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Abstract- The environmental/economic dispatch 


problem is a multiobjective nonlinear optimization 


problem with constraints.  Until recently, this problem 


has been addressed by considering economic and 


emission objectives separately or as a weighted sum of 


both objectives.  Multiobjective evolutionary 


algorithms can find multiple Pareto-optimal solutions 


in one single run and this ability makes them attractive 


for solving problems with multiple and conflicting 


objectives.  This paper uses an elitist multiobjective 


evolutionary algorithm based on the Non-dominated 


Sorting Genetic Algorithm � II (NSGA-II) for solving 


the environmental/economic dispatch problem.  Elitism 


ensures that the population best solution does not 


deteriorate in the next generations.  Simulation results 


are presented for a sample power system. 


1 Introduction 


The ability of multiobjective evolutionary algorithms to 


find multiple Pareto-optimal solutions in one single run 


have made them attractive for solving problems with 


multiple and conflicting objectives.  During the last 


decade, several multiobjective evolutionary algorithms [1] 


have been proposed which are aimed at finding the Pareto-


optimal front and also achieve diversity in the obtained 


Pareto-optimal front. 


The classical economic dispatch problem is to operate 


electric power systems so as to minimize the total fuel cost.  


This single objective can no longer be considered alone 


due to the environmental concerns that arise from the 


emissions produced by fossil-fueled electric power plants.  


In fact, the Clean Air Act Amendments have been applied 


to reduce SO2 and NOx emissions from such power plants.  


Accordingly, emissions can be reduced by three main 


methods [2]: 


• post-combustion cleaning systems 


• switching to fuels with lower emission potentials 


• dispatch of power generation to minimize emissions 


instead of or as a supplement to the usual cost 


objective of economic dispatch. 


The third method involves only minor modifications to 


dispatching programmes for implementing 


environmental/economic dispatching.  Different 


environmental/economic dispatch algorithms have been 


outlined in [2].  A review of the potential requirements of 


utilities regarding system operations to meet the Clean Air 


Act Regulations is presented in [3]. 


Environmental/economic dispatch is a multiobjective 


problem with conflicting objectives because pollution 


minimization is conflicting with minimum cost of 


generation.  Various techniques have been proposed to 


solve this multiobjective problem.  Ref. [4] was one of the 


first approaches to solve the environmental/economic 


dispatch problem considering multiobjective optimization 


using linear and non-linear goal programming techniques.  


An ε-constrained technique was used by Yokohama et al. 


[5] considering economy, security and environment 


protection as objectives.  In this method, a security-based 


preference index is used to select the optimal solution from 


the Pareto-optimal solutions obtained.  A goal 


programming technique for solving this multiple criteria 


decision making problem and evaluate the environmental 


marginal cost by a non-inferiority surface was proposed by 


Kermanshahi et al. [6].  A recursive quadratic 


programming method to solve the emission constrained 


dynamic economic dispatch by fuel switching was 


presented in [7].  Dhillon et al. [8] formulated the problem 


considering uncertainties in system production cost and 


random nature of load demand.  The weighted minimax 


technique was used to obtain trade-off relation between the 


conflicting objectives and fuzzy set theory was 


subsequently used to help the operator choose an optimal 


operating point.  Linear programming (Third Simplex 


Method) for obtaining the approximate solution to the 


linearized optimization problem was investigated in [9]. 


An Hopfield neural network for finding the optimal 


economic/environmental dispatching of thermal generating 


units was considered by King et al. [10], where the 


emission functions for SO2 and NOx were weighted and 


added to the cost objective function, demand requirement 


constraint and system losses functions.  Roa-Sepulveda et 


al. [11] extended the technique described in [10] for an 


Hopfield Neural Network and also used Tabu Search by 


linearly combining the objectives.  It was observed that the 


weighting factor selection was complicated as each 


weighting factor affects the others.  These authors first set 


the power mismatch weighting factor and then used the 


method in [10] to calculate those for the emissions. 


Chang et al. [12] also addressed the economic and 


environmental objectives simultaneously by combining 


them linearly to form a single objective function.  By 







varying the weight, the trade off between fuel cost and 


environmental cost was determined.  Song et al. [13] used 


a fuzzy logic controlled genetic algorithm for solving the 


environmental/economic dispatch where the crossover and 


mutation probabilities were adjusted based on the average 


fitness of the population.  The multiobjective problem was 


converted to a scalar optimization problem with weighted 


constraints.  Yalcinoz and Altun [14] proposed a solution 


to the environmental economic dispatch using a modified 


genetic algorithm which is based on arithmetic crossover 


operator with real valued genes.  This approach also 


expressed the fitness function (overall objective) as a 


weighted sum of the total fuel cost and emission (SO2 and 


NOx) objectives. 


Some researchers have carried out simultaneous 


optimization of multiple objectives in the 


environmental/economic dispatch problem using 


evolutionary algorithms.  In [15] and [16], a hybrid genetic 


algorithm using an indirect representation for solutions and 


a decoding procedure that always generates a feasible 


solution is used.  The optimization algorithm generates 


trade-off curves between cost and emission based on 


emission dispatching and fuel switching.  However, the 


approach did not yield a good distribution on the Pareto-


optimal front.  Recently, promising results have been 


obtained by Abido [17] by using a Non-dominated Sorting 


Genetic Algorithm (NSGA) to locate the Pareto-optimal 


solutions with a good diversity. 


It has been argued that NSGA suffers from three 


weaknesses: computational complexity, non-elitist 


approach and the need to specify a sharing parameter [18].  


An improved version of NSGA known as NSGA-II, which 


resolved the above problems and uses elitism to create a 


diverse Pareto-optimal front, has been subsequently 


presented [18]. 


In this paper, an elitist multiobjective evolutionary 


algorithm based on NSGA-II is applied to the 


environmental/economic power dispatch optimization 


problem.  Simulation results considering two and then 


three objectives simultaneously are presented for a sample 


test system. 


2 Environmental/Economic Dispatch 


The environmental/economic dispatch involves the 


simultaneous optimization of fuel cost and emission 


objectives which are conflicting ones.  The problem is 


formulated as described below. 


2.1 Objective Functions 


Fuel Cost Objective


The classical economic dispatch problem of finding the 


optimal combination of power generation which minimizes 


the total fuel cost while satisfying the total required 


demand can be mathematically stated as follows [19]: 
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where  


C: total fuel cost ($/hr), 


ai, bi, ci: fuel cost coefficients of generator i,


PGi: power generated by generator i (MW), and


n: number of generators. 


The minimum emission dispatch optimizes the above 


classical economic dispatch including the SO2 and NOx


emission objectives which can be modeled using second 


order polynomial functions [2]: 


SO2 Emission Objective
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NOx Emission Objective
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Units of 
2SOE  and 


xNOE  are ton/hr. 


2.2 Constraints 


The optimization problem is bounded by the following 


constraints: 


Power balance constraints
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where  


PD: total load (MW), and 


PL: transmission losses (MW). 


The transmission losses can be represented as  
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where 


Bij : transmission losses coefficient 


Maximum and minimum limits of power generation


The power generated PGi by each generator should lie 


between its minimum and maximum limits, i.e., 


PGimin ≤ PGi ≤ PGimax


where 


PGimin: minimum power generated, and 


PGimax: maximum power generated. 


2.3 Multiobjective Formulation 


The multiobjective environmental/economic dispatch 


optimization problem is therefore formulated as: 


Minimize [
x2 NOSO E,EC, ]      (6)


subject to: h(PGi)=0           (power balance) 


and  PGimin ≤ PGi ≤ PGimax    (generation limits) 







3 Elitist Multiobjective Evolutionary 


Algorithm 


Elitism ensures that the fitness of the best solution in a 


population does not deteriorate as the generation advances.  


Rudolph [20] has proved that genetic algorithms converge 


to the global optimal solution of some functions in the 


presence of elitism.  In fact, using elite parents increases 


the probability of creating better offsprings.  For 


multiobjective optimization problems, individuals found 


on the non-dominated front are considered as elites.  Deb 


et al. [18] have proposed an elitist Non-dominated Sorting 


Genetic Algorithm known as NSGA-II which uses both 


elite-preserving and diversity-preserving mechanisms.  The 


two distinct goals in multiobjective optimization are: 


(i) discover solutions as close to the Pareto-optimal 


solutions as possible 


(ii) find solutions as diverse as possible in the 


obtained non-dominated front 


It has been shown [18] that NSGA-II can achieve these 


two goals well. 


3.1 Non-dominated Sorting Genetic Algorithm - II 


A description of the NSGA-II algorithm is given in this 


section.  Initially a random population Po is created.  The 


population is sorted into different non-domination levels.  


Each solution is assigned a fitness equal to its non-


domination level where level 1 is the best level.  Binary 


tournament selection with a crowded tournament operator, 


recombination, and mutation operators are used to create 


an offspring population Qo of size N.  The NSGA-II 


procedure (as in ref. [18]) is outlined below: 


NSGA-II 


Step 1


Combine parent and offspring populations and create 


ttt QPR ∪=
Perform a non-dominated sorting to Rt and identify 


different fronts: Fi, i = 1, 2,� 


Step 2


Set new population Pt+1 = null.  Set a counter i = 1. 


Until NFP it <++1 , perform itt FPP ∪= ++ 11  and 


1+= ii .


Step 3


Perform the Crowding-sort(Fi,<c) procedure given below 


and include the most widely spread ( 1+− tPN ) solutions 


by using the crowding distance values in the sorted Fi to 


Pt+1.


Step 4


Create offspring population Qt+1 from Pt+1 by using the 


crowded tournament selection, crossover and mutation 


operators. 


Crowding-sort(Fi<c) 


Step 1


Call the number of solutions in F as Fl = .  For each i in 


the set, first assign crowding distance, 0=id .


Step 2


For each objective function M,...,,m 21= , sort the set in 


worse order of mf  or, find the sorted indices vector: 


mI =sort(fm,>)
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NSGA-II performs a non-dominated sorting of the 


combined parent and offspring population.  Elitism is 


introduced by maintaining the best non-dominated 


solutions in fronts until all P population slots are filled.  A 


crowded distance-based niching strategy is used to find 


solutions from the last front that are to be carried over to 


the next generation. 


3.2 Simulated Binary Crossover and Parameter-based 


Mutation 


The use of real-valued genes in GAs offers a number of 


advantages in numerical function optimization over binary 


encodings [21].  The variables are therefore represented as 


real numbers and the simulated binary crossover [22] and 


the real-parameter mutation operator are used.  With 


simulated binary crossover (SBX), two children solutions 


(c1 and c2) are created from two parents (p1 and p2) as 


follows [23]: 


1) Choose a random number )1,0[∈u .


2) Calculate 
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yl and yu: lower and upper limits of y


cη : distribution index for crossover  


3) Compute children solutions: 
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The mutation operator [23] is applied as follows: 


1) Choose a random number )1,0[∈u .


2) Calculate 
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where 







( ) ( )[ ] ( )luul yy/yy,yymin −−−=δ


mη : distribution index for mutation 


3) Calculate the mutated child: 


)yy(yc luq −δ+= .


3.3 Constrained Tournament Method 


In this method, two solutions are picked from the 


population and the better solution is chosen.  With 


constraints, each solution can be either feasible or 


infeasible.  The constrain-domination principle [24] is 


defined as follows: 


A solution i is said to constrained-dominate a solution j if 


any of the following conditions is true. 


1) Solution i is feasible and solution j is not. 


2) Solutions i and j are both infeasible, but solution i


has a smaller overall constraint violation. 


3) Solutions i and j are feasible and solution i


dominates solution j.


Thus, feasible solutions are ranked according to their 


nondomination level based on the objective function 


values such that feasible solutions have better ranks than 


infeasible solutions.  The infeasible solution with a smaller 


constraint violation is chosen when the tournament takes 


place between two infeasible solutions. 


4 Best Compromise Solution 


The algorithm described in the previous section generates 


the non-dominated set of solutions known as the Pareto-


optimal solutions.  The decision maker (power system 


operator) may have imprecise or fuzzy goals for each 


objective function.  To aid the operator in selecting an 


operating point from the obtained set of Pareto-optimal 


solutions, fuzzy logic theory is applied to each objective 


functions to obtain a fuzzy membership function 
if


µ as 


follows [8]: 















≥


<<
−


−
≤


=


max
ii


max
ii


min
imin


i
max


i


i
max


i


min
ii


f


ff


fff
ff


ff


ff


i


0


1


µ  (9) 


The best non-dominated solution can be found when eqn. 


(10) is a maximum where the normalized sum of 


membership function values for all objectives is highest. 
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where M is the number of non-dominated solutions. 


5 Simulation Results 


The elitist multiobjective algorithm was applied to a 3-


generator test system [19] whose data are given below.  


The system demand is 850 MW in all simulations. 


Table 1: Fuel Cost coefficients 
Unit 


i


ai bi ci PGimin PGimax 


1 561.0 7.92 0.001562 150.0 600.0 


2 310.0 7.85 0.00194 100.0 400.0 


3 78.0 7.97 0.00482 50.0 200.0 


The system transmission losses is calculated using a 


simplified loss expression: 


PL = 0.00003PG1
2 + 0.00009PG2


2 + 0.00012PG3
2


(MW)


SO2 and NOx emission coefficients are taken from [11] and 


are shown in Tables 2 and 3 respectively. 


Table 2: SO2 Emission coefficients 
Unit i aiS biS ciS


1 1.6103e-6 0.00816466 0.5783298 


2 2.1999e-6 0.00891174 0.3515338 


3 5.4658e-6 0.00903782 0.0884504 


Table 3: NOx Emission coefficients 
Unit 


i


aiN biN ciN


1 1.4721848e-7 -9.4868099e-5 0.04373254 


2 3.0207577e-7 -9.7252878e-5 0.055821713 


3 1.9338531e-6 -3.5373734e-4 0.027731524 


In all simulations, the population size was chosen as 


500 individuals; crossover and mutation probabilities were 


0.99 and 0.01 respectively.  The distribution index for 


crossover and mutation were set at 5 and 50 respectively.  


The simulations were run for 20000 generations. 


5.1 Fuel Cost and SO2 Emission 


Firstly, the algorithm is used to optimize the power 


dispatch for the bi-objective problem: fuel cost and SO2


emission.  The Pareto-optimal front obtained is shown in 


Figure 1. 
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Figure 1: Pareto-optimal front for fuel cost and SO2 emission 


Tables 4 and 5 show the simulation results for best fuel 


cost and best SO2 emission as compared to the Tabu search 


approach from [11]. 


Table 4: Best fuel cost: 


 Tabu Search [11] NSGA-II 


PG1 435.69 436.366 


PG2 298.828 298.187 


PG3 131.28 131.228 


Losses 15.798 15.781 


Fuel cost 8344.598 8344.606 


SO2 Emission 9.02146 9.02083 


Table 5: Best SO2 emission: 


 Tabu Search [11] NSGA-II 


PG1 549.247 541.308 


PG2 234.582 223.249 


PG3 81.893 99.919 


Losses 15.722 14.476 


Fuel cost 8403.485 8387.518 


SO2 Emission 8.974 8.96655 


From the above tables, it is noted that the best fuel cost 


obtained by NSGA-II is comparable to that obtained by 


Tabu search (single objective optimization).  Moreover, 


the best SO2 emission obtained by NSGA-II is better than 


that obtained using Tabu search.  Transmission losses are 


also reduced in the solutions found by the elitist 


multiobjective evolutionary algorithm. 


The best compromise solution selected using fuzzy set 


theory (eqn. (10)) is shown in Table 6. 


Table 6: Best compromise solution 


PG1 485.886


PG2 263.670


PG3 115.381


Losses 14.937 


Fuel cost 8354.419 


SO2 Emission 8.98383 


5.2 Fuel Cost and NOx Emission 


Simulations are performed for the two objectives: fuel cost 


and NOx emission simultaneously.  The Pareto-optimal 


front obtained is shown in Figure 2. 
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Figure 2: Pareto-optimal front for fuel cost and NOx emission 


Tables 7 and 8 give the simulation results for best fuel cost 


and best NOx emission as compared to the Tabu search 


approach from [11]. 


Table 7: Best fuel cost 


 Tabu Search [11] NSGA-II 


PG1 435.69 435.885 


PG2 298.828 299.989 


PG3 131.28 129.951 


Losses 15.798 15.826 


Fuel cost 8344.598 8344.598 


NOx Emission 0.09863 0.09860 


Table 8: Best NOx emission: 


 Tabu Search [11] NSGA-II 


PG1 502.914 505.810 


PG2 254.294 252.951 


PG3 108.592 106.023 


Losses 15.8 14.784 


Fuel cost 8371.143 8363.627 


NOx Emission 0.0958 0.09593 


It is observed that the NSGA-II achieves the same best fuel 


cost as Tabu search while the best NOx emission found by 


NSGA-II is comparable to that obtained using Tabu 


search. 


Table 9 shows the best compromise solution selected 


using fuzzy set theory (eqn. (10)). 


Table 9: Best compromise solution 


PG1 470.957


PG2 280.663


PG3 113.675


Losses 15.294 


Fuel cost 8349.722 


NOx Emission 0.09654 







5.3 Fuel Cost, SO2 and NOx Emissions 


Considering three objective functions: fuel cost, SO2


emission and NOx emission simultaneously, simulations 


results for the Pareto-optimal front were obtained as shown 


in the 3-D plot of Figure 3. 
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Figure 3: Pareto-optimal front for fuel cost, SO2 and NOx


emissions 


It can be deduced that the algorithm has converged to 


the Pareto-optimal front given that the solutions obtained 


are along a clearly identifiable curve.  The best solutions 


for minimum fuel cost, minimum SO2 emission and 


minimum NOx emission are given in Table 10.  From this 


table, it can be deduced that the NSGA-II is equally 


capable of finding the best solution for each objective 


when three conflicting objectives are considered 


simultaneously.  Table 11 gives the best compromise 


taking all three objectives simultaneously into 


consideration and using fuzzy set theory (eqn. (10)). 


Table 10: Minimum values of individual objectives 


 Best Fuel 


Cost 


Best SO2


Emission 


Best NOx


Emission 


PG1 431.680 538.527 508.367 


PG2 302.925 227.817 250.444 


PG3 131.314 98.185 105.934 


Losses 15.919 14.528 14.745 


Fuel cost 8344.651 8385.177 8364.993 


SO2


Emission 


9.02541 8.96670 8.97374


NOx


Emission 


0.098922 0.096325 0.095924


Table 11: Best compromise solution for 3 objectives 


PG1 496.328


PG2 260.426


PG3 108.144


Losses 14.898 


Fuel cost 8358.896 


SO2 Emission 8.97870 


NOx Emission 0.09599 


It was shown in [25] that results for NSGA were almost 


identical when compared to single objective optimization 


with weighted objectives.  Thus, evolutionary algorithms 


are ideal candidates for solving the multiobjective 


environmental/economic dispatch optimization problem 


from the fact that the multiobjective approach yields 


multiple Pareto-optimal solutions in a single simulation run 


whereas multiple runs are required for the single objective 


approach. 


6 Conclusions 


An elitist multiobjective evolutionary algorithm known as 


the Non-dominated Sorting Genetic Algorithm - II 


(NSGA-II) has been used for solving the 


Environmental/Economic Dispatch problem.  Firstly, a 


biobjective optimization problem is considered where 


simulations results on a 3-generator test system 


considering fuel cost and SO2 emission and then fuel cost 


and NOx emission have been presented.  Finally, a three-


objective optimization problem considering fuel cost, SO2


emission and NOx emission simultaneously has been 


considered.  The obtained minimum values of fuel cost and 


emissions are comparable to those obtained using Tabu 


search (single objective optimization).  Simulation results 


reveal that the algorithm can identify the Pareto-optimal 


front with a good diversity for the 


Environmental/Economic Dispatch problem.  Moreover, 


the solutions are obtained in a single simulation run as 


compared to single objective approach using weighted 


objectives which require multiple runs to identify the 


Pareto-optimal front.  Fuzzy set theory is used to select an 


operating point from the obtained set of Pareto-optimal 


solutions.  The authors are presently investigating the 


extension of this application to include the power flow 


model, transmission limitations and generating plant 


capacity. 
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