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Abstract- The issue of obtaining a well-converged and
well-distributed set of Pareto optimal solutions effi-
ciently and automatically is crucial in multi-objective
evolutionary algorithms (MOEAs). Many studies have
proposed different evolutionary algorithms that can
progress towards Pareto optimal sets with a wide-spread
distribution of solutions. However, most mathemati-
cally convergent MOEAs desire certain prior knowledge
about the objective space in order to efficiently maintain
widespread solutions. In this paper, we propose, based
on our novel E-dominance concept, an Adaptive Rect-
angle Archiving (ARA) strategy that overcomes this im-
portant problem. The MOEA with this archiving tech-
nique provably converges to well-distributed Pareto op-
timal solutions without prior knowledge. ARA comple-
ments the existing archiving techniques, and is useful to
both researchers and practitioners.


1 Introduction


Most real-life optimization problems or decision-making
problems are multi-objective in nature, since they normally
have several (possibly conflicting) objectives that must be
satisfied at the same time. Multi-Objective Evolutionary Al-
gorithms (MOEAs) have been gaining increasing attention
among researchers and practitioners mainly because they
can be suitably applied to find multiple Pareto optimal so-
lutions in a single run [3]. This fact enables a user to have
a less-subjective search in the first phase of finding a set of
well-distributed solutions. Because of inherent cooperation
in an evolutionary search procedure, MOEAs are compu-
tationally promising for simultaneous discovery of multi-
ple trade-off solutions. The features have attracted numer-
ous researchers to develop different MOEAs [1] — from
MOGA [8], NPGA [10], and NSGA [16] with skillful fit-
ness assignment and nondominated sorting; to SPEA [20],
PESA–II [2], NASA–II [5], SPEA2 [19], IMOEA [17], and
DMOEA [18] with elitism, diversity estimation and main-
tenance; to PAES [12] (based on AGA [11]) and � -MOEA
[4] (based on � -dominance [13]) with sound diversity and
convergence guarantee.


Despite the great success of these MOEAs, there have
been few successful attempts of developing convergence-
guaranteed and computationally efficient procedures that
maintain a well-distributed Pareto optimal set with little
prior knowledge about the objective space. Most MOEAs
may get widespread solutions using different diversity ex-


ploitation mechanisms [2, 5, 10, 18, 19, 20], but few of
them have convergence guarantee. Some early theoretical
work has pointed out some approaches to enable MOEAs to
converge to Pareto front [9, 15], but with little consideration
of the distribution of the Pareto optimal solutions obtained
[13]. Several recent studies have made a big pace to gener-
ate diversified and Pareto optimal solutions [4, 11, 13]. The
archiving techniques in [13] and [4] desire the distribution
knowledge about the Pareto front beforehand. If the param-
eters are not set appropriately, in some extreme cases, only
a solution is archived because it � -dominates all the others
[11]. The Adaptive Grid Archiving (AGA) strategy has been
proved to converge to a Pareto optimal set of bounded size
under certain condition [11]. Unfortunately, this condition
is not easily satisfied, and the solution oscillation problem
has happened in practical applications [11] or been demon-
strated empirically [7].


One basic idea of these efficient and successful diver-
sity preserving mechanisms is to partition the whole objec-
tive space into mutually excluded regions, and then con-
sider the Pareto optimality and diversity locally in these
regions [2, 4, 12, 11, 13, 17]. Each region is of limited
volume while the objective space is unknown in advance.
This conflict makes it difficult to explore the whole solu-
tion space, and results in the unexpected difficulty in the
recent work [11, 13]. In this work, we introduce the con-
cept of open (hyper-)rectangles and apply the rectangles in
the space partitioning, such that even infinite search space
can be enveloped by a bounded number of rectangles. We
introduce an extended Pareto dominance (E-dominance) to
achieve this idea. In addition, our search space partition-
ing is adjusted adaptively according to the solutions found
so far. The archive retains more Pareto optimal solutions in
the crucial region, and some accidental solutions within the
open rectangles. Therefore, our proposed Adaptive Rectan-
gle Archiving (ARA) technique can explore the whole ob-
jective space and maintain some representative Pareto opti-
mal solutions automatically without any prior knowledge.


In the rest of the paper, we first give a template of the
MOEA with archiving. Then, in Section 3, we review the
existing MOEAs and discuss why they do not have sound
convergence and diversity guarantee when no prior knowl-
edge is available. In section 4, the E-dominance concept
and the E-Pareto set are introduced, and ARA is proposed
to retain an E-Pareto set, which approximately dominates
the whole Pareto front. This is supported by the theoretical
results, both based on iterations and infinite treads, given in







Section 5. In Section 6, conclusive comments and possible
future research are discussed.


2 Preliminaries


We focus on, without loss of generality, minimization mul-
tiobjective problems [3] in this work. For a multiobjective
function


�
from �������	��
 to a finite set ��������������� 
 , a decision vector ������� dominates another one � �"!#� , if


and only if their objective vectors $ �%�&�(' � ���)�%�&��
*'+ , �%�&�� � , �����! �.-�-/-0� , ���&��21 3 and $ �%�&�4' � �%���5!#�6
 satisfy7 , ���&�8:9 , �5!��8 �<;>=)?A@CBC��-�-�-D�#�E, ���&�FHG , �5!��F ��ICJ�?A@KBC�.-�-/-L�#�MECN (1)


It is denoted as ���%�&�POQ�)�"!#� . For convenience, we
also denote it as $ �����RO $ �5!�� . Furthermore, we denoteSAT $ ���&��O $ �5!��6U as $ �����WV $ �5!#� . $ ����� is said to be in-
comparable with $ �5!�� if S � $ �%�&�XO $ �5!#�ZY $ �5!��WO $ �[���Y $ �����M' $ �"!#�6
 . It is denoted as $ �����M\ $ �"!#� . There-
fore, $ �����]V $ �"!#� means $ �����]' $ �"!#�^Y $ �"!#�O $ �����	Y$ �%�&�4\ $ �_!`� .


Likewise, the dominates and nondominated relations can
be defined between an objective vector $ and a set a ���b�c
 :


$ O a dce ILf? a � $ OWf (2)a O $ dce ILf? a ��fO $ (3)$ \ a dce ;>f? a � $ \gf (4)$ V a dce ;>f? a � $ VWfhN (5)


Given the set of vectors � , its Pareto front �ji contains
all vectors $ iR?k� that are not dominated by any vector$ ?M� . That is, �li	'm@ $ in?M�]o p $ ?M�q� $ O $ irE . We call
its subset a Pareto optimal set. Each $ is?t��i is Pareto op-
timal, or nondominated. A Pareto optimal solution reaches
a good tradeoff among these conflicting objectives: one ob-
jective cannot be improved without worsening any other ob-
jective. In this paper, we assume that there are at least two
different values for each objective in the Pareto front �ui ,
which holds for almost all multiobjective problems.


For many multiobjective optimization problems, the
unique Pareto front �vi is of substantial size. Thus, the
determination of �Zi is computationally prohibitive. The
whole Pareto front �li is usually difficult to maintain. Fur-
thermore, it is questionable to be regarded as an optimiza-
tion solution [7, 13]. The value of presenting such a large
set of solutions to a decision maker is doubtful in the context
of decision support, instead one should provide him with a
set of representative Pareto optimal solutions. Finally, in a
solution set of bounded size, preference information could
be used to steer the process to certain parts of the search
space. Therefore, all practical implementations of MOEAs
have maintained (off-line) a bounded archive of best (non-
dominated) solutions found so far [11].


In order to facilitate our analysis on archiving strategies,
we separate the evolutionary procedure and the archiving
procedure as done in [11, 13]. Procedure 1 gives an ab-
stract description of a MOEA with archiving. The integer


Procedure 1 MOEA with Archiving


1. w�x 'Xy , a �"z#�{x '}| ;
2. Repeat:


3. w�x 'Xwh~�B ;
4. $ ���[�{x ' EVOLUTION(); /* Generates a solution */


5. a ���[�{x ' ARCHIVE � a �������&��� $ ���[�6
 ; /* UpdateArchive
*/


6. Termination: Until stopping criterion fulfilled;


7. Output: a ���[� , t.


w denotes the iteration count, the � -dimensional objective
vector $ is the solution generated at iteration w , and the seta ���[� is the archive at iteration w and should contain a rep-
resentative subset of the objective space � . The function
EVOLUTION represents an evolutionary algorithm, where
the evolutionary operator is associated with variation (re-
combination, mutation, and selection). It can generate a
population of points, possibly using the contents of the old
archive a �����h��� . However, for convenience, it only outputs
a new solution in each iteration w . ARCHIVE gets the new
solution $ ���[� and the old archive a �����4�&� and determines the
updated archive a ���6� . The archive is usually used in two
ways: On one hand, it is used to store the best representa-
tive solutions found so far; On the other hand, the evolu-
tionary operator exploits this archive to steer the search to
promising regions.


This paper mainly deals with the function ARCHIVE, i.e.,
how to appropriately update the archive. For each $ , its ad-
ditional information about the corresponding decision val-
ues could be associated to the archive, but will be of no
concern in this paper. According to the requirements of
MOEAs, an ideal archiving strategy should maintain solu-
tions having the following properties:


Pareto optimal: They converge to the Pareto front in each
run;


Well distributed: Solutions are uniformly distributed on
the whole Pareto front;


Computationally efficient: The time and memory com-
plexity should be low;


Little prior knowledge: Little knowledge about the multi-
objective problem is required beforehand.


This last property may facilitate users greatly, since most
of time, we have to make decisions on some conflicting
problems with little prior knowledge. As mentioned before,
some information of the objective space has been stored in
the archive during running. Thus, we can adjust our archive
adaptively. We shall give such a technique in Section 4,
after the discussion of the existing approaches in the next
section.







3 MOEAs and their Limitations


We briefly discuss a number of archiving or elitism strate-
gies in the literature of MOEAs.


Early theoretical work of MOEAs mainly concentrates
on convergence. Hanne [9] gave a convergence proof for a
( ����� )-MOEA with Gaussian mutation distributions over a
compact real search space by the application of a (negative)
efficiency preservation selection scheme, which only ac-
cepts new solutions dominating at least one of the archived
solutions. There is no assumption on the distribution of
solutions, and arbitrary regions may become unreachable
with the (negative) efficiency preservation [13]. Rudolph
and Agapie [15], using stochastic process techniques, devel-
oped several sophisticated selection operators to preclude
the problem of deterioration. Their algorithms with evo-
lutionary operators having a positive transition probability
matrix provably converge to the Pareto optimal ones, but
they do not guarantee a good distribution of the solutions
archived.


A number of elitist MOEAs have been developed to
address diversity of the archived solutions. The diversity
exploitation mechanisms include mating restriction, fitness
sharing (NPGA [10]), clustering (SPEA [20], SPEA2 [19]),
nearest neighbor distance (NAGA-II [5]), crowding count
(PAES [12], PESA-II [2], DMOEA [18]), or some preselec-
tion operators [3]. Most of them are more or less successful,
but they cannot ensure convergence to Pareto optimal sets.


Recently, Laumanns et al. [13] proposed several archiv-
ing strategies that guarantee to progress towards the Pareto
front and covers the whole range of nondominated solu-
tions. The algorithms maintain a bounded archive of non-
dominated solutions that is iteratively updated in the pres-
ence of a new solution based on the concept of � -dominance.
However, the � value, which determines solution resolution,
must either be set manually or be determined adaptively. In
the former case, the size of the archive is bounded only by
a function of the objective space ranges, which is usually
unknown in advance. Whereas in the latter case, � may be-
come arbitrarily large, and thus only poor representatives
of the sequence of solutions presented to the archive are re-
tained. In some extreme cases, only one solution is archived
since it � -dominates all other Pareto solutions [11].


More recently, Knowles and Corne [11] analyzed a
metric-based archiving and an adaptive grid archiving one.
The metric-based strategy requires � -metric which assigns a
scalar value to each possible approximation set reflecting its
quality and fulfilling certain monotonicity conditions. Con-
vergence is then defined as the achievement of a local op-
timum of the quality function. However, its computational
overhead is prohibitively high for more than a few objec-
tives. The adaptive grid archiving strategy implemented in
PAES [11] provably maintains solutions in some critical hy-
perboxes of the Pareto front once they have been found. The
strategy is provably convergent when the Pareto front spans
the feasible objective space in all objectives. This condition
is not true for many optimization problems with more than
two objectives. Thus, the oscillation problem of the archive
has happened in practical applications [11] or been demon-
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Figure 1: Illustration of E-dominance, � -dominance, and
Pareto dominance. The regions dominated by � under three
different dominance relations are illustrated by three shad-
ows respectively. The calculation of vectors �	��
� and �������
is illustrated in the bottom right corner. Two transferring
functions are indicated by two curves.


strated empirically [7].
In order to diversify the solutions, the density estima-


tion or diversity preservation has been locally made in some
boxes for computational efficiency. However, the objective
space is unknown in advance, even infinite. Thus, it is some-
times impractical to use boxes to envelop the space appro-
priately. This issue results in the oscillation of AGA [11]
and probably poor representation of the Pareto front in [13],
though they may generate widespread solutions.


4 Adaptive Rectangle Archiving Strategy


In this section, we present an Adaptive Rectangle Archiving
(ARA) algorithm that address the problem of previously un-
known, even infinite, Pareto fronts. In this archiving strat-
egy, we use a self-adaption mechanism to preserve diver-
sity according to the archived information about the ob-
jective space. In the crucial region, a solution is allowed
to preserve in a narrow (hyper-)rectangle, and thus more
Pareto solutions are archived. In the unknown, even infinite,
regions, some open rectangles are used to envelop them.
These open rectangles even may envelop infinite objective
values. Within these open rectangles, some Pareto solutions
are selected to be archived. The rectangles are specified ac-
cording to our extended Pareto dominance concept, which
is defined below, followed by the description of ARA.


4.1 Extended Pareto Dominance


Since we need to use an archive of points to approximately
dominate the whole objective space, one intuitive solution
is to permit some tolerance on dominance. To achieve it,
we extend the Pareto dominance as follows.
Definition 1 (E-dominance) Let ������� and ������� be two ob-
jective vectors. ������� is said to E-dominate ������� for a trans-
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Figure 2: 2-D adaptive rectangle partitioning. The dashed
line segments indicate open rectangles. The gray rectangle
indicates the crucial region indicated by � �������	� and � ����
��� .
The gray line segments indicate the region E-dominated by
a solution, denoted by a pentagram.


ferring function, FUN, and a constant vector ��������� , if and
only if


FUN ��� ������ ��� � �"! FUN ��� �$#�� �&%�')(�*,+.-/%1010203%5476.0 (6)


It is denoted as 8 �����:9<; 8 �$#� .
The transferring function should be continuous, and


monotonously increasing. This ensures that E-dominance
may be implied by the traditional dominance, i.e., if 8 ������=
� �$#� , then 8 �>���?9 ; � ��#@� . Furthermore, it is obvious that the
E-dominance relation is transitive.


E-dominance generalizes several dominance relations.
For example, it becomes A -dominance [13] as FUN �B� � �DCE�F ��� � � and � � C E�F ��-HGIA@� , the additive A -dominance [13, 14]
as FUN ��� � �JCK� � and � � CLA , and the Pareto dominance as
FUN �B� � ��CM� � and � � CN� .


In order to envelop unknown, possible infinite, objec-
tive values, we may employ a nonlinear transferring func-
tion, e.g., FUN � � � �OCQP@R F � � �?SUT1VXW/Y � � � . Thus, the infinite
points are transferred to Z # , and may be E-dominated by


a bounded value, say, [�\>]_^�[5` �2abdcfe&g$�hji 
kle g . The T1VXW/Y � � is speci-
fied adaptively according to the solutions found so far. E-
dominance is with a tangent function hereafter unless oth-
erwise specified. The comparison among E-dominance, A -
dominance, and Pareto dominance is illustrated in Figure 1.
Based on the E-dominance relation, we have the following
definitions.
Definition 2 (E-approximate Pareto Set) Let monNp � be
a set of vectors, FUN a monotonically increasing function,
and � a positive vector. Then a set m ; is called an E-
approximate Pareto set of m , if any vector 8 * m is E-
dominated by at least one vector � * m ; , i.e.,


' 8 * mLq/r � * m ; such that � 9 ; 8 0 (7)
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Figure 3: How the adaptive rectangles change their loca-
tion and shapes in the objective space as the vectors in
the archive s �lt�� change through iterations u �Iv u�w v u�x .
The bold curve indicates the Pareto front, pentagrams are
archived solutions, and small circles indicate � �����y�dz tB� .


The set of all E-approximate Pareto sets of m is denoted as{ � m ; � .
Definition 3 (E-Pareto Set) Let m}|op � be a set of vec-
tors, and � a positive. Then a set m�~; |�m is called an
E-Pareto set of m , if


1. m�~; is an E-approximate Pareto set of m , i.e., mD~; *{ � m ; � , and


2. m�~; only contains Pareto optimal points of m , i.e., mI~; |
m�~


The set of all E-Pareto sets of m is denoted as
{ � mD~; � .


Obviously, the Pareto front is the biggest E-Pareto set.
Since finding the whole Pareto front of an arbitrary set m is
usually not practical because of its usually large size, one
needs to be less ambitious in general. An E-approximate
Pareto set is a practical solution concept as it not only rep-
resents all vectors m but also is of smaller size. Of course,
an E-Pareto set is more attractive as it consists of Pareto op-
timal solutions only.


4.2 Archiving Procedure


Our adaptive archiving strategy basically has two features.
One is to determine the crucial region adaptively. The other
one is to find an E-Pareto set based on the E-dominance
concept. For convenience, we partition the archive in ARA
into two parts: s C�+ s �l�<���.� % s �$
� i � 6 . Thus, s ��t�� C
+ s �������Hz tB� % s ��
� i z t�� 6 . The purpose of s �$
� i � is to maintain
an E-Pareto set according to the solution space informa-
tion collected in s ���<���.� . s ���<���.� is an array: s �l�<�$�	� C� � ����� % � ��#5� %1�1�1��% � �l���>� . Each element, � ����� , is initialized to
be infinite, and stores the solution found so far that has
the minimal value at the ( t�� objective. We have W �l���� C







Procedure 2 ARA ���������
1. if ���
	������������������������������� then


2. for all  "!$#�% �'&'&'&(�*),+ do


3. if �.- ���/��1032 � � then


4. �4���/��5 67� ; /* Recedes */


5. else if ���
	��8�9���:�
6. �4���/��5 67� ; /* Dominates */


7. end if


8. end do


9. �;�9<*=�>@?A��5 63B ; /* Re-forms �;��<C=�>A� */


10. for all � ! �;��<*=A>@� such that �;�D����������� do


11. INSERTINRECT E �"�@��9<C=�> ? �C���F�D��������G ;
12. end do


13. �;�9<*=�>@��5 6��;�9<*=�>@?A� ;
14. else if ��� �������H� ���I� /* Updates � �9<*=A>A� */


15. INSERTINRECT E ����� ��<C=A>A� �A� �D���9�H� G ;
16. end if


17. �J5 6 # �;�D�������*�A�;��<*=@>A��+ ;
K�L�MNPORQ�S�T�U�V*W # - � + . Furthermore, we introduce two vectors as-


sociated with ��D���9�H� to describe the crucial region: �4�D�������
with - �D� ��� �� 6 K�L�MNROXQ�S9T8U�VCW # - � + and �8�D�Y<CZP� with � �D�Y<CZX�� 6K\[P]NROPQ S�T U�V*W # - � + . The crucial region, whose member domi-


nates �8���Y<*ZP� but is dominated by ���D������� , contains most
Pareto optimal solutions generated so far, and so it is de-
cisive for archiving. For example, all solutions dominated
by ���D��<^ZX� are not Pareto optimal. Especially, all Pareto op-
timal solutions are located in the crucial region in 2-D case.
The gray rectangle in Figure 2 indicates the crucial region,
and envelops all four Pareto solutions, indicated by penta-
grams.


The pseudo code of our archiving strategy, ARA, is given
in Procedure 2, which is illustrated in Figure 3. At each iter-
ation, the algorithm first checks whether the crucial region
should be updated. If a new objective value is smaller than
the archived one, Recedes replaces the old vector with the
new one; If the new vector dominates a vector in � ��������� ,
Dominates will also replace the old vector with the new
one. This operation ensures the convergence of �"���_<^ZX� . If
the crucial region is updated, the solutions in �`��<C=�>A� have
to be archived again (Re-forms ���<C=�>A� ). Thus, the minimal
objective value is certainly archived, and the solutions in�;�9<C=�>A� are chosen based on the current �a�D������� .


It is possible that the condition in Line 1 of Procedure


Procedure 3 INSERTINRECT �/������9<*=A>@�X�A�F�D�������b�
1. c 5 6 # � ! �F�9<^=@>A�ed RECT �������F���������b� 	


RECT �/�4���;�D�f���H�g�*+ ;
2. if cih6jB then


3. �;�9<*=A>A��5 6��;�9<*=A>A��kl��m c ; /* InterRectDom */


4. else if n � ! �;�9<*=A>A�o5p� RECT ���"�@�;�D�������b�q6
RECT �/���@������9�H�.����rY�/�s	��t� then


5. �;�9<*=A>A��5 6��;�9<*=A>A� k # ��+Pm # �4+ /* IntraRectDom */


6. else if u � ! �;��<C=�>A� 5 RECT ���"�A�;���������:� v
RECT �/���@������9�H�.�


7. �;�9<*=A>A��5 6��;�9<*=A>A� kw# ��+ /* Occupies a rectangle */


8. else


9. �;�9<*=A>A��5 6��;�9<*=A>A� ; /* SteadyState */


10. end if


2 holds, but neither Recedes nor Dominates is executed. It
occurs only when �.�,67���9�������:�Cr�� u� ���8�D�/�467�I� . This rarely
happens since multiobjective problems normally have more
than one solution.


If the new vector � neither has smaller objective value
nor dominates any vector in �a�������H� , then it is processed by
INSERTINRECT, as described in Procedure 3. The proce-
dure mainly chooses representative Pareto optimal solutions
based on the crucial region specified by �a�D������� . It can be
described at two levels. On the coarse level, the objective
space is discretized by dividing it into (hyper-)rectangles
(see Function 4), where each vector uniquely belongs to
one rectangle. Using the proposed E-dominance relation
on these rectangles, the algorithm always maintains a set of
nondominated rectangles (InterRectDom and Occupies),
thus guaranteeing the E-approximate Pareto property. On
the fine level, at most one solution is kept in each rectan-
gle. Within a rectangle, each representative vector can only
be replaced by a dominating one (IntraRectDom), which
ensures convergence.


Now let us see how the function RECT in Function 4 par-
titions the crucial region finely while envelops the unknown
regions with open rectangles based on E-dominance. Since
it is difficult to automatically detect the maximal objective
values in the Pareto front [11], we simply view it as infi-
nite. As shown in Lines 2 v 4 in RECT, - �������H�� and xzy are


mapped into 1 and {I|?} U x7%�~ �'� , respectively. So, the rect-


angles are open if its coordinates contain {"|?} U x3%�~ � � , e.g.,


[1,6] and [6,1] in Figure 2. The scale calculated in Line 2
reflects the distance between - �9� <CZ �� and - �D�������� . The far-


ther away - �D�_<CZR�� is from - �D�������� , the larger the scale value
is. Furthermore, this scale, together with the value 1.5 in


Line 4, enables - ���Y<*ZP�� to be mapped to � {�|?} U xj%�~ �X�F�3%^� ,


which is next to the coordinate corresponding to x�y .







Function 4 RECT ��� , �����	��
���
1. for all �������������������! do


2. "�#%$�&(' ��) *,+�-/.(*10 �32 4576�89�:�;�<>=@?�A8 5 :�;�< 8CB A8 ;


3. D �FE )HGJI3K LMLON �QP $ ���R�9
��� SUT "�#%$�&(' � S ;


4. V �FE )XWZY 86J8R[ �]\ ^3_ ;


5. end do


6. output: return ` )ba V]c��������d�JV �fe9g .


Therefore, when ' �Hhjik , $ �C�R�9
�� , $ ��� :�l �� , and [nm are
mapped onto different rectangles. Furthermore, there areL W 2 46J8 [ �]\ ^ _ Ppo S rectangles between $ �C�R�q
��� and $ ��� :Jl �� .


Less ' � is, more finely the crucial region is divided. An ex-
ample with ' � ) ic@r is illustrated in Figure 2. The unknown
region is enveloped by some open rectangles, as indicated
by dashed line segments. Clearly, the crucial region is finely
divided, and a well-distributed Pareto optimal solutions are
archived in ��� :Js@t � , as indicated by pentagrams in Figure 2.


5 Convergence analysis


We now give some theorems to show that our archive con-
verges to Pareto optimal sets, and preserves diversity of so-
lution at the same time. We first give theoretical analysis on
each iteration of Procedures 2 and 3.


The following theorem shows that the lower boundaries
of archive ���Cu(� , i.e., v ���	�9
xw uy� , retain the minimal objective
values generated so far.


Theorem 1 Let z �9{O� ) {|uy} c � �~�Cu(�  be the set of objective


vectors created in EVOLUTION. Then the archive ����{��
contains the minimal objective values of z �9{%� . That is,$ ���R�9
xw {O�� ) ��� Ku(} c w � � �yw { � N �Cu(��  .


Proof: We need to prove two cases: Case 1. the mini-
mal objective values generated-so-far will enter the archive;
Case 2. the objective vectors with the minimal objective
values do not lose.


Case 1. To prove this point, we only need to prove$ ���R�9
xw uy�� ) N �Cu(�� when a smaller objective value is gener-


ated for some �f�H������\�\�\x�J�� and � h�� , i.e, when
N �Cu(�� h$ ���R�q
�w u 5 c �� . At this iteration, we have � �F�Cuy��� v ���R�q
�w u 5 c ���


or � �~��u(�Q� v ���	�9
xw u 5 c ��� . Since $ �C�	�9
xw u 5 c �� ) $ �C�yw u 5 c �� , we
have either � �~��u(��� v ���yw u 5 c � � or � �F�Cu(��� v �C�yw u 5 c � � . For the
former, � ��u(� ��� ���R�9
xw u 5 c � and the rule, Dominates, ex-
ecutes. For the latter, if �~��uy��� v ���R�9
xw u 5 c � , then �F��u(���v �C�	��
>w u 5 c ��� v ���(w u 5 c � . It contradicts �R�Cuy��� v ���yw u 5 c � . So,�F��u(��� v �C�R�9
>w u 5 c � , and Recedes executes. For both situa-
tions, v ���yw u(� ) � �Cu(� . Thus, $ �C�	��
>w u(�� ) N �Cu(�� .


Case 2. We only have to prove $ ���	��
>w uy�� ) $ ���~�q
�w u 5 c ��
if $ ���~�q
�w u 5 c �� h N �Cu(�� . Since $ ���R�9
xw u 5 c �� h N �Cuy�� , we know


$ ���(w u 5 c �� h N �Cuy�� and �~��u(�	� v �C�yw u(� . So, both Dominates and
Recedes do not execute, and v ���yw u(� ) v ���yw u 5 c � .


As described in Procedures 2 and 3, one solution dom-
inated by the archived solutions is impossible to enter�����	�9
xw u(� or ��� :Js,t w u(� , respectively. Furthermore, as required
in Lines 10 and 14, if a solution dominates ���C�	�9
xw u(� , it can-
not enter ��� :�s,t w uy� . On the other hand, since solutions in�����	�9
�� must have one minimal objective value generated
so far, the solution in ��� :%s@t � also cannot dominate �����	�9
�� .
Thus, we have the following nondominated relations among
the solutions in the archive.
Lemma 1 Members of ����uy� are either nondominated or
equal to one another, i.e., � v r �,v c � ����u(� , � v r � v c �R�� v r ) v c � .


Similar to that �����	��
>w u(� retains the minimal objective
values inputted so far in Theorem 1, � � :Js1t w u(� collects the
Pareto optimal solutions iteratively, as stated in the follow-
ing theorem.
Theorem 2 The archive ��� :�s,t w {%�O�O�)�� � is an E-Pareto set


of z ��{��Jw {%� ) ��� :%s@t w {���� |�� {|uy}M{�� � �F�Cuy�  x  if ���C�	�9
xw {/�J� )���C�	�9
xw {%� .
Due to the space limitation, we only sketch the proof.


When ���C�R�9
>w u(� does not change, the generated solutions are
all inputted to INSERTINRECT. Any solution � must be E-
dominated by � � :Js1t w u(� , or enters the archive. Once being
archived, it will not be deleted until it is replaced by a new
one that E-dominated it. The solutions E-dominated by �
are transitively E-dominated by the new one. So, ��� :�s,t w u(�
still E-dominates these solutions. Similarly, if an archived
solution v is not Pareto optimal among the solutions gen-
erated so far, it is replaced by a Pareto optimal one by exe-
cuting InterRectDom or IntraRectDom. So, ��� :Js,t w u(� must
be an E-Pareto set of the solutions inputted into INSERTIN-
RECT when the crucial region is unchanged.


Theorems 1 and 2 state that, in ARA, the archive retains
the minimal objective values and the E-Pareto solutions of
the objective vectors inputted so far. The archive retains
the best-so-far solutions, and this feature allows a MOEA
using ARA to stop anytime. Using these features of ARA,
we give the convergence results, based on an assumption
of EVOLUTION, that the archiving algorithm may reach the
crucial region of the Pareto front, and then E-dominates it.
Theorem 3 If the function EVOLUTION gives every possi-
ble solution in the search space with a positive minimum
probability, then


1. the lower boundaries of archive ����u(� of ARA, v �C�	�9
xw u(� ,
converge to the minimal objective values,


2. � �����R�9
>w u(�  converges to a Pareto optimal set��vU��z!¡ ¢x�,��$ �M) �U��K£>¤�¥ � N �  R¦ � v ��� � � � ��z§¦ N ��) $ � �  
(8)


with probability one as ��¨ m .
Proof: 1. Since EVOLUTION can generate every pos-


sible solution with a positive minimum probability, accord-
ing to the Borel-Cantelli Lemma (see e.g., [6, p. 201]), it







is guaranteed that arbitrary solution is generated infinitely
often and that the waiting time for the first occurrence as
well as for the second, and so forth is finite with probability
1. Thus, there exists ��������� such that � 	�
���� ������������ � �����
for any � . According to Theorem 1,  	"! ��#�$ 
%�� �&���'������ � � � � for


all �)(*� � . Therefore, when �)(,+.-0/21� �4365�87:9�$ ; ; ;$ ! � � � � , each


element of < 	�! ��#�$ 
=� reaches the minimal objective value and
will not change.


2. If > 	�! ��#�$ 
%��? � (@+ - /.A is not Pareto optimal in B , there
must exist CED ?F BGD A such that CHDJI < 	 �=$ 
%�LK � D� � ���������� � � � �
for some � . There exists ���NM ? ( � A such that C 	"
� M � � CHD .C 	"
� M � I < 	 �=$ 
� MPO 9 � , then C 	�
� M � IQ> 	�
� M�O 9 � . Thus, Domi-
nates executes, and < 	 �=$ 
� MPO 9 � is replaced by C 	"
� M � . Once�R(&+0-�M 1� � 3�5�N7:90$ ; ; ;$ ! � � � M�� , > 	�! ��#�$ 
%� reaches a Pareto optimal


set as described in Eq.(8).
Once > 	�! ��#S$ 
%� , as in Eq.(8), is Pareto optimal in B and


each member at least has a minimal objective value, there is
not a vector C that either dominates > 	�! ��#S$ 
%� or � �T�  	 �=$ 
%�� .
The condition in Line 1 of Procedure 2 cannot be satis-
fied. Neither Dominates nor Recedes executes. Therefore,> 	�! ��#�$ 
%� becomes stable. This completes the proof.


The direct result of Theorem 3 is that < 	"!RU0V $ 
%� converges,
so does the crucial region. The assumption about EVOLU-
TION is quite common in theoretical analysis of evolution-
ary algorithms [11, 15]. It is true whenever, for example, a
mutation is applied to every bit in a binary string with some
small probability, the standard method of generating a new
point in a random mutation hillclimber [11]. Based on this
weak assumption, we give the main convergence result of
our archiving strategy below.
Theorem 4 If EVOLUTION gives every possible solution in
the search space with a positive minimum probability, the
archive sequence W > 	�UYX - $ 
%�0Z of ARA converges to a well-
distributed E-Pareto set of the whole objective space with
bounded size with probability one as �\[^]_�`� , i.e.,a > 	�U0X - $ 
%�HFcbd? BGDe A ;
agfihkj > 	�U0X - $ 
%� j`h lm� n /porqMs �0t 90; uvwTxzy��{p| /%} ~ ~ ~%} l^� o q Ms � t 9Y; u v for any given �


with � ��� � ���� .


Proof: According to Theorem 3, > 	�! ��#�$ 
%� con-
verges to a Pareto optimal set when ��(�+P-zM . Then,
according to Theorem 2, > 	�U0X - $ � � is an E-Pareto set of� ��
 7��� M � C 	"
%� �L� � > 	�U0X - $ �� M � . EVOLUTION generates any


solution infinitely often and that the waiting time for the
first occurrence as well as for the second, and so forth is
finite with probability 1, so, for each solution C F B ,
there exists � � ? +Y-zM@��� � ����� A such that C 	�
N��� � C .
Then > 	�U0X - $ 
N� t 9 � must E-dominate C . Since B is finite,+ -��G� �43�5�S��� � � � ���,�`� . Thus, > 	�UYX - $ 
=� is an E-Pareto set


of B as ��(&+ -�� .


Let us consider ��(�+0-zM (Theorem 3). The rectangle en-
velops an archived vector in > 	�! ��#�$ 
=� must envelop a mem-
ber of > 	�U0X - $ 
%� as � increases (Otherwise, the member of> 	"! ��#�$ 
%� enters > 	�UYX - $ 
%� and occupy the rectangle when � in-
creases.). For each objective � , the coordinates of these rect-


angles must have two different values: 1 and � q M� � ����� �� �[G� ,
because they corresponds  	�! ��#�$ 
%�� and  	"!¡UYV $ 
=�� , respec-
tively. So, j > 	�UYX - $ 
%� j£¢¤f as ��[^]¥� .


As we can observe in RECT (Function 4), the � 
%¦ di-


mension (objective) is divided into � q M� � �&�£� �   segments.


The objective space is divided into


!§� 7 9 � q M� � ���£� ��  hyper-


rectangles. From each hyper-rectangle, at most one solu-
tion can be in > 	�U.X - $ 
%� at the same time. Now consider the
equivalence classes of hyper-rectangles where, without loss
of generality, the hyper-rectangles in each class have the
same coordinates in all but one dimension. There are at
most � 365�N7:90$ ; ; ;$ ! � q M� � �¨�£� ��  different hyper-rectangles in each


class constituting a chain of dominating rectangles. Hence,
only one solution from each of these classes can be a mem-
ber of > 	�UYX - $ 
%� at the same time. This completes the proof.


This theorem states that the archive of ARA can finally
E-dominate the whole Pareto front. It also states that the
archive size is bounded, given an appropriate vector � . In
addition, there are at least two different Pareto optimal so-
lutions in the archive. This point is different from © -Pareto
set, which sometimes retains only one solution [13].


6 Conclusion and discussion


In this paper, we have introduced the E-(approximate)
Pareto set as a novel solution concept for evolutionary mul-
tiobjective optimization. It is theoretically attractive as it
helps to construct algorithms with the desired convergence
and distribution properties, and it generalizes the Pareto
dominance concept in the MOEAs literature. Moreover,
it is practically important as it works with Pareto fronts of
bounded size without prior knowledge about multiobjective
problems.


We have constructed the ARA archiving strategy that can
be used in evolutionary algorithms. It can maintain the min-
imal objective values and well-distributed Pareto optimal
solutions among the solutions generated so far (Theorems
1 and 2).


Our archiving strategy, with appropriate assumption on
the solution generation procedure, can retain the minimal
objective values and a well distributed approximation of the
whole Pareto front with probability 1 (Theorems 3 and 4).


When the knowledge about the distribution of the mul-
tiobjective values is not available, the user can set an ap-
propriate vector � and ARA can provide a representative,
well-distribution Pareto optimal set. So, our archiving strat-
egy complements the existing ones.


In future, we will apply ARA to real life applications.
Instead of tangent, we may apply other transferring func-
tions in order to treat different solution regions more fairly.







Our theoretical analysis is based on the assumption of finite
search space, however, the E-Pareto set concept is applica-
ble to more complicated situations. We also leave these for
future work.
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