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Abstract— Interpretability aspects of fuzzy models
have received quite some attention in recent years
and may be obtained by using transparent rule-
structures and well characterized fuzzy membership
functions. Moreover, model compactness is impor-
tant for the interpretability and is related to the
number of rules and fuzzy sets. Besides these two
criteria, the model accuracy should always be taken
into account. In this way, several criteria appear in
fuzzy modeling and then multi-objective evolution-
ary algorithms are suitable to capture several non-
dominated solutions in a single run of the algorithm.
For fuzzy modeling, we describe a multi-objective
neuro-evolutionary algorithm that considers all three
objectives. The algorithm applies an accuracy cri-
terium and a transparency criterium, based on fuzzy
set similarity, while compactness is achieved by a
specific technique, incorporated ad hoc within the
evolutionary alrorithm. Results are shown for an
approximation problem studied before by other au-
thors.

Keywords— Fuzzy Modeling, Multi-objective Evo-
lutionary Algorithm, Neural Networks, Inter-
pretability.

I. INTRODUCTION

In recent years, fuzzy modeling, as a complement to
conventional modeling techniques, has become an ac-
tive research topic and has found successful applica-
tions in many areas. Evolutionary Algorithms (EAs)
[4] have been applied to learn both the antecedent and
consequent part of fuzzy rules, and models with both
fixed and varying number of rules have been consid-
ered [25], [9]. Also, EAs have been combined with other
techniques like fuzzy clustering [7], [5] and neural net-
works [10], [18]. This has resulted in many complex
algorithms and, as recognized in [24] and [19], often the
transparency and compactness of the resulting rule base
are not considered to be of importance; accuracy aspect
prevails and interpretability aspects are partly ignored.
In such cases, the fuzzy model becomes a black-box,
and one can question the rationale for applying fuzzy
modeling instead of other techniques.

Transparency and model interpretability for data-
based fuzzy models received quite some interest in recent
literature [16], [13], [2], [14]. Based on this literature,
we introduce three important criteria to be optimized in
fuzzy model identification: compactness, transparency
and accuracy. Compactness is related to the size of the
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model, i.e. the number of rules, the number of fuzzy sets
and the number of inputs for each rule, while trans-
parency is related to linguistic interpretability of the
fuzzy sets and locality of the rules [15], [19]. Often one
is interested in the local behavior of the global nonlin-
ear model. Such information may be obtained by con-
straining the model structure during identification or
by using these criteria by multi-objective optimization
techniques, like multi-objective EAs [1], [11]. Most evo-
lutionary approaches to multi-objective fuzzy modeling
consist of multiple EAs, usually designed to achieve a
single task each, which are then applied sequentially. In
these cases, each EA optimizes the model attending to
a single criterion separately, which is an impediment for
global search. Simultaneous optimization of all criteria
is more appropriate. Therefore, others used approaches
based on classical multi-objective techniques in which
multiple objectives are aggregated into a single function
to be optimized [5], [17]. In this way, the EA obtains a
compromise solution that consists of the weighted crite-
ria.

Another promising method to handle multi-criteria
optimization problems is the multi-objective EA based
on the Pareto optimality notion, in which all objec-
tives are optimized simultaneously to find multiple non-
dominated solutions in a single run of the EA [3], [6],
[21]. The solution for a such a multi-objective opti-
mization problem is a set of so-called Pareto optimal
solutions. A Pareto-based multi-objective EA incorpo-
rates the Pareto concept to identify multiple solutions
through a single run of the algorithm. This practically
leaves obsolete the classical tendency to aggregate the
different objectives using a weight vector or similar ap-
proach to obtain a single function which is then opti-
mized. In that case, the method often requires several
executions of the EA with different weights, in order
to identify one Pareto solution in each run. In this as-
pect, multi-objective optimization, based on the Pareto-
optimality concept, distinguishes itself from related op-
timization methods, like gradient techniques, simulated
annealing or neural networks.

Pareto-based multi-objective evolutionary approaches
can also be considered from the fuzzy modeling perspec-
tive [8], [12]. The advantage of the the classical opti-
mization approach with aggregated objectives, a single
solution is obtained without further interaction with the



decision maker. However, it may often be difficult to de-
fine a good aggregation function. Then, if the solution
cannot be accepted, new runs of the EA are required
until a satisfying solution is found. The advantages of
the Pareto approach are that no aggregation function
need to be defined, and that the decision maker can
choose the most appropriate solution according to the
current decision environment at the end of the EA run.
Moreover, if the decision environment changes, it is not
always necessary to run the EA again. Another solu-
tion may be chosen out of the family of non-dominated
solutions that has already been obtained.

In this paper, we propose a multi-objective neuro-
EA to find multiple non-dominated solutions for fuzzy
modeling problems. In section 2, the fuzzy model is
defined and in section 3 and 4, techniques to improve
transparency and compactness of rule set and training
are approached respectively. The criteria taken into ac-
count (accuracy, tranparency and compactness) are dis-
cussed in section 5. The main components of the multi-
objective neuro-EA are described in section 6. Section
7 shows the results obtained for a test problem. Sec-
tion 8 concludes the paper and indicates lines for future
research.

II. FUZZY MODEL IDENTIFICATION

We consider rule-based models of the Takagi-Sugeno
(TS) type [23]. The rule consequents are taken to be
linear functions of the inputs:
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where 7 = 1,..., M, and x = (%1,...,%,) is the input
vector, ¢; is the output of the ith rule, A;; are fuzzy sets
defined in the antecedent space by membership func-
tions p; : ® — [0,1], {;; € R are the consequent param-
eters, and M is the number of rules. The total output
of the model is computed by aggregating the individual
contributions of each rule:

7= pi(x)ji (2)

where pi(x) ¢ = 1,...,M is the normalized firing
strength of the ith rule:
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where i =1,..., M.

Each fuzzy set A;; is described by an asymmetric
gaussian membership function.
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wherei=1,..., M and j=1,...,n.

This fuzzy model is defined by a radial basis function
neural network. The number of neurons in the hidden
layer of an RBF neural network is equal to the num-
ber of rules in the fuzzy model. The firing strength of
the ith neuron in the hidden layer matches the firing
strength of the ith rule in the fuzzy model. We apply
an asymmetric gaussian membership function defined by
three parameters, the center ¢, left variance o; and rigth
variance o,. Therefore, each neuron in the hidden layer
has these three parameters that define its firing strength
value. The neurons in the output layer perform the com-
putations for the first order linear function described in
the consequents of the fuzzy model, therefore, the ith
neuron of the output layer has the parameters ¢; that
correspond to the linear function defined in the sth rule
of the fuzzy model.

III. A TECHNIQUE TO IMPROVE THE
TRANSPARENCY AND COMPACTNESS
OF THE FUZZY RULE SETS

Automated approached to fuzzy modeling often intro-
duce redundancy in terms of several similar fuzzy sets
that describe almost the same region in the domain of
some variable. According to some similarity measure,
two or more similar fuzzy sets can be merged to cre-
ate a new fuzzy set representative for the merged sets.
This new fuzzy set substitutes the ones merged in the
rule base. On the other hand, if there are two fuzzy
sets which are similar, but not very similar, the best ap-
proach is to split the fuzzy sets, so that their similarity
improves. The merging-splitting process is repeated un-
til fuzzy sets for each model variable cannot be merged,
i.e., they are not similar. This process may results in
several identical rules, which are removed from the rule
set.

We consider the following similarity measure between
two fuzzy sets A and B:

S(A,B)=ma.x{AnB AOB}

02 20 (5)
If S(A,B) > 61 (we use 61 = 0.9), fuzzy sets A and
B are merged in a new fuzzy set C as follows:

cc =aca+ (1 —a)cs (6)
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where n, = 3 and « € [0, 1] determines the influence of
A and B on the new fuzzy set C:
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If 62 < S(A,B) < 01 (we use 82 = 0.6), fuzzy sets A
and B are split as follows:

o =o0c(1—B) (10)

ol = ab(1- B) (11)
where 8 € [0, 1] denotes the amount of spliting between
A and Bj in our algorithm, we use 8 = 0.1.



IV. TRAINING OF THE RBF NEURAL
NETWORKS

The RBF neural networks associated with the fuzzy
models can be trained with a gradient method to ob-
tain more accuracy. However, in order to mantain the
transparency and compactness of the fuzzy sets, only
the consequent parameters are trained. The training
algorithm incrementally updates the parameters based
on the currently presented training pattern. The net-
work parameters are updated by applying the gradient
descent method to an error function. The error func-
tion for the th training pattern is given by the MSE
function defined in (15). The update rule is:

new _ rod . OMSE
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wherei=1,...,M,j=1,...,n+1 and 7 is the learning
rate. This rule is applied a number of epochs. Our
algorithm use a value of n = 0.01 and a number of 10
epochs. The detailed derivation of A{;; = agéij is the
following:

AGij = —(Jk — yr)pi(x)T; (13)

Aliny1) = —(Jx — yr)pi(x) (14)

where : =1,..., M, 5 =1,...,n and p;(x) is the firing
value for the ith rule defined as in equation 3.

V. CRITERIA FOR FUZZY MODELING

Identification of fuzzy models from data requires de
presence of multiple criteria in the search process. In
multi-objective optimization, the set of solutions is com-
posed of all those elements of the search space for which
the corresponding objective vector cannot be improved
in any dimension without degradation in another di-
mension. These solutions are called non-dominated or
Pareto-optimal. Given two decision vectors a and b in
the universe U, a is said to dominate b if f;(a) < fi(b),
for all objective functions f; and f;(a) < f;(b), for at
least one objective function f;, for minimization. A de-
cision vector a € U is said to be Pareto-optimal if no
other decision vector dominates a.

In the search for an acceptable fuzzy model, we con-
sider three main criteria: (i) accuracy, (ii) transparency,
and (ili) compactness. It is necesary to define quanti-
tative measures for these criteria by means of appropi-
ate objective functions which define the complete fuzzy
model identificacion.

The accuracy of a model can be measured with the
mean squared error:

K
1 .
MSE = X kE (yx — Gx)’ (15)
—1

where yy, is the actual output and gy, is the desired out-
put for the kth input vector, respectively, and K is the
number of data samples.

Many measures are possible for the second criterion,
transparency. Nevertheless, in this paper we only con-
sider one of the most significant, similarity, as a first
starting point. The similarity S among distinct fuzzy

sets in each variable of the fuzzy model can be expressed
as follows:

S= max  S(dy,By) (16)
Aij # Brj
whiere 2 =1,...,M,j=1,...,nand k=1,..., M.

This is an aggregated similarity measure for the fuzzy
rule-based model with the objective to minimize the
maximum similarity between the fuzzy sets in each in-
put domain.

Finally, measures for the third criterion, the compact-
ness, are the number of rules, M and the number of dif-
ferent fuzzy sets L of the fuzzy model. We assume that
models with a small number of rules and fuzzy sets are
compact.

VI. MULTI-OBJECTIVE
NEURO-EVOLUTIONARY ALGORITHM

The main characteristics of the Multi-Objective
Neuro-Evolutionary Algorithm are the following:

1. The proposed algorithm is a Pareto-based multi-
objective EA for fuzzy modeling, i.e., it has been de-
signed to find, in a single run, multiple non-dominated
solutions according to the Pareto decision strategy.
There is no dependence between the objective functions
and the design of the EAs, thus, any objective function
can easily be incorporated. Without loss of generality,
the EA minimizes all objective functions.

2. The EA has a variable-length, real-coded representa-
tion. Each individual of a population contains a variable
number of rules between 1 and mazx, where mazx is de-
fined by a decision maker.

3. The initial population is generated randomly with a
uniform distribution within the boundaries of the search
space, defined by the learning data and model con-
straints.

4. Constraints with respect to the fuzzy model structure
are satisfied by incorporating specific knowledge about
the problem. The initialization procedure and variation
operators always generate individuals that satisfy these
constraints.

5. The EA searchs for among rule sets treated with the
technique described in section IIT and trained as defined
in section IV, i.e, all individuals in the population have
been treated with technique III to mantain transparency
and trained (after initialization and variation), which is
an added ad hoc technique for transparency, compact-
ness and accuracy. So, all individuals in the population
have a similarity S between 0 and 0.6.

6. Chromosome selection and replacement are achieved
by means of a variant of the preselection scheme. This
technique is, implicitly, a niche formation technique and
an elitist strategy. Moreover, an explicit niche formation
technique has been added to maintain diversity respect
to the number of rules of the individuals. Survival of
individuals is always based on the Pareto concept.

7. The EAs variation operators affect at the individuals
at different levels: (i) the rule set level, (ii) the rule level,
and (iii) the parameter level.



A. Representation of solutions

An individual for this problem is a rule set of M rules
defined by the weights of the RBF neural network. With
n input variables, we have for each individual the fol-
lowing parameters:

o centers ¢;j, left variances oy;; and right variances o745,
i=1,...,M,j=1,...,n

o coefficients for the linear function of the consequent
Giyi=1,...,M,j=1,...,n+1

B. Initial population

The initial population is generated randomly. The
number of individuals with M rules, for all M €
[1, maz], must be between minNS and mazNS to en-
sure diversity respect to the number of rules, where
minNS and mazNS, with 0 < minNS < PS/max <
maxNS < PS (PS is the population size), are the min-
imum and maximum niche size respectively (see next
section).

To generate an individual with M rules, the procedure
is as follows: for each fuzzy number A;; (i =1,..., M,
j=1,...,n), three random real values from [l;, u;] are
generated and sorted to satisfy the constraints c¢;; <
cij < crij (ou; = (¢ij — cuij)/ne and orij = (Crij —
¢ij)/ns). Parameters §;; (i =1,...,M,j=1,...,n+1)
are real values generated at random from [I, u]. After,
the individual is simplified according to the procedure
described in a previous section.

C. Variation operators

As already said, an individual is a set of M rules. A
rule is a collection of n fuzzy numbers (antecedent) plus
n+ 1 real parameters (consequent), and a fuzzy number
is composed of three real numbers. In order to achieve
an appropiate exploitation and exploration of the po-
tential solutions in the search space, variation operators
working in the different levels of the individuals are nec-
essary. In this way, we consider three levels of variation
operators: rule set level, rule level and parameter level.

C.1 Rule set level variation operators

¢ Rule Set Crossover: This operator interchanges
rules. Given two parents It = (Ri...Rj},)
and I = (R}...Rj};,), two children are pro-
duced: I3 = (R}...RIR}...R}) and I, =
(Rit1-- R, Riyy ... Riy,), where a = round(a - My
and b = round((1 — @) - M2). The number of rules of
the children is between M; and Mo.

¢ Rule Set Increase Crossover: This operator in-
creases the number of rules of the two children as fol-
lows: the first child contains all M; rules of the first
parent and min{max —M,, M>} rules of the second par-
ent; the second child contains all M, rules of the second
parent and min{max —M>, M } rules of the first parent.
o Rule Set Mutation: This operator deletes or adds,
both with equal probability, one rule in the rule set.
For deletion, one rule is randomly deleted from the rule
set. For rule-addition, one rule is randomly generated,
according to the initialization procedure described, and
added to the rule set.

C.2 Rule Level Variaton Operators

¢« Rule Arithmetic Croossover: Performs arith-
metic crossover of two random rules. Given two
parents [ = (Ri...R;...Ry,) and I, = (R}
...R}...Rj3,), this operator produces two children
Is = (Ri...R}...Ry,) and Is = (R}...R}...R3),
with R} = aR} + (1— )R} and R; = aR; + (1 — )R],
where i, j are random indexes from [1, M1] and [1, M2]
respectively.

¢ Rule Uniform Crossover: Performs uniform
crossover of two random rules. Given two parents I; =
(Ri...R}...Rj,) and Iy = (R} ...R}...Rjy,), this
operator produce two children I3 = (Ri...R}... R}wl)
and I+ = (R} ... R;l ...R}y,), where R} and R;l are ob-
tained with the uniform crossover.

C.3 Parameter level variation operators

« Arithmetic Crossover: Given two parents, and one
rule of each parent randomly chosen, this operator per-
forms an arithmetic cross of the fuzzy numbers corre-
sponding to a random input variable or the consequent
parameters.

o Non-Uniform Mutation: This operator changes
the value of one of the antecedent fuzzy sets of a random
fuzzy number, or a parameter of the consequent ¢, of a
randomly chosen rule. The new value of the parameter
is generated at random within the constraints given by
a non-uniform mutation.

e Uniform Mutation: Similar to former, but within
the constraints given by an uniform mutation.

o Small Mutation: Similar to former, but within the
constraints given by an small mutation. The small mu-
tation produced an small change in the individual and
it is suitable for fine tuning of the real parameters.

D. Selection and generational replacement

In each iteration, the neuro-EA executes the following
steps:

1. Two individuals are picked at random from the pop-
ulation.
2. These individuals are crossed and mutated to pro-
duce two offspring.
3. Performs technique III in the offspring.
4. Performs the training in the offspring.
5. The first offspring replaces the first parent and the
second offspring replaces the second parent only if:

o the offspring is betther than the parent and

o the number of rules of the offspring is equal to the
number of rules of the parent, or the niche count of the
parent is greater than minNS and the niche count of
the offspring is smaller than maxzNS.

An individual I is better than another individual J
if I dominates J. The niche count of an individual I
is the number of individuals in the population with the
same number of rules as I. The preselection scheme is
an implicit niche formation technique to maintain di-
versity in the population because an offspring replaces
an individual similar to itself (one of their parents).
Implicit niche formation techniques are more appropi-
ate for fuzzy modeling than explicit techniques, such



as sharing function, which can provoke an excessive
computational time. However, we need and additional
mechanism for diversity with respect to the number of
rules of the individuals in the population. The added
explicit niche formation technique ensures that the num-
ber of individuals with M rules, for all M € [1, max],
is greater or equal to minN'S and smaller or equal to
maxNS. Moreover, the preselection scheme is also an
elitist strategy because the best individual in the popu-
lation is replaced only by a better one.

E. Optimization model

After preliminary experiments in which we have chec-
ked different optimization models, the following remarks
can be maded:

1. Instead of minimizing of the number of rules M we
have decided to search for rules sets with a number of
rules within an interval [1, maxz] where a decision maker
can feel comfortable. The explicit niche formation tech-
nique ensures the EA always contains a minimum of
representative rule sets for each number of rules in the
populations. Then, we do not minimize the number of
rules during the optimization, but we will take it into
account at the end of the run, in a posteriori decision
process applied to the last population.

2. It is very important to note that a very transpar-
ent model will be not accepted by a decision maker
if the model is not accurate. In most fuzzy modeling
problems, excessively low values for similarity hamper
accuracy, for which these models are normally rejected.
Alternative decision strategies, as goal programming, en-
able us to reduce the domain of the objective functions
according to the preferences of a decision maker. Then,
we can impose a goal ggs for similarity, which stop mini-
mization of the similarity in solutions for which goal gs
has been reached.

3. The measure L (number of different fuzzy sets) is
reduced by the technique of section III. So, we do not
define an explicit objective function to minimize L.

According to the previous remarks, we finally consider
the following optimization model:

Minimize fi = MSE

Minimize f» = max(gs,S) (a7)

The output of the algorithm is finally calculated accord-
ing to:
Minimize fr = MSE
Minimize fa =S (18)
Minimize f3 =M

VII. EXPERIMENTS AND RESULTS

We consider the modeling of the rule base given in [22]:
The corresponding surface is shown in Figure VII. In
[20] a model with four rules was identified from sampled
data (IV = 546) by the supervised clustering algorithm,
which was initialized with 12 clusters. This model was
optimized using a Genetic Algorithm to result in a MSE
of 1.6. Table I shows results obtained with the Pareto
based multi-objective neuro-EAs.The following values
for the parameters were used in the simulations: PS =

100, minNS = 5, maxNS = 30, cross probability 0.9,
mutation probability 0.9, gs = 0.25, and max = 5.
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Fig. 1. Real surface for the example in Sugeno and Kang
(1988).

TABLE 1
NON-DOMINATED SOLUTIONS ACCORDING TO (18) OBTAINED
WITH THE MULTI-OBJECTIVE NEURO-EA.

M L MSE S
1 2 125.391 0.0
2 4 25.606 0.348
3 5 2.187 0.349
4 5 1.017 0.349
5 5 0.910 0.350

We finally choose a compromise solution (4-rules
fuzzy model). Figure 2 shows the local model, the sur-
face generated by the model, fuzzy sets for each variable
and the prediction error.

VIII. CONCLUSIONS AND FUTURE
RESEARCH

In this paper we present a Pareto-based multi-
objective neuro-evolutionary algorithm to obtain inter-
pretable fuzzy models. Criteria such as accuracy, trans-
parency and compactness have been propose and are
taken into account in the optimization process. Some
of these criteria have been partially incorporated into
the EA by means of ad hoc techniques. Advantages of
gaussian fuzzy sets arise with the possibility of train-
ing the RBF neural networks associated with the fuzzy
models in order to obtain more accuracy. In addition,
several new ideas to reduce computatinal load and im-
prove the global search capabilities, have been incorpo-
rated in the evolutionary algorithm. An implicit niche
formation technique (preselection) in combination with
other explicit techniques with low computational costs
have been used to maintain diversity. These niche for-
mation techniques are appropriate in fuzzy modeling if
excessive amount of data are required. Elitism is also
implemented by means of the preselection technique.
A goal based approach has been proposed to help to
obtain more accurate fuzzy models. The main differ-
ence between the proposed EAs and other approaches
for fuzzy modeling is the reduced complexity because
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Fig. 2. Accurate, transparent and compact fuzzy model for
the example in Sugeno and Kang (1988).

we use a single EA for generating, and tuning the fuzzy
model. Moreover, human intervention is only required
at the end of the run in choosing one of the multiple
non-dominated solutions. Results obtained are good in
comparison with other iterative techniques reported in
literature, with the advantage that the proposed tech-
niques identifies a set of alternative solutions.

In future works, more complex fuzzy modeling test
problems are going to be consider in order to check the
robustness of the EA, other measures to optimize trans-
parency, e.g., similarity in the consequent domain in-
stead or together with of the antecedent domain and
applications in the real world by means of research
projects.
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