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Abstract- The environmental/economic dispatch 

problem is a multiobjective nonlinear optimization 

problem with constraints.  Until recently, this problem 

has been addressed by considering economic and 

emission objectives separately or as a weighted sum of 

both objectives.  Multiobjective evolutionary 

algorithms can find multiple Pareto-optimal solutions 

in one single run and this ability makes them attractive 

for solving problems with multiple and conflicting 

objectives.  This paper uses an elitist multiobjective 

evolutionary algorithm based on the Non-dominated 

Sorting Genetic Algorithm � II (NSGA-II) for solving 

the environmental/economic dispatch problem.  Elitism 

ensures that the population best solution does not 

deteriorate in the next generations.  Simulation results 

are presented for a sample power system. 

1 Introduction 

The ability of multiobjective evolutionary algorithms to 

find multiple Pareto-optimal solutions in one single run 

have made them attractive for solving problems with 

multiple and conflicting objectives.  During the last 

decade, several multiobjective evolutionary algorithms [1] 

have been proposed which are aimed at finding the Pareto-

optimal front and also achieve diversity in the obtained 

Pareto-optimal front. 

The classical economic dispatch problem is to operate 

electric power systems so as to minimize the total fuel cost.  

This single objective can no longer be considered alone 

due to the environmental concerns that arise from the 

emissions produced by fossil-fueled electric power plants.  

In fact, the Clean Air Act Amendments have been applied 

to reduce SO2 and NOx emissions from such power plants.  

Accordingly, emissions can be reduced by three main 

methods [2]: 

• post-combustion cleaning systems 

• switching to fuels with lower emission potentials 

• dispatch of power generation to minimize emissions 

instead of or as a supplement to the usual cost 

objective of economic dispatch. 

The third method involves only minor modifications to 

dispatching programmes for implementing 

environmental/economic dispatching.  Different 

environmental/economic dispatch algorithms have been 

outlined in [2].  A review of the potential requirements of 

utilities regarding system operations to meet the Clean Air 

Act Regulations is presented in [3]. 

Environmental/economic dispatch is a multiobjective 

problem with conflicting objectives because pollution 

minimization is conflicting with minimum cost of 

generation.  Various techniques have been proposed to 

solve this multiobjective problem.  Ref. [4] was one of the 

first approaches to solve the environmental/economic 

dispatch problem considering multiobjective optimization 

using linear and non-linear goal programming techniques.  

An ε-constrained technique was used by Yokohama et al. 

[5] considering economy, security and environment 

protection as objectives.  In this method, a security-based 

preference index is used to select the optimal solution from 

the Pareto-optimal solutions obtained.  A goal 

programming technique for solving this multiple criteria 

decision making problem and evaluate the environmental 

marginal cost by a non-inferiority surface was proposed by 

Kermanshahi et al. [6].  A recursive quadratic 

programming method to solve the emission constrained 

dynamic economic dispatch by fuel switching was 

presented in [7].  Dhillon et al. [8] formulated the problem 

considering uncertainties in system production cost and 

random nature of load demand.  The weighted minimax 

technique was used to obtain trade-off relation between the 

conflicting objectives and fuzzy set theory was 

subsequently used to help the operator choose an optimal 

operating point.  Linear programming (Third Simplex 

Method) for obtaining the approximate solution to the 

linearized optimization problem was investigated in [9]. 

An Hopfield neural network for finding the optimal 

economic/environmental dispatching of thermal generating 

units was considered by King et al. [10], where the 

emission functions for SO2 and NOx were weighted and 

added to the cost objective function, demand requirement 

constraint and system losses functions.  Roa-Sepulveda et 

al. [11] extended the technique described in [10] for an 

Hopfield Neural Network and also used Tabu Search by 

linearly combining the objectives.  It was observed that the 

weighting factor selection was complicated as each 

weighting factor affects the others.  These authors first set 

the power mismatch weighting factor and then used the 

method in [10] to calculate those for the emissions. 

Chang et al. [12] also addressed the economic and 

environmental objectives simultaneously by combining 

them linearly to form a single objective function.  By 



varying the weight, the trade off between fuel cost and 

environmental cost was determined.  Song et al. [13] used 

a fuzzy logic controlled genetic algorithm for solving the 

environmental/economic dispatch where the crossover and 

mutation probabilities were adjusted based on the average 

fitness of the population.  The multiobjective problem was 

converted to a scalar optimization problem with weighted 

constraints.  Yalcinoz and Altun [14] proposed a solution 

to the environmental economic dispatch using a modified 

genetic algorithm which is based on arithmetic crossover 

operator with real valued genes.  This approach also 

expressed the fitness function (overall objective) as a 

weighted sum of the total fuel cost and emission (SO2 and 

NOx) objectives. 

Some researchers have carried out simultaneous 

optimization of multiple objectives in the 

environmental/economic dispatch problem using 

evolutionary algorithms.  In [15] and [16], a hybrid genetic 

algorithm using an indirect representation for solutions and 

a decoding procedure that always generates a feasible 

solution is used.  The optimization algorithm generates 

trade-off curves between cost and emission based on 

emission dispatching and fuel switching.  However, the 

approach did not yield a good distribution on the Pareto-

optimal front.  Recently, promising results have been 

obtained by Abido [17] by using a Non-dominated Sorting 

Genetic Algorithm (NSGA) to locate the Pareto-optimal 

solutions with a good diversity. 

It has been argued that NSGA suffers from three 

weaknesses: computational complexity, non-elitist 

approach and the need to specify a sharing parameter [18].  

An improved version of NSGA known as NSGA-II, which 

resolved the above problems and uses elitism to create a 

diverse Pareto-optimal front, has been subsequently 

presented [18]. 

In this paper, an elitist multiobjective evolutionary 

algorithm based on NSGA-II is applied to the 

environmental/economic power dispatch optimization 

problem.  Simulation results considering two and then 

three objectives simultaneously are presented for a sample 

test system. 

2 Environmental/Economic Dispatch 

The environmental/economic dispatch involves the 

simultaneous optimization of fuel cost and emission 

objectives which are conflicting ones.  The problem is 

formulated as described below. 

2.1 Objective Functions 

Fuel Cost Objective

The classical economic dispatch problem of finding the 

optimal combination of power generation which minimizes 

the total fuel cost while satisfying the total required 

demand can be mathematically stated as follows [19]: 
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where  

C: total fuel cost ($/hr), 

ai, bi, ci: fuel cost coefficients of generator i,

PGi: power generated by generator i (MW), and

n: number of generators. 

The minimum emission dispatch optimizes the above 

classical economic dispatch including the SO2 and NOx

emission objectives which can be modeled using second 

order polynomial functions [2]: 

SO2 Emission Objective
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NOx Emission Objective
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Units of 
2SOE  and 

xNOE  are ton/hr. 

2.2 Constraints 

The optimization problem is bounded by the following 

constraints: 

Power balance constraints

0
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where  

PD: total load (MW), and 

PL: transmission losses (MW). 

The transmission losses can be represented as  
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where 

Bij : transmission losses coefficient 

Maximum and minimum limits of power generation

The power generated PGi by each generator should lie 

between its minimum and maximum limits, i.e., 

PGimin ≤ PGi ≤ PGimax

where 

PGimin: minimum power generated, and 

PGimax: maximum power generated. 

2.3 Multiobjective Formulation 

The multiobjective environmental/economic dispatch 

optimization problem is therefore formulated as: 

Minimize [
x2 NOSO E,EC, ]      (6)

subject to: h(PGi)=0           (power balance) 

and  PGimin ≤ PGi ≤ PGimax    (generation limits) 



3 Elitist Multiobjective Evolutionary 

Algorithm 

Elitism ensures that the fitness of the best solution in a 

population does not deteriorate as the generation advances.  

Rudolph [20] has proved that genetic algorithms converge 

to the global optimal solution of some functions in the 

presence of elitism.  In fact, using elite parents increases 

the probability of creating better offsprings.  For 

multiobjective optimization problems, individuals found 

on the non-dominated front are considered as elites.  Deb 

et al. [18] have proposed an elitist Non-dominated Sorting 

Genetic Algorithm known as NSGA-II which uses both 

elite-preserving and diversity-preserving mechanisms.  The 

two distinct goals in multiobjective optimization are: 

(i) discover solutions as close to the Pareto-optimal 

solutions as possible 

(ii) find solutions as diverse as possible in the 

obtained non-dominated front 

It has been shown [18] that NSGA-II can achieve these 

two goals well. 

3.1 Non-dominated Sorting Genetic Algorithm - II 

A description of the NSGA-II algorithm is given in this 

section.  Initially a random population Po is created.  The 

population is sorted into different non-domination levels.  

Each solution is assigned a fitness equal to its non-

domination level where level 1 is the best level.  Binary 

tournament selection with a crowded tournament operator, 

recombination, and mutation operators are used to create 

an offspring population Qo of size N.  The NSGA-II 

procedure (as in ref. [18]) is outlined below: 

NSGA-II 

Step 1

Combine parent and offspring populations and create 

ttt QPR ∪=
Perform a non-dominated sorting to Rt and identify 

different fronts: Fi, i = 1, 2,� 

Step 2

Set new population Pt+1 = null.  Set a counter i = 1. 

Until NFP it <++1 , perform itt FPP ∪= ++ 11  and 
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Step 3

Perform the Crowding-sort(Fi,<c) procedure given below 

and include the most widely spread ( 1+− tPN ) solutions 

by using the crowding distance values in the sorted Fi to 

Pt+1.

Step 4

Create offspring population Qt+1 from Pt+1 by using the 

crowded tournament selection, crossover and mutation 

operators. 

Crowding-sort(Fi<c) 

Step 1

Call the number of solutions in F as Fl = .  For each i in 

the set, first assign crowding distance, 0=id .

Step 2

For each objective function M,...,,m 21= , sort the set in 

worse order of mf  or, find the sorted indices vector: 
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NSGA-II performs a non-dominated sorting of the 

combined parent and offspring population.  Elitism is 

introduced by maintaining the best non-dominated 

solutions in fronts until all P population slots are filled.  A 

crowded distance-based niching strategy is used to find 

solutions from the last front that are to be carried over to 

the next generation. 

3.2 Simulated Binary Crossover and Parameter-based 

Mutation 

The use of real-valued genes in GAs offers a number of 

advantages in numerical function optimization over binary 

encodings [21].  The variables are therefore represented as 

real numbers and the simulated binary crossover [22] and 

the real-parameter mutation operator are used.  With 

simulated binary crossover (SBX), two children solutions 

(c1 and c2) are created from two parents (p1 and p2) as 

follows [23]: 
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The mutation operator [23] is applied as follows: 

1) Choose a random number )1,0[∈u .

2) Calculate 
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where 



( ) ( )[ ] ( )luul yy/yy,yymin −−−=δ

mη : distribution index for mutation 

3) Calculate the mutated child: 

)yy(yc luq −δ+= .

3.3 Constrained Tournament Method 

In this method, two solutions are picked from the 

population and the better solution is chosen.  With 

constraints, each solution can be either feasible or 

infeasible.  The constrain-domination principle [24] is 

defined as follows: 

A solution i is said to constrained-dominate a solution j if 

any of the following conditions is true. 

1) Solution i is feasible and solution j is not. 

2) Solutions i and j are both infeasible, but solution i

has a smaller overall constraint violation. 

3) Solutions i and j are feasible and solution i

dominates solution j.

Thus, feasible solutions are ranked according to their 

nondomination level based on the objective function 

values such that feasible solutions have better ranks than 

infeasible solutions.  The infeasible solution with a smaller 

constraint violation is chosen when the tournament takes 

place between two infeasible solutions. 

4 Best Compromise Solution 

The algorithm described in the previous section generates 

the non-dominated set of solutions known as the Pareto-

optimal solutions.  The decision maker (power system 

operator) may have imprecise or fuzzy goals for each 

objective function.  To aid the operator in selecting an 

operating point from the obtained set of Pareto-optimal 

solutions, fuzzy logic theory is applied to each objective 

functions to obtain a fuzzy membership function 
if

µ as 

follows [8]: 
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The best non-dominated solution can be found when eqn. 

(10) is a maximum where the normalized sum of 

membership function values for all objectives is highest. 

∑ ∑

∑
=

= =

=
M

k

N

i

k
f

N

i

k
f

k

i

i

1 1

1

µ

µ
µ    (10) 

where M is the number of non-dominated solutions. 

5 Simulation Results 

The elitist multiobjective algorithm was applied to a 3-

generator test system [19] whose data are given below.  

The system demand is 850 MW in all simulations. 

Table 1: Fuel Cost coefficients 
Unit 

i

ai bi ci PGimin PGimax 

1 561.0 7.92 0.001562 150.0 600.0 

2 310.0 7.85 0.00194 100.0 400.0 

3 78.0 7.97 0.00482 50.0 200.0 

The system transmission losses is calculated using a 

simplified loss expression: 

PL = 0.00003PG1
2 + 0.00009PG2

2 + 0.00012PG3
2

(MW)

SO2 and NOx emission coefficients are taken from [11] and 

are shown in Tables 2 and 3 respectively. 

Table 2: SO2 Emission coefficients 
Unit i aiS biS ciS

1 1.6103e-6 0.00816466 0.5783298 

2 2.1999e-6 0.00891174 0.3515338 

3 5.4658e-6 0.00903782 0.0884504 

Table 3: NOx Emission coefficients 
Unit 

i

aiN biN ciN

1 1.4721848e-7 -9.4868099e-5 0.04373254 

2 3.0207577e-7 -9.7252878e-5 0.055821713 

3 1.9338531e-6 -3.5373734e-4 0.027731524 

In all simulations, the population size was chosen as 

500 individuals; crossover and mutation probabilities were 

0.99 and 0.01 respectively.  The distribution index for 

crossover and mutation were set at 5 and 50 respectively.  

The simulations were run for 20000 generations. 

5.1 Fuel Cost and SO2 Emission 

Firstly, the algorithm is used to optimize the power 

dispatch for the bi-objective problem: fuel cost and SO2

emission.  The Pareto-optimal front obtained is shown in 

Figure 1. 
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Figure 1: Pareto-optimal front for fuel cost and SO2 emission 

Tables 4 and 5 show the simulation results for best fuel 

cost and best SO2 emission as compared to the Tabu search 

approach from [11]. 

Table 4: Best fuel cost: 

 Tabu Search [11] NSGA-II 

PG1 435.69 436.366 

PG2 298.828 298.187 

PG3 131.28 131.228 

Losses 15.798 15.781 

Fuel cost 8344.598 8344.606 

SO2 Emission 9.02146 9.02083 

Table 5: Best SO2 emission: 

 Tabu Search [11] NSGA-II 

PG1 549.247 541.308 

PG2 234.582 223.249 

PG3 81.893 99.919 

Losses 15.722 14.476 

Fuel cost 8403.485 8387.518 

SO2 Emission 8.974 8.96655 

From the above tables, it is noted that the best fuel cost 

obtained by NSGA-II is comparable to that obtained by 

Tabu search (single objective optimization).  Moreover, 

the best SO2 emission obtained by NSGA-II is better than 

that obtained using Tabu search.  Transmission losses are 

also reduced in the solutions found by the elitist 

multiobjective evolutionary algorithm. 

The best compromise solution selected using fuzzy set 

theory (eqn. (10)) is shown in Table 6. 

Table 6: Best compromise solution 

PG1 485.886

PG2 263.670

PG3 115.381

Losses 14.937 

Fuel cost 8354.419 

SO2 Emission 8.98383 

5.2 Fuel Cost and NOx Emission 

Simulations are performed for the two objectives: fuel cost 

and NOx emission simultaneously.  The Pareto-optimal 

front obtained is shown in Figure 2. 
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Figure 2: Pareto-optimal front for fuel cost and NOx emission 

Tables 7 and 8 give the simulation results for best fuel cost 

and best NOx emission as compared to the Tabu search 

approach from [11]. 

Table 7: Best fuel cost 

 Tabu Search [11] NSGA-II 

PG1 435.69 435.885 

PG2 298.828 299.989 

PG3 131.28 129.951 

Losses 15.798 15.826 

Fuel cost 8344.598 8344.598 

NOx Emission 0.09863 0.09860 

Table 8: Best NOx emission: 

 Tabu Search [11] NSGA-II 

PG1 502.914 505.810 

PG2 254.294 252.951 

PG3 108.592 106.023 

Losses 15.8 14.784 

Fuel cost 8371.143 8363.627 

NOx Emission 0.0958 0.09593 

It is observed that the NSGA-II achieves the same best fuel 

cost as Tabu search while the best NOx emission found by 

NSGA-II is comparable to that obtained using Tabu 

search. 

Table 9 shows the best compromise solution selected 

using fuzzy set theory (eqn. (10)). 

Table 9: Best compromise solution 

PG1 470.957

PG2 280.663

PG3 113.675

Losses 15.294 

Fuel cost 8349.722 

NOx Emission 0.09654 



5.3 Fuel Cost, SO2 and NOx Emissions 

Considering three objective functions: fuel cost, SO2

emission and NOx emission simultaneously, simulations 

results for the Pareto-optimal front were obtained as shown 

in the 3-D plot of Figure 3. 
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Figure 3: Pareto-optimal front for fuel cost, SO2 and NOx

emissions 

It can be deduced that the algorithm has converged to 

the Pareto-optimal front given that the solutions obtained 

are along a clearly identifiable curve.  The best solutions 

for minimum fuel cost, minimum SO2 emission and 

minimum NOx emission are given in Table 10.  From this 

table, it can be deduced that the NSGA-II is equally 

capable of finding the best solution for each objective 

when three conflicting objectives are considered 

simultaneously.  Table 11 gives the best compromise 

taking all three objectives simultaneously into 

consideration and using fuzzy set theory (eqn. (10)). 

Table 10: Minimum values of individual objectives 

 Best Fuel 

Cost 

Best SO2

Emission 

Best NOx

Emission 

PG1 431.680 538.527 508.367 

PG2 302.925 227.817 250.444 

PG3 131.314 98.185 105.934 

Losses 15.919 14.528 14.745 

Fuel cost 8344.651 8385.177 8364.993 

SO2

Emission 

9.02541 8.96670 8.97374

NOx

Emission 

0.098922 0.096325 0.095924

Table 11: Best compromise solution for 3 objectives 

PG1 496.328

PG2 260.426

PG3 108.144

Losses 14.898 

Fuel cost 8358.896 

SO2 Emission 8.97870 

NOx Emission 0.09599 

It was shown in [25] that results for NSGA were almost 

identical when compared to single objective optimization 

with weighted objectives.  Thus, evolutionary algorithms 

are ideal candidates for solving the multiobjective 

environmental/economic dispatch optimization problem 

from the fact that the multiobjective approach yields 

multiple Pareto-optimal solutions in a single simulation run 

whereas multiple runs are required for the single objective 

approach. 

6 Conclusions 

An elitist multiobjective evolutionary algorithm known as 

the Non-dominated Sorting Genetic Algorithm - II 

(NSGA-II) has been used for solving the 

Environmental/Economic Dispatch problem.  Firstly, a 

biobjective optimization problem is considered where 

simulations results on a 3-generator test system 

considering fuel cost and SO2 emission and then fuel cost 

and NOx emission have been presented.  Finally, a three-

objective optimization problem considering fuel cost, SO2

emission and NOx emission simultaneously has been 

considered.  The obtained minimum values of fuel cost and 

emissions are comparable to those obtained using Tabu 

search (single objective optimization).  Simulation results 

reveal that the algorithm can identify the Pareto-optimal 

front with a good diversity for the 

Environmental/Economic Dispatch problem.  Moreover, 

the solutions are obtained in a single simulation run as 

compared to single objective approach using weighted 

objectives which require multiple runs to identify the 

Pareto-optimal front.  Fuzzy set theory is used to select an 

operating point from the obtained set of Pareto-optimal 

solutions.  The authors are presently investigating the 

extension of this application to include the power flow 

model, transmission limitations and generating plant 

capacity. 
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