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ABSTRACT : This paper presents two new
methods of multi-objective optimization. One is an
application of simplified genetic algorithm in which
membership functions are employed as usual
objective functions, and maximizing decision is
performed for optimization. The other is a method of
membership control in growth processes in which
selection is performed also on the way to the final
growth step. In such a case of the optimization in
regard to the growth of trees, the latter method is
proved to be more effective than the former one.

Key Words : Fuzzy Theory, Artificial Life, L-
Systems, Genetic Algorithm, Tree Formation, Multi-
Objective Optimization, Multi-Stage Optimization

1. INTRODUCTION

Langton proposed a very wide and progressive
concept of artificial life [9] in which local interaction
in genotypes (ex. chromosome) produces phenotypes
(ex. behavior, form) through emergence. This theory
is very effective to simulate nonlinear and
complicated phenotypes in the real world. On the
other hand, Zadeh proposed fuzzy set theory [15]
which is very suitable for modeling and simulation of
complicated events in the real world. The first
purpose of this paper is to apply fuzzy theory to
artificial life.

Cellular automata by von Neumann [11], L-
Systems by Lindenmayer [10], and genetic algorithms
by Holland [5] and Goldberg [4] can be included in
artificial life. Fuzzy theory has been already applied to
automata theory [14], cellular automata [1], and
genetic algorithms [13,3,12]. As for L-Systems, a
stochastic approach has been already tried [7].
However, these researches can not be attributed to
total systems in which fuzzy theory is applied to
artificial life.
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The author is now studying on an application
system of cellular automata and L-Systems to
structural design [6] in which structures are considered
to be growing systems. Furthermore, when genetic
algorithms are applied to it, we can get an ideal and
typical artificial life system. Bellman and Zadeh
proposed a very simple optimization method called
maximizing decision [2] which is considered to be
applicable to genetic algorithms [12].

In this paper, based on the above theories, a very
simple case study on fuzzy multi-objective and multi-
stage optimization for tree formation is shown, in
which scale-, mechanics-, reproduction-, and energy-
conditions can be taken into account.

In artificial life, itis very essential that complicated
creatures have their own histories of growth and / or
evolution from primitive states. So, optimization and
selection can be performed also on the way of growth
and / or evolution.

The second purpose of this paper is to compare the
usual genetic algorithm method at the final growth
step with a proposed multi-stage optimization method
in which selection is performed also on the way to
the final growth step.

2. TREE FORMATION

In this paper, a very simple growth model of trees is

employed. Every cell is originated from a seed and
only terminal cells produce newer terminal ones. In
the growth of cells, two extreme types can be
assumed, i.e. axial growth (A-Type) and branching
growth (B-Type) such as shown in Fig.1. According
to the serial combinations of A and B-Types, trees
grow up with various figures.

‘When four steps of growth are supposed, we can get
16 (=24) kinds of genotypes such as shown in Fig.2.
The phenotypes of trees corresponding to the above
genotypes are illustrated in Fig.3.
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Two kinds of optimization processes, i.e. simplified
genetic algorithm at the final growth step and
preceding control by M.F. such as shown in Table1
are described in the next chapter.

3. FUZZY OPTIMAL FORMATION OF
TREES

3.1. Simplified Genetic Algorithm

According to the systematized genetic algorithms [4],
the following key words are needed: Objective
Function, Coding, Reproduction, Crossover, and
Mutation.

In this chapter, aiming at multi-objective
optimization [12] objective functions are given by
means of 8 kinds of membership functions employed
in fuzzy theory [15] as shown in Fig.4, where thin
and thick solid lines are used in this chapter (dotted
lines will be used in the next chapter). Here, the
following variables of membership functions are
taken into account:

total amount of materials

: total weight acting on seeds
maximum length of straight grown cells
number of terminals
height
width

: potential of growth (1 is total number of
cells)
bending moment acting on initial branching
point symmetrically

EELI P

These values are measured by the fundamental size
and weight of a cell unit. For simplicity, the length
and weight of a cell unit are assumed to be the unity
and its width zero. Total amount of material S is
proportional to 1, so S is assumed to be equal to 1. Of
course, W is also equal to 1. The potential of growth
o/l is defined as the possibility of getting energy
through leaves supposed to be located on terminals.

The membership functions of S, m, n, h, and n/l

(solid thin lines in Fig.4) are assumed according to

the thought that the more the better. The membership

Table 1
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functions of W, w, and M are determined according to
the thought that the less the better.

The membership functions of m and w intend to
make trees slender and straight for practical use, e.g.
availability as structural elements. On the other hand,
when tree are evaluated for appreciation, people prefer
branching growth to straight growth and the width of
trees may be allowed to be more wider than for
practical use. So, for reference, the membership
functions of m and w are modified as shown by the
solid thick lines, and optimal formation of trees can
be performed in the two cases, i.e. for practical use
and for appreciation.

As for codings, in this paper, binary genetic codings
are employed corresponding to genotype numbers
1~16 as shown in Table 2.

Reproduction, crossover, and mutation are performed
as shown in Fig.5, in which population size is four

and [J shows 1 or 0. Optimization processes are
shown as follows:

1. 1 or O is selected 16 times randomly and four
binary genetic codings are determined.

2. Referring to Table 2, genotype numbers are
given and their phenotypes’ characteristic values
S, W, m,n, h, w, n/l, and M can be calculated.

3. By using the membership functions in Fig.4,
membership values, us~ ), can be obtained,

and let the minimum of these membership
values in regard to each genotype be ul;
(i=1.23.4).

4. The genotype with the minimum
#la(lgS ply,ply, x13) is submitted to mutation
and the others to crossover as shown in Fig.5.

5. In regard to seven genotypes reproduced,

Table 2 Binary Genetic Coding for Genotype Nos.

Genotype Nos. | Binary Genetic Codings | Genotype Nos. | Binary Genotype Codings
1 0000 9 1000
2 0001 10 1001
3 0010 11 1010
4 0011 12 1011
5 0100 13 1100
6 0101 14 1101
7 0110 15 1110
8 0111 16 111t

Genetic Codings
min ¢

- O
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Fig. 5 Reproduction, Crossover, and Mutation
( in Case of Population Size 4 )
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minimum membership values, z¢2,~u2,, can be ave u

calculated by using the membership functions in 0.5
Fig.4. Casef1

6. Finally, we can select four genotypes with the 0.4 da_&/‘* — N
Case g; :!

first to fourth largest membership values,

ol
u2~u2y, among u2;~p2,, and this 6th step 03 —+ 7 cesed] 23
can replace the first step. %/“7 '
7. The superscript i in Fig.5 means the ordinal 0.2 /
number of generations, and the alternation of 0.1
generations has to be continued until selected
genotypes remain unchanged. o

—_
»n
w
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Fig.6 shows optimization processes expressed by
Generations

generation membership values, avep(=(piy+pp+ piz+
ia)/4). Fig.6 (a) shows 5 cases of the processes for
practical use, and Fig.6 (b) for appreciation. The
finally selected genotypes in each case are shown in
Table 3. For reference, the ideal optimal genotypes
are also shown in Table 3, and they are derived from ave u
the whole lists of characteristic values for genotypes 0.5 Case 1\,
at the fourth step (Table 4) and of maximizing
decision of optimal genotypes (Table 5). 0.4 // o
These results show that the employed simplified
genetic algorithm gives true or near optimal
genotypes which are caused by accident.

(a) for Practical Use

>

0.3

0.2

3.2. Preceding Control by Membership
Functions 0.1

/

In the previous section, a simplified genetic 0
algorithm is applied to the optimization of geno- and 4 5 6 7
phenotypes at the final step. However, in reality, Generations
selection should be carried out on the way to the final
growth step, too. Furthermore, in this case study, the (b) for Appreciation
number of different figures of trees increases with the
increase of the number of steps and it is reasonably Fig. 6 Optimization Processes by Generation
suggested that the selection on the way may be easy Average Membership Values

—
[
W

Table 3 Selected Optimal Genotypes
(by Fuzzy Multi-Objective Genetic Algorithm)

Selected Genotypes(No.) Number | Selected Genotypes(No.) Number
for Practicai Use for Appreciation

Casel ABAB (6) 4 ABBB (8) 4
ABAB (6) 2

Case 2 BABA (11) 4 ABAA (5) 1
BBAA (13) 1

Case 3 BABA (1) 4 BABA (11) 4
Case 4 ABAB (6) 4 ABBA (7) 4
Case 5 BAAB (10) 4 ABBB (7) !
BAAB (10) 3

Ideal Optimal AABB 4) 2

Genotypes ABAB (6) 2 ABBB (®) 4

705




Table 4 Characteristic Values for Genotypes (at the Fourth Step)

Genotype Numbers 1 2 3 4 5 6 7 8 9 10 1t 12 13 14 15 16
Total N“"‘:’““C‘“' 4 5 6 8 7 8 11 15 8 10 12 16 14 18 22 30
Total A"‘°';'(“=]‘;' Materials 4 5 6 8 7 9 11 15 8 10 12 16 14 18 22 30
T”‘:,:;'sh' 4 5 6 8 1 9 1 15 8 10 12 16 14 18 22 30
Max. Length ":I StmightLines | o 3 2 2 3 2 2 1 4 3 2 92 3 2 2 1
Number °: Terminals 1 2 2 4 2 4 4 8 2 4 4 8 4 8 8 16
Height 4 37 4
i 71 342 371 3.3 342 371 3.42 2.84 3.3 3.42 303 371 342 3.3 3.42
Width
by 0 142 284 3.42 426 484 542 484 568 6.26 6.84 6.26 742 684 626 6.84
P°‘°““"n'/’{ Growth 0.25 040 033 050 029 044 036 0.53 0.25 040 033 0.50 029 044 036 053
Bending Moment
| 0 035 142 227 318 476 519 7.81 568 7.94 9.10 13.14 9.11 1273 14.79 21.33
Table 5 Maximizing Decision of Optimal Genotypes (at the Fourth Step)
Genotype
Nos. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
us | 02 025 03 04 035 045 055 075 040 050 060 080 070 0.50 1.0 1.0
uw | 087 083 08 073 077 070 063 050 073 0.67 060 047 053 040 0.27 0
we | 10 075 05 05 075 05 05 025 10 075 05 05 075 05 05 025
0 (025 (0.5 (05 ©25 ©5 @5 @©75 (© (©25% (05 (0.5 (025 (05 (05 (0.75)
bW |01 02 02 ©04 02 04 04 08 02 04 04 08 04 08 08 1.0
A 1.0 093 08 093 078 086 093 08 071 078 08 078 093 086 078 086
P 1.0 0.86 072 0.66 057 052 046 052 043 037 032 037 026 032 037 032
“ |0 (093 ©86) (083) (079 ©.76) (0.73) (0.76) (0.72) (0.69) (0.66) (0.69) (0.63) (0.66) (0.69) (0.66)
M | 0.25 040 033 050 029 044 036 053 025 040 033 050 029 044 036 0.53
s | 1.0 098 091 085 079 068 065 048 062 047 039 012 039 015 0.01 o
ming | 01 02 02 04 02 04 036 025 02 037 032 012 026 015 001 0
©)  (©2) (0.2) (0.4) (02) (0.4) (0.36) (0.48) (0) (0.25) (033) (0.12) (0.25) (0.15) (0.01)  (0)

and effective because of the small total population
size (4 in this case).

In this paper, multi-stage selections are performed
twice, i.e. at the second and fourth steps.

Before such selections, we have to adjust the
membership functions in Fig.4 for the fourth step to
the ones for the second step. Generally speaking, the
characteristic values of phenotypes of trees, S, W, and
M, increase exponentially with the increase of steps,
and m, n, h, and w increase proportionally to the
number of steps. So, n/l decreases with the increase
of steps. Here, for simplicity, reduction factors are
assumed to be 1/5 for S, W, and M, 1/2 for m, n, h,
and w, and 1 for n/l. The membership functions
assumed for the second step are shown in Fig.4
(dotted lines).

[ }in case of optimization for appreciation]

The characteristic values for genotypes at the second
step is shown in Table 6 and the corresponding
membership values are shown in Table 7, which,
after maximizing decision, implies that genotype
Nos. 5~8 are suitable for survival in both the cases
for practical use and for appreciation.

The characteristic values and membership values of
genotype Nos.5~8 at the fourth step are shown in
Tables 3 and 4. After maximizing decision, genotype
Nos.5 and 8 are suitable for survival in the case for
practical use and for appreciation, respectively. These
selected results are shown and compared with the ideal
optimal genotypes in Table 8.

These results show that the proposed method of
preceding control by membership functions is very
effective for optimization. In this case study, each
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population size at each optimization step is so small
(four) that it is not necessary to use genetic
algorithms.

Table 6 Characteristic Values for Genotypes
(at the Second Step)

Genotype Nos. 1~4 5~8 9~12 13~16
1 2 3 4 6
S=) 2 3 4 6
W(=l) 2 3 4 6
m 2 1 2 1
n 1 2 2 4
h 2 1.71 1.42 1.7
w ) 1.42 2.84 3.42
nil 0.5 0.67 0.5 0.67
M ] 0.35 1.42 2.27

Table 7 Maximizing Decision of Optimal Genotype
(at the Second Step)

Genotype Nos. | 1~ 4 5~8 9~12 13~16
Fsed 0.5 0.75 1.0 1.0
Hwrety 0.67 0.5 0.33 0.0

“ 1.0 0.5 1.0 0.5
” © 0.5) ©) 0.5
s 0.2 0.4 0.4 0.8
" 1.0 0.86 0.71 0.86
“ 1.0 0.72 0.43 0.32
d (1.0) (0.86) 0.72) (0.66)
Fan 0.5 0.67 0.5 0.67
Py 1.0 0.88 0.53 0.24
min 0.2 0.4 0.33 0
# © ©.4) © ©

[( ) in case of optimization for appreciation]

Table 8 Selected Optimal Genotypes
(by Membership Control in Growth Processes)

Selected Genotypes(No.) | Selected Genotypes(No.)
for Practical Use for Appreciation
2nd Step AB (5~8) AB(5~8)
4th Step ABAB (6) ABBB (8)
Ideal Optimal AABB (4) ABBB (8)
Genotypes ABAB (6)

4. DISCUSSIONS AND CONCLUSIONS

The proposed method to optimize the figures of trees
has the following features.

(1) Multi-objective
performed.

(2) Membership functions are employed as
objective functions for genetic
algorithms. Membership values mean the
possibility for survival and not the
probability for survival.

(3) A new optimization method of preceding
control by membership functions on the
way of growth processes is proposed and
it is proved that this method is more
effective than genetic algorithms
performed only at the final step.

(4) Generally speaking, it is very effective to
employ the preceding control method and
genetic algorithms at the same time.
Although the case study carried out in this
paper is very primitive, the fundamental
ideas mentioned above are applicable to
the optimization of bigger and more
complicated systems.

optimization is

In this paper, a very effective application method of
fuzzy theory to artificial life could be shown, and it
may be useful for the intel-life co-generating system
for the design of architectural structures proposed by
the author [8].
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