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ABSTRACT

A new control method using Genetic Algorithms (GAs) to reduce the structural response un-
der seismic excitation is proposed. The proposed control method uses state space reconstruc-
tion technique to obtain the full state performance from the available reduced order feedback.
The controller is optimized using GAs without making simplifying assumptions. The method
has been used on a benchmark problem – an active mass driver system. The results and advan-
tages of the proposed method are discussed in this paper. The robustness of the controller de-
veloped by this method has also been examined.

1. INTRODUCTION

Most optimization methods used in control design are traditional gradient based search meth-
ods. With this approach there are difficulties associated in selecting the suitable continuous
differentiable cost function and in considering nonlinearities (Gray et al.  1995).

Compared with the traditional gradient based search methods, Genetic Algorithms (GAs)
efficiently find an optimal value from the complex and possibly discontinuous solution space
because the fitness function is the only information required of the problem. GAs do not re-
quire reformulating the problem into a suitable form unlike traditional gradient based search
techniques. As a result, GAs provide a lot of flexibility in the controller design and optimiza-
tion.

In the field of control design, GAs have been used successfully to obtain gains for optimal
controller ���������������	��
���, tune the weights of neuro–controllers (Lewis and Fagg
1992), and scale parameters of fuzzy controllers (Kim et al. 1995).

For the control of the civil structures, a new GA based control method has been proposed
(Kim and Ghaboussi, 1997). The proposed control method estimates the system states from
the observed time series data using the state space reconstruction technique which is based
on the embedding theorem.
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For the verification, the method has been examined on the benchmark problem – active
mass driver system (Spencer 1997). The robustness of the proposed control method has also
been examined.

2. GENETIC ALGORITHMS

GAs are computational methods which are inspired by natural Darwinian evolution. In GAs
organisms or chromosomes evolving under a certain environment are represented by bit
strings. A string is composed of genes which are an encoding of the parameters of the prob-
lems which are being optimized. Strings evolve over generations to adapt to a given environ-
ment by GA operators, which are designed to model the evolutionary forces such as competi-
tion, natural selection, reproduction, recombination and mutation.

In every generation, a set of strings is selected into the mating pool based on their relative
fitness. The fitter strings are given more chance of passing their genes into the next generation.
This process of natural selection, i.e. survival of the fittest is operated by selective reproduc-
tion. New strings are created by exchanging the genes between two old strings (cross–over).
Mutation operator is applied at a specified low rate to change the randomly selected genes in
the new generation. While these operations are randomized, GAs are no simple random walk.
They are probabilistic search techniques which explore new search points as well as keep the
historical information of the search space (Goldberg 1989).

GAs are very simple but powerful methods compared with the traditional gradient based
search methods because GAs do not need the reformulation of the problem to search a nonlin-
ear and non–differentiable space. The flexibility in the formulation of the fitness function is
also one of the advantages of GAs. The fitness function can be formulated as a polynomial
function of the output of the system to be optimized. Therefore, by using GAs, multiple opti-
mal design criteria can be considered by simply including them in the fitness function.

3. STATE SPACE RECONSTRUCTION FOR SYSTEM ESTIMATION

A new method to estimate the states from the observed time series data suitable to GA based
control has been developed. The method is based on Takens’ embedding theorem (Takens
1981),  which states that the observed time series data can be used to reconstruct the state space
and dynamical information (attractor) of the underlying system. The n–dimensional recon-
structed state space at time step t is defined asWn(t) by the following equation in terms of the
one–dimensional  observed time series w(t) with time delay �.

Wn(t) � {w(t) w(t–�) ���. w(t–[n–1]�)}T (1)

The reconstructed state space is not the same as the original state space. However, it can
characterize the attractor of the original system for sufficiently large value of n.  When the
dimension of the original state space is k, Takens has suggested a value of n > 2k.  However,
the embedding often works well for smaller value of n (Langi and Kinsner 1995). The opti-
mum value of the time delay � is still an open question.  Generally, � depends on the statistical
correlation among samples.  Larger value of � can be used when the statistical correlation is
high (Langi and Kinsner 1995).
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4. THE PROPOSED GA BASED CONTROL METHOD

The control law used in the proposed GA based control method is given in the following equa-
tion.
�u(t) � f [u(t–�), u(t–2�), ������, u(t–m�), y(t), y(t–�), ������, y(t–[n–1]�)] (2)

In this equation the control signal increment �u is a function of the reconstructed states
of the control input vector u and measured response vector y. In the proposed GA based control
method, the characterization of the attractor of the original system and the optimization of the
controller ’s parameters are implemented simultaneously.

5. CONTROLLER DESIGN

5.1. Evaluation Model and Control Constraints

The proposed GA based control method has been evaluated on a benchmark problem.  The
structure considered in the benchmark problem is a scale model of a three story building using
an active mass driver as a control device.  The state space parameters of this structural system,
including the actuator and sensor dynamics, have been obtained from the experiment. More
details on the benchmark problem can be found in the reference (Spencer et al. 1997).

Control constraints are placed on the system for a realistic numerical simulation. The pri-
mary constraints (hard constraints) depend on the physical characteristics of the experimental
setup and the capacity of the actuator. The RMS constraints and the peak response constraints
are listed in Eqs. (3) and (4) respectively. In Eq. (3) � represent the RMS value of its subscript.
�u � 1 volt, �x

..
am � 2 g and �xm � 3 cm (3)

max |u| � 3 volt, max |x
..

am
| � 6 g and max |xm

| � 9 cm (4)

The additional constraints (control implementation constraints), which depend on the sen-
sors and the controller computer, are as follows.

Table 1.  Control implementation constraints on the benchmark problem – AMD

Sampling Time Computational Time Delay A/D & D/A Converter Sensor Noise

0.001 seconds 12 bit precision

�3 volts span

200 � seconds 0.01 RMS noise

5.2. GA Based Controller

For control feedback, we have chosen to use four sensors which measure the absolute accel-
erations of the three floors, x

..
a1, x

..
a2, x

..
a3, and the absolute acceleration of the AMD mass, x

..
am.

The feedback vector y(t) contains the following four sensor readings at time t.
y(t) � {x

..
a1 x

..
a2 x

..
a3 x

..
am} (5) 

By using the reconstructed state feedback, we are using the current vector of sensor read-
ing, y(t), plus the previous samples of sensor readings. Therefore, the dimension of the recon-
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structed state space of the four sensor feedback will be equal to 4�n with n–1 previous time
histories.

Y4�n(t) � {y(t) y(t–�) ���. y[t–(n–1)�]}T (6)

The proposed controller also uses previous values of control signals as a feedback. One role
of this feedback is to make the control signal not deviate too much from the zero signal in the
incremental  form of the control law used in this study as in Eq. (2).

Um(t–�) � {u(t–�) u(t–2�) ���. u(t–m�)}T (7)

Currently, there is no rigorous method to determine the values of m and n. For this study
we have chosen to use the trial and error method. In the remainder of this study, we have used
the 23–dimensional reconstructed state space (m=3, n=5) which consists of 20–dimensional
reconstructed state space vector Y4�5(t) and the 3–dimensional reconstructed state space vec-
tor U3(t–�).

The control input is calculated from Eq. (8) with the additional constraint from the satura-
tion of the actuator which requires that  �u� � +3 volts as a limit.

u(t) � u(t–�) � �u(t), where �u(t) � GR �Y4�5(t)
U3(t–�)� (8)

The controller gain matrix GR has 23 elements as follows. The elements of the gain matrix
GR are optimized through evolution by using GAs.

G1 � [g1 g2 .... g19 g20]
(9)

G2 � [g21 g22 g23]

GR � [ G1 G2 ]

5.3. GA Parameters

The simple GA (Goldberg 1989) is used to optimize the feedback gains. Ten bits are used to
represent each gain as a real number by mapping, making the string length equal to 230 bits.
The population size was 50 and the evolution was continued up to 1000 generations.  Genetic
operators used are: fitness proportional (roulette wheel type) random reproduction, two point
cross–over at a rate of 0.8 and mutation at a rate of 0.003.

5.4. Fitness Function

The fitness function F is a nonlinear polynomial which consists of powered products of the
normalized peak and RMS values of the responses of floors and the AMD. Each criterion in
C1 – C3 has been designed to converge to 1.0 when the corresponding system response is re-
duced to zero.

(10)C1 � 	
i�1,3


1 �
|x
..

ai
|
max

� i

�
�i
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1 �
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�
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� 
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�
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For the evaluation of the fitness, peak accelerations, peak displacements, RMS accelera-
tions and RMS displacements of the three floors and active mass driver and RMS value of
control signal are used as the parameters of the cost function as in Eqs. (10) – (12). The denom-
inators �� �� �� �� and 	 are the normalization factors, and powers � �� �� �� and 
 are the
exponential weight factors used to adjust the weight of responses which are to be reduced ac-
cording to the control objective. In this study the factors are chosen by trial and error as fol-
lows: �i=2.0, �m=1.0, �i=�m=1.0, �i=2.0, �m=1.0, �i=�m=1.0, and 	=1.0 for normalization,
and i=1.0, m=3.0,  �i=1.0, �m=2.0, �i=�m=1.5, �i=�m=1.0, and 
���� for the exponential
weight factors.

F �
Cref

CT
(13)CT � 	

i�1,3

Ci

CT in Eq. (13) is the total cost, and the fitness F is the inverse of the total cost with a normal-
ization factor Cref (=1.0 in this study).

5.5. Penalty Function

The penalty function has been successfully used for solving the constrained optimization
problem by several researchers (Homaifar et al. 1994; Gray et al. 1995).  In the early stages
of evolution, the penalty function confines the search space by adding a large penalty value
to the cost function.  As a result, GAs search the fittest solution within the space that satisfies
constraints after a few generations.

This penalty function is employed to impose the benchmark problem’s hard constraints,
i.e. maximum displacement and acceleration of AMD. Functions P1 and P2 in Eq. (11) are the
penalty functions.

P1(|x
..

am
|
max) � �|x

..
a m

|
max

50
(14)

�
for |x

..
am|max � 6 g,

for |x
..

am|max  6 g

P2(|xm
|
max) � �|xm

|
max

50
(15)

for |xm|max � 9 cm

for |xm|max  9 cm

6. EVALUATION CRITERIA

Root mean square and peak responses are used as the evaluation criteria of control efficiency.
Ten criteria are defined in the benchmark problem (Spencer et al. 1997), and they are normal-
ized by the corresponding worst–case responses of the third floor. These criteria are summa-
rized in Table 2.

From J1 to J5 in Table 2, �x3o
 = 1.31 cm, �x

.

3o
 = 47.9 cm/sec and �x

..

a3o
 = 1.79g are the worst

case stationary RMS displacement, velocity and acceleration of the third floor of the uncon-
trolled building with parameters of 	g  = 37.3 rad/sec, and �g  = 0.3.  RMS responses are com-
puted using MATLAB/SIMULINK up to 300 seconds.
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Evaluation criteria for the peak responses are non–dimensionalized with respect to the cor-
responding uncontrolled peak third floor responses. For the El Centro earthquake, x3o  = 3.37
cm, x

.
3o  =131 cm/sec, and x

..
a3o  = 5.05 g . For the Hachinohe Earthquake, x3o  = 1.66 cm, x

.
3o

= 58.3 cm/sec, and x
..

a3o  = 2.58 g are used.

Table 2.  Evaluation criteria of benchmark problem

max
	g,�g,i�1,3

� �di
�x3o

� max
	g,�g,i�1,3

� �x
..

ai

�x
..

a3o

� max
	g,�g
��xm
�x3o

� max
	g,�g
��x

.
m

�x
.

3o

� max
	g,�g
��x

..
am

�x
..

a3o

�

max
t, i�1,3

El Centro
Hachinohe

�|di(t)|
x3o
� max

t, i�1,3
El Centro
Hachinohe

�|x.. ai(t)|
x
..

a3o
� max

t
El Centro
Hachinohe

�|xm(t)|
x3o
� max

t
El Centro
Hachinohe

�|x. m(t)|
x
.

3o
� max

t
El Centro
Hachinohe

�|x.. am(t)|
x
..

a3o
�

J1 J2 J3 J4 J5

J6 J7 J8 J9 J10

� – RMS value of its subscript di – Inter–story drift at ith floor

7. NUMERICAL RESULTS

Numerical simulations of the proposed GA based controllers have been performed on the
benchmark problem. Two controllers have been developed in this study. They have the same
architecture,  and have been developed with the same GA parameters, fitness and penalty func-
tion. However, one has been developed without sensor noise (Case A), and the other considers
sensor noise (Case B) while optimizing control gains to improve the robustness of the control-
ler. The measurement noise used in Case B is white noise ranging from –0.1 to 0.1 Volts. The
RMS values of the white noise is 0.0577 Volts, which is approximately 1.9% of the full span
of the A/D converters. It is about 5.8 times larger than the RMS noise used in the benchmark
problem as the implementation constraint.

To develop each controller, only the El Centro earthquake ground motion data provided
by the benchmark problem has been used. The time delay  �=0.001 seconds (Eq. (2)) has been
used for the state space reconstruction, which is the sampling period specified in the bench-
mark problem.

Table 3.  Comparisons of results using evaluation criteria

J1 J2 J3 J4 J5 J6 J7 J8 J9 J10

Case A
Case B

Sample LQG

0.164
0.194
0.283

0.255
0.289
0.440

0.956
0.807
0.510

0.896
0.769
0.513

0.871
0.697
0.628

0.356
0.367
0.456

0.625
0.673
0.711

2.271
1.814
0.670

2.075
1.516
0.775

1.643
1.063
1.340

Uncontrolled* 0.589 0.999 0.072 0.082 1.068 0.620 0.718 0.077 0.083 1.142

*Uncontrolled – zero control signal

The results of the GA based controllers (Cases A and B) have been compared with those
of the sample LQG and uncontrolled case in Table 3. Cases A and B satisfy all the constraints
in Eqs. (3) and (4). In the table J10 is the criterion of the required peak control force which
is related to the peak acceleration of the AMD. The constraint on the peak acceleration of the
AMD has been known to be the most critical condition among other constraints in the bench-



7YOON–JUN KIM AND JAMSHID GHABOUSSI

Proc. Second World Conf. Struct. Control, Kyoto, Japan, 2007–2014

mark problem in our experience. It is very interesting that J10 in Case B is even lower than
the uncontrolled result. The GA based controller in Case B reduces the response of the struc-
ture as well as the required peak control force very effectively. In terms of reducing the struc-
tural response (J1, J2, J6 and J7), the controllers in both cases perform much better than the
sample LQG controller. The controller in Case A performs better than the controller in Case
B because Case A is designed to minimize structural responses using the maximum available
control effort while satisfying all of the constraints of the benchmark problem. The results
seem to coincide with this design objective.

Figure 1 shows the transfer function from the ground acceleration x
..

g to absolute accelera-
tion at the first floor x

..
a1. In this figure, Case A and Case B are compared with the uncontrolled

results. The GA based controllers in both cases reduce the response at the first three modes
of the structure.

The loop gain transfer function is used to examine the closed loop stability of the system.
The sample LQG controller was considered to be robust in the design if the magnitude of the
loop gain was below –5 dB at all frequencies above 35 Hz (Spencer et al. 1997). The GA based
controller satisfies the same stability and robustness criteria used in the sample LQG control-
ler design in both cases (Figure 2). It can be seen that the robustness is much improved in Case
B as expected.
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8. CONCLUSIONS

A new control method using GAs has been proposed. The proposed method uses the state
space reconstruction technique to estimate the system states. Using this technique, the system
states are estimated from the observed time series of the structural response. The advantages
of the proposed method are primarily in its simplicity and flexibility. The fitness function in
GAs doesn’t require reformulating the problem into a suitable form unlike traditional gradient
based optimization methods. There is considerable flexibility in the formulation of the fitness
function. Different weights can be assigned to the multiple objectives and constraints in order
to fine–tune the control as desired.

The proposed method has been applied to a benchmark problem. It has been shown that
the  new method’s performance in the response reduction is far superior to that of the sample
optimal control. The robustness of the GA based controller has also been examined by the loop
gain transfer function. The GA based controller satisfies the same stability and robustness cri-
teria used in the sample LQG controller design in both cases. In Case B the robustness has been
much improved by adding measurement noise while optimizing the controller by GAs.

ACKNOWLEDGEMENTS

The research reported in this paper was funded by National Science Foundation Grant
CMS–95–003209.  This support is gratefully acknowledged.

REFERENCES

Goldberg, D.E. (1989) Genetic Algorithms in Search, Optimization and Machine Learning, Addison–
Wesley.

Gray, G.  J., Li, Y., Murray–Smith, D. J.  and Sharman, K.C. (1995) Specification of a Control System Fit-
ness Function Using Constraints of Genetic Algorithm Based Design Methods. Proc.  1st Int.
Conf. Genetic Algorithms in Eng. Syst.: Innovations and Applications, pp. 530–535.

Homaifar, A., Qi, C.  X.  and Lai, S.H. (1994) Constrained Optimization Via Genetic Algorithms. Simula-
tion, Vol.  62, No.  4, pp.  242–254.

Kim, J., Moon, Y.  and Zeigler, B. (1995) Designing Fuzzy Net Controllers Using Genetic Algorithms.
IEEE Control Systems, pp.  66–72.

Kim, Y.–J. and Ghaboussi, J. (1997) A New Method of Reduced Order Feedback Control Using Genetic
Algorithms. Earthquake Engineering and Structural Dynamics, to appear.

Kundu, S. and Kawata, S. (1996)  Genetic Algorithms for Optimal Feedback Control Design.  Engng. Ap-
plic. Artif. Intell., Vol. 9, No. 4, pp. 403–411.

Langi, A.  and Kinsner, W. (1995)  Consonant Characterization Using Correlation Fractal Dimension for
Speech Recognition. IEEE WESCANEX 95 Proc., pp.  208–213.

Lewis, M.A.  and  Fagg, A.H. (1992)  Genetic Programming Approach to the Construction of a Neural Net-
work for Control of a Walking Robot.  Proc.  IEEE Inter.  Conf.  Robot.  Automa.,  pp.  2618–2623.

Marra, M.A., Boling, B.E.  and Walcot, B.L.  (1996)  Stability Analysis of Genetic Algorithm Controllers.
Proc.  IEEE Southeast Con., pp.  204–207.

MATLAB (1997) The Math Works Inc., Natick, Massachusetts.
Spencer Jr., B.  F., Dyke, S. J.  and Deoskar, H.S. (1997) Benchmark Problems in Structural Control Part

I: Active Mass Driver Systems. Proc. 1997 ASCE Structures Congress.



9YOON–JUN KIM AND JAMSHID GHABOUSSI

Proc. Second World Conf. Struct. Control, Kyoto, Japan, 2007–2014

Takens, F. (1981) Detecting Strange Attractors in Turbulence. Springer Lecture Notes in Mathematics, Vol.
898, pp. 366–381.


