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Large scale fuzzy multiobjective 0-1 programs
through genetic algorithms with decomposition procedures
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Abstract — In this paper, we focus on large
scale fuzzy multiobjective 0-1 programming prob-
lems. For fuzzy multiobjective programming
problems, we introduce extended concepts of
the ordinary Pareto optimal solution. The prob-
lem to find a satisficing solution for the deci-
sion maker from the extended Pareto optimal
solution set is a kind of combinatorial optimiza-
tion problem, so we apply genetic algorithms to
solve it. Since the problems considered in this
paper are large scale and a large scale problem
has often a special structure called block angu-
lar structure, we apply genetic algorithms re-
vised by the authors to utilize the special struc-
ture. .

KeyWords — Large scale 0-1 programs, ge-
netic algorithms, triple strings, decomposition
procedures

1. Introduction

In general, it is difficult to solve large scale
problems exactly owing to various kinds of re-
strictions. However, most of large scale problems
arising in applications have special structures that
can be exploited. Block angular structure to con-
straints is one of well-known special structures.
For linear and nonlinear programming problems
with block angular structure some decomposition
techniques have been proposed [1], while neither
exact algorithms nor decomposition ones in prac-
tice are not established for large scale program-
ming problems with discrete variables.

In recent years, many researchers have took in-
terest in genetic algorithms (GA) as an optimiza-
tion technique and various researches about the
application of GA to mathematical programming
problems have been reported [2].

For fuzzy multiobjective 0-1 programming prob-
lems, M. Sakawa et al. proposed a genetic al-
gorithm using double string representation where
each individual (genotype) transformed into a fea-
sible solution (phenotype) and showed its efficiency
[3],[4]). For the purpose of deriving solutions ef-
ficiently by utilizing the special structure of the
problem, K. Kato et al. proposed a genetic algo-
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rithm using triple string representation as the ex-
tension of double string representation [5], [6]. In
these papers [5], [6], however, the proposed method
was applied to a few problems of small size.

Under these circumstances, in the present pa-
per, we investigate the performance of a genetic al-
gorithm with decomposition procedures using triple
string representation for large scale fuzzy multi-
objective 0-1 programming problems with block
angular structure.

2. Problem formulation and solution con-
cept

Let us consider a block angular multiobjective
0-1 programming problem as follows:

minimize €& =¢€11T1 + -+ C1pTp 3
minimize Cx& =Cr®1+--- + CipTp
subject to Az +---+ Apz, < by (1
Byx; <bh )
By,z,<b,

m_,—e{(],l}"i,]=1,_,,,p J
where ¢;;’s, ¢ = 1,...,k, j = 1,...,p, are n;
dimensional cost factor row vectors, x;’s, j =
1,...,p, are n; dimensional column vectors of 0-1

decision variables, A;x + -+ + Apz, < by de-
notes mg dimensional coupling constraints, A;’s,
j=1,...,p, are mo x n; coefficient matrices. The
inequalities B;z; < b;, j = 1,...,p, are m; di-
mensional block constraints with respect to &; and
Bj’s, j =1,...,p, are m; x n; coefficient matri-
ces. In this paper, it is assumed that each element
of A;, B; and b; is positive respectively. For sim-
plicity in notation, define the following vectors and
matrices.

¢ =(¢i,.--,Cip), €= (C1,..-,Cr),

T =(x1,...,&p), A= (41,...,4p),
B1 0

B= . , b=(bg,b7,...,8D)T.
0O B

For such multiobjective programming problems,
instead of optimal solutions for ordinary single-
objective optimization problems, Pareto optimal
solutions such that the value of a certain objec-
tive function is never improved without the value
of another objective function getting worse are de-
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fined.

Definition 1 (Pareto optimal solution)

x* € X is said to be a Pareto optimal solution
if and only if there does not exist another ¢ € X
such that c;x < c;z*,i=1,...,k and ¢c;z < ¢z~
for at least one j, 1 < j<k.

In practice, it would be more appropriate to
consider that the possible values of the parame-
ters in the above multiobjective 0-1 programming
problem usually involve the ambiguity of the ex-
perts’ understanding of the real system. Thus, we
consider the following multiobjective block angu-
lar 0-1 programming problems with fuzzy param-
eters as follows.

minimize ¢i1& =¢€11%T; + -+ C1,Tp

minimize ¢;T = €nx1+-- -+ €pTp

subject to Arzy+---+ Apzp < bo 9
Bla:l Sbl ( )
Epa:p < 5,,

:D]‘E{O,l}nf,jzl,...,p )

where a vector ¥ means that its elements are fuzzy
numbers.

Now suppose that the decision maker consid-
ers that the degree of all of the membership func-
tions of the fuzzy numbers involved in the mul-
tiobjective 0-1 programming problem with fuzzy
parameters should be greater than or equal to a
fixed value @, ie., (4, B,b,c) should be an ele-
ment in the a-level set (4, B, b, &)4. For the above
o and the multiobjective 0-1 programming prob-
lem with fuzzy parameters, the following nonfuzzy
a-multiobjective 0-1 programming problem is de-
fined as:

minimize ¢;T =¢€11T1 +- -+ €C1,Tp 3

minimize €T =cCg1T1+ -+ CrpTp

subject to Az +---4+ Apz, < by
By, <bi} (3)
Bz, <b,

z;€{0,1}%, j=1,...,p
(A,B,b,C)E(A,B,b,E:)a 4

where X (A, B, b) denotes the feasible region of the
above a-multiobjective 0-1 programming problem
and it should be emphasized that the parameters
(A, B, b, c) are treated as decision variables rather
than constants.

Then, it is evident that the notion of the ordi-
nary Pareto optimality cannot be applied directly.
Thus, on the basis of the a-level sets of the fuzzy
parameters, the concept of an a-Pareto optimal
solution to the a-multiobjective 0-1 programming
problem (3) as a natural extension of the Pareto
optimality is defined [7].
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Definition 2 (a-Pareto optimal solution)

z* € X(A*,B*,b%) is said to be an a-Pareto
optimal solution to the a-multiobjective 0-1 pro-
gramming problem if and only if there does not ex-
ist another x € X(A, B,b), (4,B,b,¢) € (4,B,b,8),
such that c;x < e;z*, i = 1,...,k, and ¢;(z) <
c;x* for at least one j, 1 < j < k, where the corre-
sponding values of parameters (A*, B*,b",c*) are
called a-level optimal parameters.

2.1.  Fuzzy goals

For the a-multiobjective 0-1 programming prob-
lem (3), considering the vague nature of the deci-
sion maker’s judgements, it is quite natural to as-
sume that the decision maker may have imprecise
or fuzzy goals for the objective functions in the
a-multiobjective 0-1 programming problem. In
general, goals stated by the decision maker may
be to achieve “¢;x should be in the vicinity of a
fixed value” (called fuzzy equal) or “c;x should be
substantially less than or equal to a fixed value”
(called fuzzy min) or “e;z should be substantially
greater than or equal to a fixed value” (called
fuzzy max). Such a generalized a-multiobjective
0-1 programming problem may now be expressed
as

fuzzy min e;x 1€ I
fuzzy max c;x i € I
fuzzy equal ¢;xz i € I3 (4)
subject to © € X(4,B,b)
(4,B,b,c) € (4,B,b,&)q

where I] UIgUIg = {1,...,k}, Iian = 0, 'L,j =
1,2,3,i#3].

Assuming each of fuzzy goals is quantified by
a membership function p;(e;xz), i = 1,...,k, as
shown in Fig. 1, the problem (4) can be written as
the following fuzzy a-multiobjective decision mak-
ing problem:

maximize (u3(c1T),. .., ur(cr))

subject to = € X(4,B,b) } (5)

(A,B,b,c) € (A,B,b,¢),

For the above problem, the concept of M-a-
Pareto optimality is defined [7].

Definition 3 (M-o-Pareto optimal solution)

z* € X(A*, B*,b") is said to be an M-a.-Pareto
optimal solution to the a-multiobjective 0-1 pro-
grammang problem if and only if there does not ez-
ist another x € X (A4, B,b), (4,B,b,c) € (4, B,b,&)q
such that p;(c;xz) < ws(e;x*), ¢ = 1,...,k, and
pi{ciz) < pi(e;x*) for at least one j (1 < j <
k), where the corresponding values of parameters
(A*,B*,b*,¢c*) are called M-a-level optimal pa-
rameters.

Note that M-a-Pareto optimal solutions and a-
level optimal parameters can be obtained through
a direct application of the usual scalarizing meth-
ods for generating Pareto optimal solutions by re-
garding the decision variables in the problem (5)
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fuzzy min

ui(e; x) #i(e; %)

1

fuzzy max

Thecemeens

pi(e; x) fuzzy equal
| | S

z; c;x 0| z;

Figure 1. Membership functions of fuzzy goals

as (z,4,B,b,C).

nearest to the reference membership levels in the

Having elicited the membership functions p;(¢;x), minimax sense can be obtained regardless of its

i =1,...,k, from the DM for each of the objec-
tive functions c;z, 7 = 1,...,k, if a general ag-
gregation function up(u(e1x),-. ., ur(crz), @) is
introduced, the decision making problem consid-
ering k conflicting objective functions can be for-

mally defined as follows [7].

maximize “D(/J'l (clz), [ RSE)

subject to € X(A,B,b)
(A,B,b,c) € (A
a€[0,1]

If the form of the function pp(-) can be identi-
fied explicitly, this problem can be converted into
an ordinary single-objective programming prob-
lem. However, it is so difficult to identify up(-)
globally and explicitly that an interactive decision
making is introduced in order to find a satisficing
solution for the DM among from the M-a-Pareto
optimal solution set.

3. Augmented minimax problems

Assume that the reference membership levels
I, ¢ = 1,...,k, reflecting the aspiration level of
the DM for each membership function p;(c;x) is
subjectively specified by the DM. Then, if the ref-
erence membership levels are attainable, an M-
a-Pareto optimal solution which gives better val-
ues of the membership functions for fuzzy goals
than the reference membership levels can be ob-
tained. While, if not, it is desirable to obtain an
M-a Pareto optimal solution which is nearest to
the reference membership levels in the minimax
sense.

Such an M-a-Pareto optimal solution can be
obtained by solving the following augmented min-
imax problem [7].

minimize Jax, {ﬁg — pi(ex)
1,:

+pz T )
subject to x € X(A B ,b)
(A,B,b,c) € (4,B,b,&)

where p is a sufficiently small positive number.
By solving the above augmented minimax prob-
lem (7), an M-a-Pareto optimal solution which is
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uniqueness [7].

_ From the properties of the a-level set for A,
B, b and ¢, the feasible regions for A, B, b and ¢
can be expressed respectively by closed intervals
[AL, AR), [BL, BE, [bZ,bf] and [ck, R

a?rVa

Now, define u;g(-) and pir(-) as follows (Fig.

2).
N 1 , GT <z}

wir(ciz) = { pi(eix) , x>z} ®
seix) , ex <z}

Figure 2. p;1(-) and pir(-)

Since the DM can be choose the most_desir-
able parameter values (4, B, b,¢) € (4,B,b5,C)a,
the membership value of the ¢th objective function
M;(x) for a solution x is considered to be defined
as:

lii(cf'm) 7i € Il
M;(z) = picitx) LE D
min{u;p(clz), i (ckx)},ie I

(10)

Then, the problem (7) can be rewritten as fol-
lows.

Mi(z)) )
M;(z))}

minimize max {( ; —

i=1,....k

+pz

subject to A% :c1+ -+ AL :z:p<b L (12)
Bf, <bly
L R
B, <o,
z; €{0, 1}, j=1,....,p )
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In an interactive fuzzy satisficing method [6],
the decision maker updates the reference member-
ship levels, the degree o or both repeatedly until
he is satisfied with the a-Pareto optimal solution
for the reference levels and the degree a by solv-
ing the corresponding minimax problem (11). The
interactive algorithm to obtain such satisficing so-
lution for the decision maker can be constructed
as follows.

Step 0 Calculate the minimum and the maxi-
mum of each objective function under the given
constraints for a =0 and a = 1.

Step 1 Considering the minimum and the max-
imum of each objective function, the decision

maker subjectively specifies the membership func-

tion for each objective function.

Step 2 Ask the decision maker to select the ini-
tial value of @ (0 < o < 1) and the initial ref-
erence membership levels g; (1 =1,...,1).

Step 3 Calculate a Pareto optimal solution for
the above reference levels by solving the prob-
lem (11).

Step 4 If the decision maker is satisfied with
the current values of objective functions given
by the current optimal solution, stop. Other-
wise, ask the decision maker to update refer-
ence membership levels by taking account of
the current values of membership functions and
objective functions and return to step 3.

Since the problem (11) is an ordinary block an-
gular 0-1 programming problem of knapsack type,
a genetic algorithm with decomposition procedures
using triple string representation [5], [6] is applica-
ble.

4. Genetic algorithms with decomposition
procedures

4.1.  Coding and decoding

For multiobjective 0-1 programming problems
of knapsack type, i.e., where all coefficients and
all right side constants in the constraints are non-
negative, a genetic algorithm using double string
representation as shown in Fig. 3 was proposed by
M. Sakawa et al. [3],[4]. where s(¢) corresponds to

s(n)

gs(n)

Indices
0-1 values

s(1) [s(2) [---1s()

9s(1) | 9s(2) 9s(3)

Figure 3. Double string

the index j of a variable z; and z(;, denotes the
value of the variable z;.

In order to guarantee the feasibility of a so-
lution (pbenotype) generated from an individual
(genotype), M. Sakawa et al. [3], [4] proposed a de-
coding algorithm for a double string. In the de-
coding algorithm, starting from the left edge of
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the string, a variable z(;) corresponding to each
index s(é), ¢ = 1,2,...,, is fixed to gy, ie.,
To(i) = gs(s) until all constraints are satisfied. For
remaining variables, if the constraints are broken
when g,(;; = 1, the value of the variable with the
index s(z) is fixed to 0 by force. By doing so, only -
feasible solutions will be generated.

In view of the special structure of the problem
(11), it seems to be quite reasonable to define an
individual S as an aggregation of p subindividu-
als s’, j = 1,...,p, corresponding to the block
constraint B;z; < b; (Fig. 4).

1st block 2nd block p thblock
‘D

e T et 1) el ptme Flp ol
[O[1] ---1ofofof--- 1} [1f1f---10]
¥ \ \
[orif---10l [o[o[---T1] [111]--- [0]
subindividual subindividual subindividual
s! s2 s?

Figure 4. Division of an individual S into p
subindividuals s’

In[5],[6], each subindividual s’ is presented
by a triple string as shown in Fig. 5. To be

rd

A1) [ 72 v (n;)
9,],:‘(1) gii(z) gr]ﬂ'(nj)

Figure 5. Triple string

si=

more explicit, in a triple string which represents a
subindividual corresponding to the jth block, 77
(€ {1,...,p}) represents the priority of the jth
block, 17 (k) (€ {1,...,n;}) denotes an index of
a variable in phenotype and gZ i(k) is a 0-1 value
variable.

Decoding this string (genotype) by means of
the following algorithm, the resulting solution (phe-
notype) becomes always feasible. In the algorithm,
n; denotes the number of variables in the jth block
G=1,...,p), af/,-(k) is the 7 (k)th column vector
in the jth coupling constraint coefficient matrix
A;j and B; ) is the »7 (k)th column vector in the
Jth block constraint coefficient matrix B;.

Step 1 Seti=1, ¥ = 0 and proceed to step 2.
Step 2 Find out such a block as i = r? and

proceed to step 3.

Step 3 For the above block j,set k=1,0 =0
and repeat the following procedures.

(a) Ifgl’;,.(k) =1,set k =k +1 and go to (b).
Otherwise, i.e., if gij(k) =0,setk=Fk+1
and go to (c). )

(b) 'IfZ+af,j(k) < by ar{d o+Bi < bJ:, set
x{,j(k) =1,¥=%+ af,j(k); =0 '*',33,:’(1:)7

and go to (c). Otherwise, set xf;j " = 0 and
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go to (c). ]
(c) If k> nj, go to step 4 and regard z/
(#1;---,25,)T as phenotype of a subindivid-
ual s’ represented by triple string. Other-
wise, return to (a).
Step 4 Ifi =p,stop andregard z = (x!,..., 2"
as phenotype of an individual S. Otherwise, set
i =1+ 1 and return to step 2.

4.2. Fitness
Fitness f; of each individual S; is defined as
fi=10+kp— igéfik{(ﬁi - Mi(z))

I3
+p (3 — Mi(@)) }.
i=1

As a way of scaling of fitness, the linear scaling

f! = a- f;+bis adopted, where the constants a and
b are determined so that the mean fitness fyean
will be a fixed point (fmean = @ - fmean + b) and
the max fitness fmax Will be mapped to the twice
value of the mean fitness (2 fmean = @ - fmax +b)-

4.3.  Reproduction

Various kinds of reproduction methods have
been proposed. Among them, M. Sakawa et al.
have already investigated the performance of each
of six reproduction operators, i.e., ranking selec-
tion, elitist ranking selection, expected value se-
lection, elitist expected value selection, roulette
wheel selection and elitist roulette wheel selec-
tion, and as a result, it was confirmed that eli-
tist expected value selection is relatively efficient
for multiobjective 0-1 programming problems in-
corporating the fuzzy goals of the decision maker
[3]. In this paper, according to[3], as a reproduc-
tion operator, elitist expected value selection is
adopted.

4.4. Crossover

)T

If a single-point crossover or multi-point crossover

is directly applied to individuals of triple string
type, an index 17 (k) in the j th subindividual of
an offspring may take the same number that an
index »7(k') (k # k') takes. The same violation
occurs in solving traveling salesman problem or
scheduling problem through genetic algorithm as
well. In order to avoid this violation, a crossover
method called partially matched crossover (PMX)
was modified to be suitable for double strings [3],
[4]. In this paper, PMX is applied as usual for up-
per string, whereas, for a couple of middle string
and lower string, PMX for double string[3], [4] is
applied to every subindividual as in [5], [6].
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4.5. Mutation and inversion

It is considered that mutation plays a role of
local random search in genetic algorithm. In this
paper, only for the lower string of triple string,
mutation of bit-reverse type is adopted and ap-
plied to every subindividual.

Furthermore, In this paper, for the middle string
and for the upper string of the triple string, inver-
sion defined by the following algorithm is adopted.

Step 1 After determining two inversion points
hand k (h < k), pick out the part of the string
from h to k.

Step 2 Arrange the substring in reverse order.

Step 3 Put the arranged substring back in the
string.

4.6. The whole algorithm

When applying a genetic algorithm to the prob-
lem (11), an approximate optimal solution of de-
sirable precision should be obtained in proper time.
For this reason, the following parameters, the min-
imal search ‘generation I, the maximal search
generation Ip,.y, the convergence criterion ¢ are
introduced.

The outline of the genetic algorithm with de-
composition procedures proposed by the authors
[5], [6], is shown as follows.

Step 1 Set an iteration index (generation) t = 0
and determine the probability of crossover p.,
the probability of mutation p,,, the probability
of inversion p;, the minimal search generation
Inin, the maximal search generation [,,, and
the convergence criterion .

Step 2 Generate N individuals whose subindi-
viduals are of triple string type at random.

Step 3 Evaluate each individual (subindividual)
on the basis of phenotype obtained by the pro-
posed decoding algorithm and calculate the mean
fitness fmean and the maximal fitness fyax of
the population. If¢ > Inin and (fmax— fmean)/ fmax
< g, or, if t > Iay, regard an individual with
the maximal fitness as an optimal individual
and terminate this program. Otherwise, set
t =t+ 1 and proceed to step 4.

Step 4" Apply reproduction to every subindivid-
ual.

Step 51 Apply crossover for a couple of middle
string and lower string to every subindividual
according to the probability of crossover p..

Step 6! Apply mutation to every subindividual
according to the probability of mutation p,.

Step 7' Apply inversion to every subindividual
according to pp,.

Step 8 Apply crossover for upper string accord-
ing to pc.

Step 9 Apply inversion for upper string accord-
ing to p; and return to step 3.
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In the above genetic algorithm, several oper-
ations in the steps with T can be applied to ev-
ery subindividual independently. As a result, it is
possible to reduce the amount of working memory
needed to solve a problem.

5. Numerical experiments

In the paper [5],[6], the genetic algorithm us-
ing triple string representation with decomposi-
tion procedures (TGA) were applied only to block
angular 0-1 programming problems with 20 and
25 variables.

In the present paper, we attempt to apply it to
several problems of larger size (with 30, 50, 70 and
100 variables). For comparison, we also apply a
genetic algorithm using double string without de-
composition procedures (DGA) [3], [4] to the same
problems.

In the following numerical experiments, the
corresponding problem was solved through 5 runs
of TGA and DGA at each interaction with the
decision maker. The parameters used in GA were
set as, the population size = 100, the probability
of crossover p. = 0.7, the probability of mutation
Pm = 0.005, the probability of inversion p; = 0.01,
the convergence criterion € = 0.05, Ina.x = 1000
and I,;, = 200.

First, we consider a multiobjective block an-
gular 0-1 programming problem with fuzzy pa-
rameters (3 objectives, 3 blocks, 30(=12+8+10)
variables and 3 coupling constraints).

Table 1, 2 shows the interaction processes with
the DM by TGA and DGA respectively.

At first, the minimax problem was solved for
the initial reference membership levels and a (1.0,
1.0, 1.0, 1.0), and the decision maker was sup-
plied with the corresponding Pareto optimal so-
lution and both the membership function values
and the objective function values as is shown in
the first interaction of Table 1, 2. On the basis
of such information, since the decision maker was
not satisfied with the current membership func-
tion values or objective function values , the deci-
sion maker updated the reference membership val-
ues to iy = 0.8, fiz = 1.0, i3 = 1.0 and o = 1.0 for
improving the satisfaction levels for 2z, and z3 at
the expense of z;. For the updated reference mem-
bership values, the corresponding minimax prob-
lem yielded the Pareto optimal solution and both
the membership function values and the objective
function values as shown in the second interaction
of Table 1, 2. The same procedure continues in
this manner until the decision maker was satisfied
with the current values of the membership func-
tions and the objective functions. At the fourth
interaction, the satisficing solution for the decision
maker was derived (Table 1, 2).

In this example, the average processing time
(APT) through all interaction processes and the

283

Table 3. Average processing time (APT) and av-
erage relative error (ARE) for a problem with 30
variables

APT (sec) | ARE (x100%)
TGA | 211.010 0.1122
DGA | 242.654 0.1122
2000 -
-TGA -8&DGA
B
o 1500} i
E #
E°
‘1000
8
&
A so0f
O J 1 1 L
30 50 70 100
Number of variables

Figure 6. Processing time for typical problems
with 30, 50, 70 and 100 variables

average relative error (ARE)

ARE
_ Best value by GA — Exact optimal value

Exact optimal value

are shown in Table 3.

~ Next, we consider a multiobjective block angu-
lar 0-1 programming problem with fuzzy parame-
ters (3 objectives, 5 blocks, 50(=12+8+10+7+13)
variables and 5 coupling constraints).

Table 4 shows the average processing time (APT)

and the average relative error (ARE) for the prob-
lem involving 50 variables. Figure 6 shows a graph

Table 4. Average processing time (APT) and av-
erage relative error (ARE) for a problem with 50
variables

APT (sec) | ARE (x100%)
TGA | 315.366 1.299
DGA | 383.333 1.472

of processing times for typical problems with 30,
50, 70 and 100 variables. From all results shown
in above, in general, the genetic algorithm us-
ing triple string representation with decomposi-
tion procedures are more efficient and effective
than the genetic algorithm using double string.

6. Conclusions

In this paper, an interactive fuzzy satisficing
method through genetic algorithms for large scale
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Table 1. Interaction process (TGA, 5 trials)
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Interaction 2z 22 z3 I o u3 | Number of solutions
1st —6178 2916 —T71 |0.6525 0.6737 0.6554 4
(1.0,1.0,1.0,1.0) | —6179 3217 —215 |0.6526 0.6486 0.6723 1
(Optimum) —6178 2916 —71 [0.6525 0.6737 0.6554
2nd —4892 2123 -840 | 0.5356 0.7398 0.7459 5
(0.8,1.0,1.0,1.0)
(Optimum) —4892 2123 —840 }0.5356 0.7398 0.7459
3rd —4979 2143 —682 [0.5435 0.7381 0.7273 5
(0.8,1.0,0.9,1.0)
(Optimum) —4979 2143 —682 [0.5435 0.7381 0.7273
4 th —4989.9 2084.1 -—27.5]0.5445 0.7430 0.6503 5
(0.8,1.0,0.9,0.7)
(Optimum) —4989.9 20841 -27.5[0.5445 0.7430 0.6503
Table 2. Interaction process (DGA, 5 trials)
Interaction 2 22 23 U1 U2 U3 Number of solutions
1st —6178 2916 —71 [0.6525 0.6737 0.6554 4
(1.0,1.0,1.0,1.0)| —6179 3217 —215 |0.6526 0.6486 0.6723 1
(Optimum) —6178 2916 —71 [0.6525 0.6737 0.6554
2nd —4892 2123 —840 | 0.5356 0.7398 0.7459 5
(0.8,1.0,1.0,1.0)
(Optimum) —4892 2123 —840 ] 0.5356 0.7398 0.7459
3rd —4979 2143 —682 | 0.5435 0.7381 0.7273 5
(0.8,1.0,0.9,1.0)
(Optimum) —4979 2143 -—682 | 0.5435 0.7381 0.7273
4 th —4989.9 2084.1 —27.5]0.5445 0.7430 0.6503 5
(0.8,1.0,0.9,0.7)
(Optimum) —4989.9 2084.1 —27.5]0.5445 0.7430 0.6503
fuzzy multiobjective 0-1 programming problems No. 1, pp. 177-185, 1994 (in Japanese).
and a genetic algorithm with decomposition pro- 4. M. Sakawa, K. Kato, H. Sunada and
cedures were explained roughly. In order to inves- Y. Enda, “An interactive fuzzy satisfic-
tigate the performance of the genetic algorithm, ing method for multiobjective 0-1 program-
it was applied to several large scale fuzzy mul- ming problems through revised genetic al-
tiobjective 0-1 programming problems and com- gorithms,” Journal of Japan Society for
pared with other solution methods about process- Fuzzy Theory and Systems, Vol. 7, No. 2,
ing time and solution precision. The results of the pp- 361-370, 1995 (in Japanese).
numerical experiments showed the efficiency and 5. K. Kato and M. Sakawa, “Genetic Al-
effectiveness of the genetic algorithm with decom- gorithms with Decomposition Procedures
position procedures. for Fuzzy Multiobjective 0-1 Programming
Problems with Block Angular Structure,”
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