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Abstract In the paper the idea of an evolution-
ary multi-agent system (EMAS) for multiobjective
optimization is presented. Decentralized model of
evolution employed in EMAS allows for effective
approzimation of the whole Pareto set, even if it
consists of several disjoined parts. The introduced
mechanism of crowd is described and its effects on
the performance of the system are discussed. A con-
trol parameter called crowding factor indicates how
the agents representing similar solutions behave in
the system. Selected experimental results show the
influence of the crowding factor on the quality of
the solutions generated.
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1 Introduction

Decision making and lots of other tasks
of human activity described by many non-
comparable factors may be mathematically
formulated as multiobjective optimization
problems.  The terms ”multiobjective” or
"multicriteria” indicate that classical notion of
optimality becomes ambiguous since decisions,
which optimize one criterion need not optimize
the others.

The notion of Pareto-optimality is based
on (non-)domination of solutions (which cor-
responds to the weak-order of vectors in the
evaluation space) and leads to selection of mul-
tiple alternatives (the Pareto set). The relation
of domination may be defined as follows: T is
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dominated by z° if and only if:

vm:l,...,M fm(fa) < fm(fb)
and F—1,. v fm(E) < fn(@®) (1)

where ¥ = [z1,...,2n]T € RN denotes a feasi-
ble solution and f,,, : RV — R denote criteria
functions F = [f1,..., fu]”.

In a general case (i.e. when no particu-
lar class of criteria and constraints functions
is considered) effective approximation of the
Pareto set is hard to obtain. For specific types
of criteria and constraints (e.g. of linear type)
some methods are known, but even in low-
dimensional cases they need much computa-
tional effort. For complex problems, involv-
ing multimodal or discontinuous criteria, dis-
joined feasible spaces and noisy function eval-
uations, evolutionary approach (e.g. a genetic
algorithm) may be applied [5, 4].

The proposed approach consists in an ap-
plication of an evolutionary multi-agent sys-
tem (EMAS) instead of classical evolutionary
computation. Decentralization of the evolution
process in EMAS allows for intensive explo-
ration of the search space and effective approx-
imation of the whole Pareto set, especially in
case of the disjoined frontier [7]. The introduc-
tion of the mechanism of crowd, similar to the
one proposed by De Jong [6, and later]|, may
cause the system to produce better results in
comparable or even shorter time.

Below the idea EMAS and its application
to multiobjective optimization problems is de-
scribed. In particular the parameter called
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Figure 1: Overview of the mechanism of crowd

crowding factor is presented and its influence
on on the operation of the EMAS for multiob-
jective optimization discussed. There are se-
lected experimental results presented and con-
clusions drawn.

2 Evolutionary Multi-Agent
Systems

The key idea of EMAS is the incorporation of
evolutionary processes into a multi-agent sys-
tem (MAS) at a population level. It means
that besides interaction mechanisms typical for
MAS (such as communication) the agents are
able to reproduce (generate new agents with
the use of variation operators, i.e. mutation
or recombination) and may die (be eliminated
from the system).

A decisive factor of agent’s activity is its
fitness, expressed by amount of the possessed
non-renewable resource called life energy. The
energy is gained and lost when the agent exe-
cutes actions in the environment. Increase in
energy is a reward for 'good’ behavior of the
agent, decrease — penalty for 'bad’ behavior.
Selection is then realized as agents with high
energy are more likely to reproduce, while low

energy increases possibility of death.

Evolutionary multi-agent system may be
regarded as a new class of adaptive MAS,
where evolutionary processes help to accom-
plish population-level goals [2]. At the same
time it may be used as a novel computational
technique utilizing a decentralized model of
evolution. Such approach may help to over-
come some of the shortcomings of classical evo-
lutionary algorithms, which employ much sim-
plified model of evolution [1].

In general EMAS enables the following [3]:

e local selection allows for intensive explo-
ration of the search space, like in parallel
evolutionary algorithms,

e the way fenotype (behavior of the agent)
is developed from genotype (inherited in-
formation) depends on its interaction with
the environment,

e self-adaptation of the population size is
possible when appropriate selection mech-
anisms are used.

What is more, explicitly defined living space
should facilitate implementation in a dis-
tributed computational environment.
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Figure 2: The influence of the crowding factor on the performance of the system in case of the

coherent Pareto frontier

3 Crowd in EMAS for Multi-
objective Optimization

In the particular case each agent represents
feasible solution to the given multiobjective
optimization problem. By means of commu-
nication the agents acquire information that
allows for the determination of the domina-
tion relation with respect to the others. Domi-
nated agents transfer a fixed amount of energy
to their dominants. This way non-dominated
agents represent subsequent approximations of
the Pareto set.

The crowding factor describes how the
agents representing similar solutions to the
problem behave in the system. Crowd may
be understood as a higher density of agents in
the particular spot of the search space — this
density is in fact the number of agents in some
neighborhood that represent similar solutions

(fig. 1). Larger crowding factor value indicates
that there is less tolerance for the similar so-
lutions, which is accomplished via reduction of
life energy of the agents that have their solu-
tions too close to the others. The smaller is
the value of the crowding factor, the weaker
becomes this tendency, up to its disappearance
for crowding factor value equal to 0.

However, due to the general idea of EMAS,
there is no particularly easy and straight-
forward way to measure the number of agents
with similar solutions in the whole system.
The system does not contain a centralized con-
trol unit, so there may be no central man-
agement of the crowd. A special way of
self-management done by the agents was im-
plemented to deal with this problem and to
take advantage of the distributed qualities of
EMAS. The only possibility of establishing
that two given agents have similar solutions,
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is when they meet and exchange information.
When this happens, and the solutions of both
agents are similar, one of the agents may take
some energy from the other.

The idea behind introducing the mechanism
of crowd, was to encourage agents to try not to
create large bunches at some distinctive points
on the Pareto frontier. Instead they should
be able to fairly uniformly distribute over the
whole frontier (fig. 1). Also in case of problems
with Pareto frontier consisting of several dis-
joined parts, this mechanism should improve
the ability of the agents to cover wide area of
search space (fig. 3).

4 Experimental Results

Several different tests were performed for dif-
ferent optimization problems. Various system
parameters were checked in order to establish
the influence of the crowding factor on sys-
tem’s performance. It has been established
that there is a substantial relation between the
factor and system’s operation. During the test-
ing, there were two distinctive types of influ-
ence of crowding factor found.

4.1 Influence of Small Values of the
Crowding Factor

The first type of influence was the fact that
small values of the crowding factor improved
system’s performance in case of virtually any
test problem. It was best visible in case of
problems with coherent Pareto frontier. The
agents were able to find more points on the
frontier, comparing to the cases with no crowd
(i.e. when the crowding factor was equal to 0).
An example of such a test problem is a set of
four paraboloid shape functions with two di-
mensions each:

fi(z,y) = =[(x = 5)* + (y = 5) +
fo(z.9) = ~[(x 457+ (y =5 +5 )
f3(z,y) = =[x = 5)* + (y +5)] +
fa(z,y) = =[(z +5)* + (y +5)] +

This set of criteria functions for maximization
problem give the Pareto set in a shape of a
rectangle.

The results obtained for this test problem
are presented on fig. 2. The units in which the
crowding factor values are presented are the
same as the search space is defined. It is thus
clear that for this particular problem the op-
timal value of the crowding factor is % of the
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Figure 4: The influence of the crowding factor on the performance of the system in case of Pareto

frontier consisting of several disjoined parts

average diameter of the Pareto frontier. For
other test problems it varied, but the peak was
never obtained for the value 0, and it usually
was closer to 0 than diameter of Pareto fron-
tier. The only exception from this rule were
test problems described in the following sub-
section.

4.2 Influence of Large Values of the
Crowding Factor

In addition to the expected influence of the
crowding factor, another issue was found dur-
ing the experiments. It became apparent that
for specific types of problems, also larger val-
ues of the crowding factor — even larger than
the average diameter of the Pareto frontier —
were found beneficial.

This second effect that was observed con-
cerning only cases of problems having a fairly

large number of distinctive disjoined parts of
Pareto frontier. In that case a larger value of
the crowding factor (compared with the dis-
tance between the separate parts of the Pareto
set) allowed the system to find those disjointed
parts more efficiently.

Most likely the following mechanism is re-
sponsible for such an effect. Large values of
the crowding factor cause that all agents in
one Pareto-optimal area tend to take energy
from all the others. The agents that actually
gain the energy will be very likely to repro-
duce. Thanks to various reproduction opera-
tors (several types of crossover and mutation)
new agents that will be created may end up
quite far away from their parents (but of course
they do not have to). Their energy may be lost
if they are too close to their parents, and it may
be lost even faster if they are dominated (they
leave Pareto set). However, if they appear in



the other part of the frontier they will be safe
(fig. 3).

Such situation is presented on (fig. 4). The
values presented here were obtained for the fol-
lowing set of criteria functions:

fi(z) =sinz
{ fao(x) =sin(x + 1) (3)

For such criteria functions, the Pareto set X,
is defined as:

€ Xopt &

g+2lm§x§g+2k7r—l—1; keZ (4)

For the purpose of the experiment the domain
was limited to x € < —100,100 >. For the
given problem there were over 30 distinctive
disjoined parts of the Pareto set in that do-
main.

5 Conclusions

Although it was possible to obtain some in-
teresting results, and improve general system
performance through the use of the mechanism
of crowd, it is clear that further research in this
area is necessary. For any given problem there
is some optimal value of the crowding factor
that improves results obtained by the system.
This value is unfortunately different for various
types of optimization problems. Based on the
experience gathered so far, it is possible to esti-
mate that small values of the crowding factor
usually give better results than disabling the
mechanism of crowd. Yet for some problems
it may be the case that actually larger values
would give even better results.

Additionally, currently the crowding factor
is expressed in absolute values, which depends
heavily on the problem definition. Future goal
would be to work out certain relations between
the value of the crowding factor and the qual-
ity of the results obtained. Also other parame-
ters of the simulation system have influence on
the effectiveness of the crowding factor. For
instance the level of life energy, applied varia-
tion operators and many others. They all have

to be taken into account in order to have more
measurable and comparable results.
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