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Abstract. In real-world applications, it is often desired that a solution
is not only of high performance, but also of high robustness. In this con-
text, a solution is usually called robust, if its performance only gradually
decreases when design variables or environmental parameters are var-
ied within a certain range. In evolutionary optimization, robust optimal
solutions are usually obtained by averaging the fitness over such varia-
tions. Frequently, maximization of the performance and increase of the
robustness are two conflicting objectives, which means that a trade-off
exists between robustness and performance. Using the existing methods
to search for robust solutions, this trade-off is hidden and predefined in
the averaging rules. Thus, only one solution can be obtained. In this pa-
per, we treat the problem explicitly as a multiobjective optimization task,
thereby clearly identifying the trade-off between performance and robust-
ness in the form of the obtained Pareto front. We suggest two methods
for estimating the robustness of a solution by exploiting the information
available in the current population of the evolutionary algorithm, with-
out any additional fitness evaluations. The estimated robustness is then
used as an additional objective in optimization. Finally, the possibility of
using this method for detecting multiple optima of multimodal functions
is briefly discussed.
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1 Motivation


The search for robust optimal solutions is of great significance in real-world
applications. Robustness of an optimal solution can usually be discussed from
the following two perspectives:


– The optimal solution is insensitive to small variations of the design variables.


– The optimal solution is insensitive to small variations of environmental pa-
rameters. In some special cases, it can also happen that a solution should be
optimal or near-optimal around more than one design point. These different
points do not necessarily lie in one neighborhood.


Mostly, two methods have been used to increase the robustness of a solution
[1, 2].







– Optimization of the expectation of the objective function in a neighborhood
around the design point. If the neighborhood is defined using a probabil-
ity distribution φ(z) of a variation parameter z, an effective evaluation [3]
function can be defined using the original evaluation function f as


feff =


∫ ∞


−∞


f(x, z)φ(z) dz, (1)


where x is the design variable.


– Optimization of the second order moment or higher order moments of the
evaluation function. For example, minimization of the variance of the evalu-
ation function over the neighborhood around the design point has been used
to maximize the robustness of a solution.


Unfortunately, the expectation based measure does not sufficiently take care
of fluctuations of the evaluation function as long as these fluctuations are sym-
metric around the average value. At the same time, a purely variance based
measure does not take the absolute performance of the solution into account.
Thus, it can only be employed in combination with the original quality function
or with the expectation based measure. Different combinations of objectives are
possible:


– maximizing the expectation and maximizing the original function, for exam-
ple in [1];


– maximizing the expectation and minimizing the variance, for example in [4];


– maximizing the original function and minimizing the variance.


Since robustness and performance (even if its measure is expectation based),
are often exclusive objectives, see Figure 1 for an example, it makes sense to
analyze this problem in the framework of multicriteria optimization. In this way,
the user can get a better understanding of the relation between robustness and
performance for the optimization problem at hand. Besides, the Pareto front can
provide the user with valuable information about the stability of the solutions.


In this paper, we employ two variance based measures which are outlined
in Section 3 as robustness objectives. Both measures use the information which
is already available within the population to estimate the variance. Thus, no
additional fitness evaluations are necessary, which is very important when fit-
ness evaluations is computationally expensive, such as in aerodynamic design
optimization problems [5]. In Section two, we will briefly review some of the ex-
pectation based approaches to searching for robust optimal solutions. The mul-
tiobjective optimization algorithm used in this paper, the dynamic weighted ag-
gregation method proposed in [6, 7], is described in Section 4. Simulation results
on two test problems are presented in Section 5 to demonstrate the effectiveness
of the proposed method. A summary of the method and a brief discussion of
future work conclude the paper, where a simple example of detecting multiple
optima using the proposed method is also provided.
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Fig. 1. Example for the trade-off between average and variance. Figure (a) shows the
average and (b) the variance of function f(x) = a− (z + 1)‖x‖α + z, z ∼ N (0, ε2z), a =
5, α = 1, εz = 0.25. The maximum of the average is given for x = (0, 0), whereas the
variance is minimized for ‖x‖ = 1.


2 Expectation-based search for robust solutions


In evolutionary optimization, efforts have been made to obtain optimal solutions
that are insensitive to small changes in the design variables. Most of these ap-
proaches are mainly based on the optimization of the expectation of the fitness
function. The calculation of the expected performance is usually not trivial in
many real-world applications.


To estimate the expected performance, one straightforward way is to calcu-
late the fitness of a solution (x) by averaging several points in its neighborhood
[8–12]:


f̃(x) =


∑N
i=1 wif(x+∆xi)


∑N
i=1 wi


, (2)


where x denotes a vector of design variables and possibly some environmental
parameters, i = 1, 2, ..., N is the number of points to be evaluated.∆xi is a vector
of small numbers that can be generated deterministically or stochastically and
wi is the weight for each evaluation. In the simplest case, all the weights are
set equally to 1. If the ∆xi are random variables z and are drawn according
to a probability distribution φ(z), we obtain in the limit N → ∞, the effective
evaluation function feff , equation 1.


One problem of the averaging method for estimating the expected perfor-
mance is the increased computational cost. To alleviate this problem, several
ideas have been proposed to use the information in the current or in previous
populations [12] to avoid additional fitness evaluations. Note that throughout
this paper, the terminology population is used as defined in evolutionary algo-
rithms1. An alternative is to construct a statistical model for the estimation of


1 In statistics, a population is defined as any entire collection of elements under inves-
tigation, while a sample is a collection of elements selected from the population.







the points in the neighborhood using the historical data [13]. Statistical tests
have been used to estimate how many samples are needed to decide which solu-
tions should be selected for the next generation [14].


Besides the averaging methods, it has been showed in [3] that the “pertur-
bation” of design variables in each fitness evaluation leads to the maximization
of the effective fitness function, equation 1, under the assumption of linear se-
lection (in [3] the schema theorem is used as a basis for the mathematical proof,
however, it can be shown that the important assumption is the linearity of the
selection operator, [15]) and an infinite population. Note that the “perturbation”
method is equivalent to the averaging method for N = 1 and stochastic ∆x.


Whereas most methods in evolutionary optimization consider the robustness
with respect to the variations of design variables, the search for robust solutions
that are insensitive to environmental parameters has also been investigated [16].
An additional objective function has been defined at two deterministic points
symmetrically located around the design point. Let a define an environmental
parameter, and the design point is given by a = a1. Thus, the first objective
(performance) is defined by f(x, a1). As a second objective f2, the following
deterministic function is used:


f2(x) = f(x, a1 +∆a) + f(x, a1 −∆a). (3)


Note that deterministic formulations of a robustness measure like in equation 3
seems only sensible in the special case when a fixed number of design conditions
can be determined. In most cases where parameters can vary within an interval,
a stochastic approach seems to be more sensible.


A general drawback of the expectation based methods is that (with the ex-
ception of the last example) only one objective has been used. As discussed in
Section 1, it is necessary to combine two objectives to search for robust solutions,
where a trade-off between performance and robustness exists, as often occurs in
many real-world applications. In this case, it is able to present a human user with
a set of solutions trading off between the robustness and the optimality, from
which the user has to make a choice according to the need of the application. A
method for achieving multiple robust solutions has been suggested in [3] using
the sharing method suggested in [17]. However, no information on the relative
robustness increase and performance decrease of the solutions is available and
thus, no trade-off decisions can be made on the obtained solutions.


3 Variance based measures for robustness


The search for robust optimal solutions has been widely investigated in the field
of engineering design [18]. Consider the following unconstrained minimization
problem:


minimize f = f(a,x), (4)


where a and x are vectors of environmental parameters and design variables.
For convenience, we will not distinguish between environmental parameters and







design variables and hereafter, both are called design variables denoted uniformly
with x.


Now consider the function f(x) = f(x1, x2, ..., xn), where the xi’s are n


design variables and function f is approximated using its first-order Taylor ex-
pansion about the point (µx1


, µx2
, ..., µxn


):


f ≈ f(µx1
, µx2


, ..., µxn
) +


n
∑


i=1


[


∂f


∂xi


(µx1
, µx2


, ..., µxn
)


]


· (xi − µxi
), (5)


where µxi
, i = 1, 2, ..., n is the mean of xi. Thus, the variance of the function can


be derived as follows:


σ2
f =


n
∑


i=1


(


∂f


∂xi


)2


σ2
xi


+
n
∑


i=1


n
∑


j=1,i6=j


(


∂f


∂xi


)(


∂f


∂xj


)


σxixj
, (6)


where σ2
xi


is the variance of xi and σxixj
is the covariance between xi and xj .


Recall that the function has to be evaluated using the mean value of the variables.
If the design variables are independent of each other, the resulting approximated
variance is


σ2
f =


n
∑


i=1


(


∂f


∂xi


)2


σ2
xi
. (7)


A measure for robustness of a solution can be defined using the standard
deviation of the function and that of the design variables as:


fR =
1


n


n
∑


i=1


σf


σxi


. (8)


It should be pointed out that with this definition of robustness, the smaller
the robustness measure, the more robust the solution is. In other words, the
search for robust optimal solutions can now be formulated as a multiobjective
optimization problem where both the fitness function and the robustness measure
are to be minimized.


In robust design, the variation of the objective function in the presence of
small variations in the design variables is the major concern. Therefore, it is
reasonable to discuss the variance of the function defined in equation (7) in a
local sense. Take a one-dimensional function f(x) for example, as shown in Fig. 2.
If the robustness of a target point xj is considered, the function is then expanded
in a Taylor series about x = µxj


= xj , which assumes that the variations of the
design variable are zero-mean. Similarly, if the robustness of xk is to be evaluated,
the function will be expanded about x = µxk


= xk, refer to Fig. 2. In the figure,
µf,j and µf,k denote the mean of the function calculated around the point xj


and xk, respectively.
In the following, an estimation of the robustness measure based on the fitness


evaluations in the current population will be proposed. Suppose the population
size is λ, and Nj (1 ≤ Nj ≤ λ) individuals are located in the neighborhood of
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Fig. 2. Illustration of the local variations in the design variables.


the j-th individual. The robustness of the j-th individual can be approximated
by


Robust measure 1: fR
j =


1


n


n
∑


i=1


σ̄f,j


σxi


, (9)


where σ̄f,j is an estimation of the variance of the j-th individual according to
equation (7):


σ̄2
f,j =


n
∑


i=1


(


∂f


∂xi


)2


σ2
xi


≈
n
∑


i=1








1


Nj


∑


k∈Dj


fj − fk


xi,j − xi,k








2


σ2
xi
, k 6= j, (10)


where xi,j and xi,k denote the i-th element of x of the j-th and k-th individuals,
and Dj denotes a set of the individuals that belong to the neighborhood of
the j-th individual. The neighborhood of j-th individual Dj is defined using
the Euclidean distance between the individual xk, k = 1, 2, ..., λ and the j-th
individual xj :


Dj : k ∈ Dj , if djk ≤ d2, 1 ≤ k ≤ λ, djk =


√


√


√


√


1


n


n
∑


i=1


(xi,j − xi,k)2 (11)


where , k = 1, 2, ..., λ is the index for the k-th individual, λ is the population
size of the evolutionary algorithm, djk is the Euclidean distance between indi-
vidual j and k, and d is a threshold to be specified by the user according to
the requirements in real applications. This constant should be the same for all
individuals.


Actually, a more direct method for estimating the robustness measure can
be used. Using the current population and the definition of the neighborhood,







the robustness measure of the j-th individual can be estimated by dividing the
local standard deviation of the function by the average local standard deviation
of the variables. Assume Nj (1 ≤ Nj ≤ λ) is the number of individuals in the
neighborhood of the j-th individual in the current population, then the local
variance of the function corresponding to the j-th individual in the population
can be estimated as follows:


µf,j =
1


Nj


∑


k∈Dj


fk, (12)


σ2
f,j =


1


Nj − 1


∑


k∈Dj


(fk − µf,j)
2, (13)


where µf,j and σ2
f,j are the local mean and variance of the function calculated


from the individuals in the neighborhood of the j-th individual. Thus, the ro-
bustness of the j-th individual can be estimated in the following way:


Robustness measure 2: fR
j =


σf,j


σ̄x,j


, (14)


where σ̄x,j is the average of the standard deviation of xi estimated in the j-th
neighborhood:


σ̄x,j =
1


n


n
∑


i=1


σxi,j . (15)


The calculation of the mean and variance of xi in the j-th neighborhood is
similar to the calculation of the local mean and variance of the j-th individual
as follows:


µxi,j =
1


Nj


∑


k∈Dj


xi,k, (16)


σ2
xi,j


=
1


Nj − 1


∑


k∈Dj


(xi,k − µxi,j)
2. (17)


Note that the individuals in the neighborhood can be seen as a small sample
of a probability distribution around the concerned point, i.e., the current solu-
tion. If this probability distribution would coincide with φ(z) in equation 1, the
approximation of the variance would be exact in the sense of the given “varia-
tion rule” φ(z). For example, if we assume that manufactoring tolerance of the
final solution leads to a “noise” term which is normally distributed with a given
standard deviation, the estimation of the robustness is exact if the sub-sample
of the population represents the same normal distribution. Of course, this will
not be the case in general. In other words, the sample will usually not be able to
reproduce exactly the given distribution φ(z). Nevertheless, the results obtained
in the simulations in the next section demonstrate that the estimations seem to
be sufficient for a qualitative search for robust solutions.
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Fig. 3. Samples of the local statistics of the objective function on the basis of the cur-
rent population of the evolutionary algorithm. The black dots represent the individuals
in the current population.


With the robustness measures defined above, it is then possible to explicitly
treat the search for robust optimal solutions as a multiobjective optimization
problem.


Some remarks can be made on the robustness measures defined by equation
(9) and equation (14). The former definition is based on an approximation of
the partial derivative of the function with respect to each variable. Theoretically,
the smaller the neighborhood, the more exact the estimation will be. However,
the estimation may fail if two individuals are too close in the design space due
to numerical errors. In this method, neither the variance of the function nor the
variance of the variables needs to be estimated. In contrast, the latter definition
directly estimates the local variance of the variables and the function using the
individuals in the neighborhood.


4 Dynamic Weighted Aggregation for Multiobjective


Optimization


4.1 Evolution Strategies


In the standard evolution strategy (ES), the mutation of the object parameters
is carried out by adding an N(0, σ2


i ) distributed random number. The standard
deviations, σi’s, usually known as the step sizes, are encoded in the genotype
together with the object parameters and are subject to mutations. The standard
ES can be described as follows:


x(t) = x(t− 1) + z̃, (18)


σi(t) = σi(t− 1)exp(τ ′z)exp(τzi); i = 1, ..., n, (19)
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Fig. 4. Patterns of dynamic weight change. (a) Gradual change; (b) Bang-bang switch-
ing; (c) Combined.


where x is an n-dimensional parameter vector to be optimized, z̃ is an n-
dimensional random number vector with z̃ ∼ N(0,σ(t)2), z and zi are normally
distributed random numbers with z, zi ∼ N(0, 1). Parameters τ , τ ′ and σi are
the strategy parameters, where σi is mutated as in equation (19) and τ , τ ′ are
constants as follows:


τ =


(


√


2
√
n


)−1


; τ ′ =
(√


2n
)−1


(20)


4.2 Dynamic Weighted Aggregation


The classical approach to multiobjective optimization using weighted aggrega-
tion of objectives has often been criticized. However, it has been shown [6, 7]
through a number of test functions as well as several real-world applications
that the shortcomings of the weighted aggregation method can be addressed by
changing the weights dynamically during optimization using evolutionary algo-
rithms. Two methods for changing the weights have been proposed. The first
method is to change the weights gradually from generation to generation. For
a bi-objective problem, an example for the periodical gradual weight change is
illustrated in Fig. 4(a). The first period of the function can be described by:


w1(t) =


{


t
T
, 0 ≤ t ≤ T,


− t
T
+ 2, T ≤ t ≤ 2T.


(21)


w2(t) = 1− w1(t), (22)


where T is a constant that controls the speed of the weight change.


A special case of the gradual weight change method described above is to
switch the weights between 0 and 1, which has been termed the bang-bang
weighted aggregation (BWA) method, as shown in Fig. 4(b). The BWA has
shown to be very effective in approximating concave Pareto fronts [7]. A com-
bination of the two methods will also be very practical, as shown in Fig. 4(c).







5 Simulation Studies


5.1 Test Problem 1


The first test problem is constructed in such a way that it exhibits a clear trade-
off between the performance and robustness. The function can be described as
follows, which is illustrated in Fig. 5.


f(x) = 2.0 sin(10 exp(−0.08x)x) exp(−0.25x), (23)


where 0 ≤ x ≤ 10. From Fig. 5, it is seen that there is one global minimum
together with six local minima in the feasible region. Furthermore, the higher
the performance of a minimum, the less robust it is. That is, there is a trade-off
between the performance and robustness and the Pareto front should consist of
seven separated points.
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Fig. 5. The one-dimensional function of test problem 2.


At first, robustness measure 1 defined by equation (9) is used. That is to say,
the individuals in the neighborhood are used to estimate the partial derivatives.
The obtained Pareto front is given in Fig. 6. It can be seen that an obvious
trade-off between the performance and the robustness of the minima has been
correctly reflected. Thus, it is straightforward for a user to make a choice among
the trade-off solutions according to the problem at hand.


The result using the robustness measure defined by equation (14) is presented
in Fig. 7. The Pareto fronts of both Figures 6 and 7 are qualitatively the same
and the robustness values at the corners of the Pareto fronts share very similar
values even quantitatively.


In the following, we extend the test function in equation (23) to a two-
dimensional one. The two-dimensional test function is shown in Fig. 8(a). It
can be seen that there are a large number of minima with a different degree of
robustness.
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Fig. 6. The trade-off between performance and robustness of test problem 1 based on
robustness measure 1.
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Fig. 7. The trade-off between performance and robustness of test problem 1 based on
robustness measure 2.
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Fig. 8. (a) The 2-dimensional function of the test problem 1. (b) The Pareto front
obtained using robust measure 2.







The trade-off between performance and robustness is shown in Fig. 8(b)
using the robustness measure 2. It can be seen that the Pareto front seems to be
continuous due to the large number of minima and the small robustness difference
between the neighboring minima. Nevertheless, the result provides a qualitative
picture about the trade-off between performance and robustness, from which a
user can make a decision and choose a preferred solution.


5.2 Test Problem 2


The second test problem is taken from reference [19]. The original objective
function to minimize is as follows:


f(x) = (x1 − 4.0)3 + (x1 − 3.0)4 + (x2 − 5.0)2 + 10.0, (24)


subject to


g(x) = −x1 − x2 + 6.45 ≤ 0, (25)


1 ≤ x1 ≤ 10, (26)


1 ≤ x2 ≤ 10. (27)


The standard deviation of the function can be derived as follows, assuming
the standard deviation of x1 and x2 are the same:


σf (x) = σx


√


(3.0(x1 − 4.0)2 + 4.0(x1 − 3.0)3)2 + (2.0(x2 − 5.0))2, (28)


where σx is the standard deviation of both x1 and x2, which is set to:


σx =
1


3
∆x, (29)


where ∆x is the maximal variation of x1 and x2. According to [19], the search
for robust optimal solutions can be formulated as follows, assuming the maximal
deviation of both variables is 1:


minimize f1 = f, (30)


f2 = σf , (31)


subject to g(x) = −x1 − x2 + 8.45, (32)


2 ≤ x1 ≤ 9, (33)


2 ≤ x2 ≤ 9. (34)


We call the objective for robustness in equation (31) the theoretical robustness
measure, which is explicitly derived from the original fitness function.


The dynamic weighted aggregation method with a (15, 100)-ES is used to
solve the multiobjective optimization problem. The obtained Pareto front is
shown in Fig. 9(a), which is obviously concave. Note, that no archive of the
non-dominated solutions has been used in the optimization, which also indicates
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Fig. 9. (a) The Pareto front of test problem 2 using the theoretical robustness measure.
(b) The approximated Pareto front using the estimated standard deviation as the
robustness measure.


that the success of the dynamic weighted aggregation method for multiobjective
optimization has nothing to do with the archive that has been used in [6, 7].


An estimated local standard deviation is used as the robustness measure so
that the obtained Pareto front is comparable to the one in Fig. 9(a).


The optimization result is provided in Fig. 9(b). It is seen that although the
Pareto front is quite “noisy”, it does provide a qualitative approximation of the
theoretical trade-off between performance and robustness.


6 Conclusion and Discussions


Two robustness measures based on the “local” variance of the evaluation function
have been introduced. For both methods only information available within the
current population has been used, thus, no additional fitness evaluations were
necessary. In the case of computationally expensive evaluation functions this
property can be essential. The basic idea is to define a neighborhood of a solution
and thus to estimate the local mean and variance of a solution.


These robustness measures were used as additional objectives in a multiob-
jective optimization framework together with the usual performance measure.
This way, the trade-off between performance and robustness which is frequently
observed could be made explicit in the form of the Pareto front.


With the trade-off solutions at hand, a user can easily make a decision on
which solution is to be used to deal with the variations of design variables and
environmental parameters in real-world applications. The method has been ap-
plied to two test problems and encouraging results have been obtained.


Although the proposed method is originally targeted at achieving trade-off
optimal solutions between performance and robustness, it is straightforward to
imagine that the method can also be used in detecting multiple optima of mul-
timodal functions [17]. To show this capability, we consider the central two peak







trap function studied in [20]. The function is modified to be a minimization
problem and rescaled as shown in Fig. 10(a)


f(x) =











−0.16x if x < 10,
−0.4(20− x) if x > 15,
−0.32(15− x) otherwise.


(35)


The function has two minima and is believed to be deceptive because values of
x between 0 and 15 lead toward the local minima.
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Fig. 10. (a) The trap function. (b) The detected minima.


The proposed method is employed to detect the two minima of the function
and the result is shown in Fig. 10(b). It can be seen that both minima have
successfully been detected.


Of course, it will be difficult to distinguish different optima using the pro-
posed method either if the function values of the optima are very similar or if
the robustness values of the optima are very similar.


Several issues still deserve further research efforts. For example, how to im-
prove the quality of the robustness estimation. Currently, the robustness esti-
mation is quite noisy, which to some extent, degrades the performance of the
algorithms. Meanwhile, it may be desirable to use the information not only in
the current generation, but also from previous generations. Finally, the current
algorithm is based on evolution strategies. It will be interesting to extend the
method to genetic algorithms.
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