representative instances are presented in Table 3 and
Figure 4. Detailed numerical results for all instances are available at
http://www-idss.cs.put.poznan.pl/~jaszkiewicz/moscp. Each chart in Figure 4 corresponds to a
different instance. Each chart contains ten results representing the distribution of R for (from
left to right) the best possible value or lower bound, PMA, MOGLS, IMMOGLS, MOMSLS,
SPEA, NSGA, CENSGA, PSA and MOSA. For each method we present average value and ±
standard deviation range. For each chart the scale is from the best possible value or lower
bound at the bottom to the highest observed value at the top. We did not include results of
SMOSA in Figure 4 because average results of SMOSA were much worse than of other
algorithms with very high standard deviations. More detailed analysis indicated that in most
runs SMOSA gave results comparable to results of other simulated annealing algorithm (PSA
and MOSA). However, in about 15% of runs of SMOSA the results were enormously poor. It
indicates that sometimes the single solution used by the algorithm gets trapped in poor regions
of the solution space. Other simulated annealing algorithms are less vulnerable to such
situations due to the use of several generating solutions.

The results indicate that instances from sets C and D are more difficult also for
multiple-objective metaheuristics (see section 7). In general, the gap between results of the
metaheuristics and the best possible value or lower bound is higher in case of these instances.
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Table 2. Numbers of generated solutions and running times on the test instances

Instance
2scp41A 2scp41B 2scp41C 2scp41D

Number of initial solutions in HGAs 110 110 60 50
Running time [s] 27.5 26.4 13.9 13.4

PMA 1210 1210 660 550
MOGLS 1139 1067 566 496
IMMOGLS 695 662 422 402
MOMSLS 426 426 310 284
SPEA 39580 39690 21430 20320
NSGA 31630 30000 12270 9820
CENSGA 27220 23340 11800 10600
PSA 88749 89307 29774 31894
MOSA 80792 86143 22745 31321

Number of generated
solutions

SMOSA 166252 126512 38488 46837
Instance

2scp81A 2scp81B 2scp81C 2scp81D
Number of initial solutions in HGAs 140 150 20 30
Running time [s] 285.4 306.4 25.6 46.2

PMA 1540 1650 220 330
MOGLS 1535 1643 178 274
IMMOGLS 842 902 224 278
MOMSLS 413 491 46 88
SPEA 189330 209020 15780 34080
NSGA 160170 192660 7410 18290
CENSGA 131350 145550 9280 16730
PSA 613388 684540 35223 72135
MOSA 587273 637394 12926 39385

Number of generated
solutions

SMOSA 827919 850063 50898 77904
Instance

2scp201A 2scp201B 2scp201C 2scp201D
Number of initial solutions in HGAs 140 130 70 40
Running time [s] 1060.9 937.0 487.8 261.4

PMA 1540 1430 770 440
MOGLS 1571 1431 773 429
IMMOGLS 1206 1172 639 386
MOMSLS 677 604 391 201
SPEA 87240 72410 29930 16760
NSGA 73190 70890 32600 24980
CENSGA 31320 17080 12890 12360
PSA 891138 817970 217459 53073
MOSA 799390 730129 218638 40693

Number of generated
solutions

SMOSA 1311530 1079046 327267 195030

Taking into account all results hybrid genetic algorithms, especially PMA and MOGLS, are
the best performers in the experiment. The performance of the two methods is very similar.
Thus, the new faster selection mechanism introduced in PMA does not deteriorate quality
with respect to MOGLS. PMA usually generates slightly more solutions than MOGLS but in
some case the opposite situation is observed. Since, PMA uses a faster selection mechanism
one could expect that PMA should be able to generate more solutions than MOGLS. The
reduction of selection time has, however, very low influence on the overall running time in
the case of BOSCP because most time is spent on local optimization. The advantage of PMA



16

selection mechanism should be more evident if a simpler and faster heuristic is used.
IMMOGLS performs worse than PMA and MOGLS on all instances but 2scp81C and
2scp81D. In most cases, IMMOGLS was able to generate fewer solutions than PMA and
MOGLS in the same time. In our opinion, this is because IMOMGLS recombines, in general,
worse solutions, and thus the offspring are further from local optima than in the case of PMA
and MOMGLS. The results indicate that selection of very good solutions for recombination is
crucial for the performance of the two latter algorithms on BOSCP.

MOMSLS performs worse than all HGAs. The method was able to generate much fewer
solutions than HGAs, because local search needs more time to achieve a local optimum when
started from an initial solution. The results show that hybridization of recombination operator
with local search is very beneficial in the case of BOSCP.

The performance of PSA and MOSA is very similar and significantly depends on instance
size. The methods gave the best results on 2scp201C and 2scp201D instances, but performed
poorly on 2scp41C and 2scp41D instances. This is probably due to the difficulty in finding
parameters appropriate for all instances. We expect that performance on smaller instances
could be significantly improved if the parameters, especially starting and final temperature,
were tuned for each instance. Thus, although PSA and MOSA are capable of giving high
quality results, they are less robust than HGAs. Note that since we use normalized objective
values the above phenomenon cannot be explained by different ranges of objectives in
different instances. SMOSA always accepted in the same time many more solutions than PSA
and MOSA, and PSA, in most cases, accepted mores solutions than MOSA. This is because,
SMOSA and PSA modify the weights used in scalarizing function in each iteration.
Furthermore, SMOSA makes greater changes to the weights in a single iteration.

Excluding SMOSA, multiple-objective genetic algorithms are the worst performers in the
experiment. Only on 2scp41C and 2scp41D instances CENSGA gives results comparable to
PMA and MOGLS. In most cases, however, the three GAs give the worst results. In addition,
dispersion of the quality of results is higher than in the case of other methods. The simplest
algorithm NSGA gives the worst results among the three GAs. Thus, the extensions to the
basic idea of Pareto-ranking resulted in improved performance of the newer algorithms, but
did not make the new algorithm competitive to other multiple-objective metaheuristics on
BOSCP. Furthermore, one may note that SPEA performs relatively well on instances from
sets A and B, while CENSGA performs better on instances from sets C and D. Note that
CENSGA puts more emphasis on diversification (see section 4.4) which apparently pays off
on more difficult instances. In most cases, SPEA generates the highest number of solutions
among GAs.
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Table 3. Average values and ± standard deviation of the quality of results

Instance
2scp41A 2scp41B 2scp41C 2scp41D

PMA 0.1097 ± 0.0010 0.0821 ± 0.0008 0.1269 ± 0.0089 0.0888 ± 0.0033
MOGLS 0.1108 ± 0.0019 0.0830 ± 0.0010 0.1346 ± 0.0070 0.0915 ± 0.0041
IMMOGLS 0.1202 ± 0.0027 0.0906 ± 0.0020 0.1501 ± 0.0069 0.1067 ± 0.0041
MOMSLS 0.1273 ± 0.0015 0.0975 ± 0.0011 0.1957 ± 0.0099 0.1303 ± 0.0112
SPEA 0.1315 ± 0.0103 0.1202 ± 0.0110 0.1659 ± 0.0351 0.0977 ± 0.0098
NSGA 0.1737 ± 0.0230 0.1369 ± 0.0076 0.1849 ± 0.0525 0.1218 ± 0.0235
CENSGA 0.1342 ± 0.0081 0.1208 ± 0.0085 0.1353 ± 0.0106 0.0926 ± 0.0075
PSA 0.1196 ± 0.0022 0.0879 ± 0.0018 0.1411 ± 0.0068 0.1040 ± 0.0041
MOSA 0.1191 ± 0.0018 0.0884 ± 0.0012 0.1529 ± 0.0175 0.1119 ± 0.0039
SMOSA 0.2457 ± 0.2015 0.1164 ± 0.0902 0.1697 ± 0.1414 0.1487 ± 0.1206
Best possible
value 0.1051 0.0779 0.1073 0.0668

Instance
2scp81A 2scp81B 2scp81C 2scp81D

PMA 0.0844 ± 0.0003 0.0815 ± 0.0003 0.0205 ± 0.0021 0.0400 ± 0.0044
MOGLS 0.0844 ± 0.0002 0.0816 ± 0.0006 0.0208 ± 0.0023 0.0486 ± 0.0075
IMMOGLS 0.0903 ± 0.0007 0.0913 ± 0.0013 0.0209 ± 0.0020 0.0402 ± 0.0052
MOMSLS 0.0958 ± 0.0013 0.0977 ± 0.0016 0.0264 ± 0.0021 0.0751 ± 0.0030
SPEA 0.1260 ± 0.0121 0.1174 ± 0.0150 0.1441 ± 0.0726 0.2050 ± 0.1070
NSGA 0.1880 ± 0.0243 0.1733 ± 0.0143 0.2406 ± 0.0666 0.2361 ± 0.1291
CENSGA 0.1525 ± 0.0193 0.1258 ± 0.0104 0.1691 ± 0.0696 0.1908 ± 0.0334
PSA 0.0844 ± 0.0003 0.0833 ± 0.0010 0.0203 ± 0.0006 0.0488 ± 0.0022
MOSA 0.0852 ± 0.0006 0.0860 ± 0.0013 0.0207 ± 0.0010 0.0491 ± 0.0029
SMOSA 0.2151 ± 0.2665 0.1345 ± 0.1399 0.6923 ± 1.0885 0.6369 ± 1.2544
Lower bound 0.0800 0.0771 0.0101 0.0137

Instance
2scp201A 2scp201B 2scp201C 2scp201D

PMA 0.0813 ± 0.0010 0.0659 ± 0.0006 0.1649 ± 0.0086 0.4967 ± 0.0351
MOGLS 0.0812 ± 0.0009 0.0662 ± 0.0006 0.1659 ± 0.0047 0.4705 ± 0.0158
IMMOGLS 0.0900 ± 0.0013 0.0727 ± 0.0008 0.1906 ± 0.0047 0.5296 ± 0.0249
MOMSLS 0.0941 ± 0.0010 0.0764 ± 0.0012 0.2245 ± 0.0110 0.6944 ± 0.0205
SPEA 0.1338 ± 0.0080 0.1089 ± 0.0122 0.2526 ± 0.0168 0.7228 ± 0.0843
NSGA 0.2024 ± 0.0215 0.1534 ± 0.0179 0.2711 ± 0.0301 0.7590 ± 0.1263
CENSGA 0.1754 ± 0.0136 0.1559 ± 0.0209 0.2384 ± 0.0162 0.6666 ± 0.0504
PSA 0.0831 ± 0.0009 0.0665 ± 0.0004 0.1506 ± 0.0044 0.4146 ± 0.0051
MOSA 0.0833 ± 0.0007 0.0677 ± 0.0007 0.1504 ± 0.0041 0.4226 ± 0.0136
SMOSA 0.3919 ± 0.3934 0.2112 ± 0.2988 0.2491 ± 0.2584 1.0697 ± 0.8540
Lower bound 0.0590 0.0513 0.0552 0.0789
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Figure 4. Results of the experiment in graphical form

In Figures 5-8 some exemplary approximations for four different instances are presented
(each of them was generated in the first run of a given algorithm). We did not include all
approximations in order to preserve clarity of the figures. The points referred to as “exact” are
obtained by local optimization of weighted Tchebycheff scalarizing functions with IP solvers
(see section 7). Note, that the points may be dominated (see section 2), which apparently
happens in many cases. The points referred to as “relaxed” are points obtained by local
optimization of weighted Tchebycheff scalarizing functions on the relaxed version of BOSCP
with continuous variables. One may note, that there is a very large gap between the relaxed
points and any of the approximations in the case of 2scp201D instance. It is not clear whether
this gap is mainly due to the poor performance of metaheuristics on this instance or due to the
gap between Pareto fronts of the original and relaxed problems. We have noted, however, that
in the case of this instance solutions of the relaxed problem contain many fractional values.
Thus, it is possible that the solutions are far from feasible solutions with binary values.
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Figure 5. Exemplary approximations obtained for 2scp41A instance
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20

1000

3000

5000

7000

9000

11000

13000

15000

17000

19000

1000 3000 5000 7000 9000 11000 13000 15000 17000 19000

Relaxed

PMA

PSA

CENSGA

Figure 7. Exemplary approximations obtained for 2scp201B instance
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Figure 8. Exemplary approximations obtained for 2scp201D instance

9. Conclusions

Ten multiple-objective metaheuristics have been compared on the bi-objective set covering
problem. The main conclusions of the experiment are:

• instances with repeating values of objectives coefficients are more difficult for both IP
solvers and metaheuristics,
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• PMA and MOGLS are the best performers in the experiment, although, they were not
able to outperform all other methods on all instances.

• comparison of PMA and MOGLS with IMMOGLS and MOMSLS indicates that the
use of recombination operator and recombination of good solutions is crucial for the
performance of the former two algorithms,

• MOSA and PSA are capable of giving high quality results but are very sensitive to
parameters setting,

• the use of a single generating solution in SMOSA results in very high dispersion of the
quality of results,

• Pareto-ranking based genetic algorithms perform, in general, worse than other
algorithms,

• the new mechanisms introduced in SPEA and CENSGA improve the results of basic
Pareto-ranking based evaluation mechanism used in NSGA,

• CENSGA performs relatively well on small, difficult instances with repeating values
of objectives coefficients.

Furthermore, the results indicate that the performance of multiple-objective metaheuristics
may differ radically even if the methods are based on the same single objective algorithm and
use exactly the same problem-specific operators. Thus, the elements of the methods that are
specific to multiple-objective case have substantial influence on their performance.

In the future we would like to consider more advanced adaptations of the metaheuristics to the
set covering problem taking into account the most effective approaches proposed in single
objective case, e.g. [21]. We plan also to extend the experiments to instances with more than
two objectives and to include other multiple-objective metaheuristics, e.g. methods based on
tabu search [5] or Pareto-ranking based memetic algorithms [18].
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