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Abstract

Multi-objective evolutionary algorithms for optimiza-
tion have received much attention in recent litera-
ture. In this paper we propose a new Pareto-based
Multi-objective Evolutionary Algorithm to solve the
vector optimization problem. This algorithm uses a
variant of the preselection scheme as implicit niche
formation technique. In addition we propose an ap-
proach to solve goal and priority based optimization
problems by using the above multi-objective evolu-
tionary algorithm. This approach allows us to solve
a wide set of optimization problems, including partic-
ular cases such as the vector optimization problem,
constrained optimization, constraint satisfaction, and
goal programming. Good results have been obtained
for different test problems studied by other authors.

1 Introduction

The potential effectiveness of Evolutionary Algo-
rithms (EA) in multi-objective search and optimiza-
tion has been widely recognized in recent years
[1, 3, 4]. In this paper we propose a Pareto-based
Multi-objective EA to solve the vector optimization
problem which uses a variant of the preselection
scheme [2], and we also propose an approach to solve
optimization problem based on goals and priorities
by using the previous EA. Particular cases like the
vector optimization problem, constrained optimiza-
tion, constraint satisfaction, and goal programming
can be solved with the proposed approach. The im-
portance of the proposed approach arises from the
separation of the technique to handle goals and pri-
orities, and the specific implementation aspects of the
optimizer (such as niche formation tecnique, selection
mechamism, etc.). Thus, existing EAs for the vector

optimization problem can also be used to solve op-
timization problems based on goals and priorities by
means of the proposed approach.

2 A Pareto-based evolutionary
algorithm for the vector opti-
mization problem

The multi-objective optimization problem consists of
minimizing, without loss of generality, the p compo-
nents of a vector function f of a decision variable x
in a universe X, i.e.

Minimize £(x) = (f1(x), ..., fp(x)) (1)

This problem is usually called the vector optimiza-
tion problem and it acquires importance when ob-
jective functions are non commensurable, compet-
ing or conflicting measures. The set of solutions
for problem (1) is composed of all those elements of
the search space for which the corresponding objec-
tive vector cannot be simultaneously improved for
all components. These solutions are called non-
dominated, mon-inferior or Pareto-optimal. Given
two decision vectors x,x’ € X, x is said to dominate
x'if fi(x) < fi(x'), for all objective functions f;, and
fi(z) < f;j(z"), for at least one objective function f;.
A decision vector x is said to be Pareto-optimal if
there is not a decision vector which dominates x.

We use an implicit niche formation technique [2],
which is a variant of the preselection scheme adapted
for multi-objective optimization. The main charac-
teristics of the EA are the following:

e The proposed algorithm is a Pareto-based multi-
objective EA to solve the vector optimization prob-
lem as in (1). It has been designed to find, in a single



run, multiple non-dominated solutions in agreement
with the Pareto decision strategy. The EA minimizes
all objective functions.

e The EA uses a real-coded representation.

e The initial population is generated randomly with
a uniform distribution within the boundaries of the
search space.

e The EA uses the following variant of the preselec-
tion scheme:

In each iteration of the EA, two individuals are
picked at random from the population. These in-
dividuals are crossed nChildren times and children
mutated resulting in nChildren pairs of candidates.
The best of the first group of candidates replaces the
first parent, and the best of the second group replaces
the second parent only if the offspring is better than
the parent. An individual I is better than another
individual J if I dominates J. A best individual of
a collection is any individual I such that there is no
other individual J which dominates I.

Note that the preselection scheme is an implicit
niche formation technique to maintain diversity in the
populations because an offspring replaces an individ-
ual similar to itself (one of its parents). Moreover, the
preselection scheme is also an elitist strategy because
the best individual in the population is replaced only
by a better one.

e Two crossover operators, uniform and arithmetic,
and two mutation operators, uniform and non uni-
form, are used [7].

3 Solving goal and priority
based multi-objective opti-
mization problems

We can use the above EA to solve other optimization
problems involving goals and priorities. Goals indi-
cate desired levels of performance in each objective
and priorities are integer values which determine in
which order objectives are to be optimized.

We consider the following formulation:

Minimize £(x) = (f1(x),..., fp(x)) (2)
with goal levels u = (u1,...,up) and priorities p =
(pl; e ,pp).

Priorities and goal levels can accommodate a whole
variety of optimization problems. Besides the vec-
tor optimization problem in which all objectives have
equal priority and no goal levels are given, other par-
ticular cases of the formulation (2) are:

o Constrained Optimization: constraints are high-

priority objectives with goal levels and objectives are

assigned the lowest priority with no goal levels.

o Constraint Satisfaction: as in constraint optimiza-

tion but with no objective to be optimized.

e Goal Programming: objectives have goal levels

which can be reached simultaneously or sequentially.
In order to solve problems as in (2), we consider the

following objective vector f'(x) = (f(x),..., f,(x)),
where functions f](x) are defined as follows:
m if h(7) and f;(x) < wu;
fix) =4 fi(x) if (i) ®3)
M otherwise

where m is a small enough number (m < u;, Vi =
1,...,p), M is a large enough number, and h
{1,...,p} = {0,1} is a Boolean function defined as
follows:

h(z‘):{ (1]

Each new objective function f] takes the best pos-
sible value m when all objectives with lower priority
and itself are reached. In other cases, if all objectives
with lower priority are reached, then the new func-
tion f] takes the former value f;, and finally, if some
objective with lower priority is not reached, the new
objective function f/ take the worst possible value M.

Now we can use the EA described in the previous
section with the objective vector f/(x) to solve the
former problem (2).

if fj(x) <wuj, Vji:p; >pi
otherwise

4 Experiments and results

We consider the following test problems in order to
check out the proposed technique and the Pareto-
based multi-objective EA:

e Constrained optimization:
G1,...,G11 reported in [6, 7].
o Unconstrained multi-objective optimization: Test
problems F'1 and F2 reported in [8].

o (onstrained multi-objective optimization: Test
problem F'3 reported in [8] and test problem reported
in [5].

Table 1 summarizes the results for the constrained
optimization test problems. For each test problem,
the optimum, worst, best and average values (over
10 runs) are reported. We compared our results with
those obtained by different evolutionary approaches
for constrained optimization proposed in [6, 7].

Test  problems



Figures 1, 2 and 3 graphically show the non-
dominated solutions obtained for the unconstrained
and constrained multi-objective test problems.

The following values for the parameters of the EA
were used in the simulations: population size 200,
crossover probability 0.9, mutation probability 0.2,
and number of children for the preselection scheme
10. All crossover and mutation operators are applied
with the same probability. The EA stops when the
solutions satisfy the decision maker.

5 Conclusions

This paper supposes a twofold contribution in Evo-
lutionary Computation. In the first place we propose
a new Pareto-based Multi-objective EA to solve the
vector optimization problem. This algorithm uses a
variant of the preselection scheme as opposed to the
multi-objective EAs proposed in the literature, which
usually make use of ranking or tournament selection.
The present scheme is an elegant and efficient way of
forming niches and, therefore, of maintaning diversity
within the EA populations, and also of implementing
the elitist strategy, which is so important in Multi-
objective Evolutionary Computation. Furthermore,
this technique is notably faster than explicit niche
formation techniques, such as the use of functions
sharing, and it is, therefore, suitable when a fast re-
sponse is required when huge amounts of data are
involved.

We also describe an approach to solve goal and pri-
ority based optimization problems, among which are
included the problems of constrained optimization,
constraint satisfaction and goal programming. The
approach consist of transforming the goal and priority
based optimization problem into a vector optimiza-
tion problem, which can be solved using the Pareto-
based Multi-objective EA described above, although
the approach is independient of the optimizer used,
i.e. any other Pareto-based Multi-objective EA could
be used for the vector optimization problem. Thus
the Pareto concept is used as a mechanism for sat-
isfying constraints in constrained optimization prob-
lems and very good results are obtained compared
to a wide range of evolutionary techniques for the
handling of constraints, proposed by other authors.
Other test problems, such as constrained and uncon-
strained multi-objective optimization problems, have
also been tested. The results obtained are highly sat-
isfactory and they bear out the effectiveness of the
preselction technique in maintaining diversity.
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Problem fopt Sfworst Srest favg bestin [6] best in [7]

Gl —15 —15.0000 —15.0000 —15.0000 —14.7864 —15.000
G2 0.803553 0.792567  0.803556 0.800588 0.79953 0.803553
G3 1.0 1.0000 1.0000 1.0000 0.9997 —
G4 —30665.5 —30665.5 —30665.5 —30665.5 —30664.5 —30005.7
G5 4221.956525 5528.6536 4256.7763 4615.7970 — 5126.6653
G6 —6961.8 —6961.8 —6961.8 —6961.8 —6952.1 —
G7 24.306 25.015 24.360 24.632 24.620 25.486
G8 0.095825 0.095825 0.095825 0.095825 0.095825 0.095825
G9 680.63 680.68 680.64 680.65 680.91 680.642
G10 7049.33 7313.35 7051.86 7131.59 7147.9 7286.650
G11 0.75 0.75 0.75 0.75 0.75 0.75

Table 1: Simulation results for constrained optimization test problems.

Figure 1: Non-dominated solutions in the domain of the objective functions for the test problem F1 (left)
and F2 (right).
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Figure 2: Non-dominated solutions in the domain of the objective functions (left) and search space (right)
for the test problem F'3.
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Figure 3: Non-dominated solutions in the domain of the objective functions (left) and search space (right)
for the test problem reported in Kita et al. [5].



