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Abstract- has been a growing research effort in the use of metaheuristics
A memetic algorithm for tackling multiobjective op- within the field of multiple criteria decision making (MCDM)
timization problems is presented. The algorithm em- — a branch of operations research. Algorithms based on

ploys the proven local search strategy used in the Pareto hoth tabu search and simulated annealing have been put for-
archived evolution strategy (PAES) and combines it with  ward [3, 7, 8, 22, 26, 28]. Most of these algorithms do not

the use of a population and recombination. Verification  haye a population but store the nondominated solutions dis-
of the new algorithm is carried out by testing it on a  ¢oyered during a local search process. Rather than using
set of multiobjective 0/1 knapsack problems. On each  paretg ranking, weighted metrics are used to aggregate the
problem instance, comparison is made between the new objectives into a single score to be used in the acceptance

memetic algorithm, the (_1+1)'PAES _Iocal searcher, z_and function [29]. Some researchers argue that the use of such

the strength Pareto evolutionary algorithm (SPEA) of Zit- -

sler and Thiele. s_cglarlzmg vectors naturally gllows thg pre_ferences of the de-
cision maker to be used to guide the direction(s) of the search

towards the region(s) of interest (see for example [3]). This

may be true, but the use of purely random utility functions in

In recent years, genetic algorithms (GAs) have been applie@e a_bsence of such pref_erence information, as used in many
algorithms, seems unsatisfactory.

more and more to multiobjective problems. For a compre- ) _ . . .
hensive overview, see [2]. Undoubtedly, as an extremely gen- Whether the algorithms devised and investigated in the

eral metaheuristic, GAs are well qualified to tackle probIeméVlCD'vI field are more or less effecpve than MOGAs remains
of a great variety. This asset, coupled with the possessiofill ©Pen question: Very few studies that attempt to directly

of a population, seems to make them particularly attractivén€asure and compare the performance of MOGAs with al-
for use in multiobjective problems, where a number of so-gorithms based on tabu search [7, 8, 22] or simulated anneal-

lutions approximating the Pareto front are required. Indeed"9 [3: 26, 28], on problems of sufficient variety, have been
changing a generic GA into a multiobjective GA (MOGA

) carried out. But, despite the lack of communication between

is a relatively simple task: A selection scheme that operatel¢ o fields, there does seem to be some convergence of

with solutions possessing a vector of objective scores is thE1€ apPproaches taken by them. For example, our own work

only extra requirement, although some means of maintain®" (1+1)-PAES [15, 16, 17] shows that an algorithm that

ing diversity in the population is also often desirable. The€MPlOys only local search moves may be competitive with
first, pioneering work in the field was Schaffer's vector eval-many of the most respected MOGASs, on a range of prob-

uated GA (VEGA) [25], which alternately optimized each of €MS: PAES goes some way to bridging the gap between local
the different objectives. Later, Goldberg [9], suggested arpearch and population based methods, and is unique amongst
elegant method of ranking a population of solutions, basedPC@l search algorithms in its use of a form of Pareto rank-
on their mutual dominance relations. This was implementeéng f(_)r selection. quever, our results do indicate, perh_aps
in an algorithm, NSGA, by Srinivas and Deb [27] in 1994 predictably, that while local search seems very well suited

Since then, Pareto methods like these have been very popul@ Many problems it is outperformed by some population-
— due again to their very general applicability, and their |ackbased methods_ on functions which are highly multimodal or
of assumptions about the decision maker — and several oth&f"oNgly deceptive [15]. o

methods of assigning fitness based on some form of Pareto SiMilarly, work by Czyzak and Jaszkiewicz [3] also takes
ranking have been devised, e.g. [4, 10]. More recently, elitisni’SPiration from both multiobjective camps, with a novel
has been shown to improve the performance of multiobjecPOPulation-based approach to multiobjective simulated an-
tive GAs (for example see [21]), and a very elegant method1_eal'ng' Their algorithm uses ut!llty_functlons to obtain a
of exploiting co-evolution to perform fitness assignment in ansmgle score from th_e vector 9f Ob]eCt'V_e va_lues, but eXF"_O'tS
elitist GA was put forward by Zitzler and Thiele [30, 31, 32]. popu_latlon m_formatlon to a_dJUSt _the _dlrectlon Of the utility
The latter has been compared to some of the most popul&nction to direct progress in a direction approximately per-
MOGAS, on a range of problems and test functions, with ver endicular to the current Pareto front. The technique inher-

positive results. Some theoretical justification for the use ofNtly €ncourages an even spread of solutions, as well. Com-
evolutionary algorithms in multiobjective optimization, in the Parison with a single point multiobjective simulated annealer

form of convergence proofs, has also been provided [23, 24 _emons_trat_ed _that the use of a population was beneficial on
Almost in parallel to the development of MOGAs, there he multiobjective knapsack problems tackled.

1 Introduction



In this study, we take a further step towards devising methlems [32]. The remainder of the paper is organised as fol-
ods that incorporate both local search and population-basddws: In Section 2 the M-PAES algorithm is described. The
search strategies in the multiobjective domain. With PAESgexperimental method used for verifying the algorithm, and
we have a local search engine that is fast and effective atomparing its performance are discussed in Section 3. The
approximating the Pareto front. However, its performanceparameter choices made for each algorithm, including two
may be improved with the addition of a population, particu-versions of SPEA, and a benchmark single objective EA, are
larly with regard to problems that may exhibit multimodality presented in this section. Results are presented in Section 4.
and/or deception. Our approach is to maintain the fitness a$-inally, some concluding remarks are made in the last sec-
signment methods used in PAES, a Pareto-based method, atioin.
incorporate a population and crossover to form a memetic al-
gorithm for multiobjective optimization. 2 M-PAES

Memetic algorithms (also called genetic local search, hy-
brid genetic algorithms, and cultural algorithms) derive fromThe memetic-PAES algorithm (M-PAES) is shown in pseu-
many sources. In recent years, the methods have becondecode in Figure 1. Itis based on the local search multiobjec-
more homogeneous and some great successes have been tinaglalgorithm, (1+1)-PAES [16], but uses a population of so-
in the optimization of a variety of classic#lP-hard op- Iutions and periodically employs crossover to recombine the
timization problems, most notably the travelling salesper-distinct local optima found using the PAES procedure. The
son problem (TSP) [6, 20]. An overview of the technigue,archiving of solutions in M-PAES is a little more complicated
outlining its origins and history is given in [19]. Much of thanin (1+1)-PAES. Recall that at the heart of PAES is a pro-
the success of memetic algorithms relies on the property ofedure for maintaining a finite sized archive of nondominated
global convexity in the search space [1]. Recently, a fursolutions. The solutions in the archive are representative of
ther improvement to memetic algorithms was suggested bthe best nondominated solutions found by the algorithm as it
Jaszkiewicz [13], in which the local search space topology isearches the space. The solutions in the archive serve a dual
changed by restricting mutations to loci in the genotppé  purpose in (1+1)-PAES: as a memory of the solutions found
common to both parents. during the run for presentation at the end; and as a comparison

Proposals for multiobjective memetic algorithms have al-set to aid in estimating the dominance rank of new candidate
ready been put forward. The first of these, devised bysolutions. In order that these same jobs are performed in M-
Ishibuchi and Murata [11], assigns fitness using a randomIy?AES, two archives are required. This is because each local
selected linear utility function. Parents are then chosen ussearch phase needs to be partially independent of the global
ing roulette wheel selection, crossover and mutation are pesearch being performed by the algorithm as a whole. Thus
formed, and the resulting offspring is improved by a localwe have a global archiv@ that maintains a finite set of non-
search, using the same utility function by which the parentslominated solutions found, and a local archiy¢hat is used
were selected. The local search procedure is terminated whes the comparison set in each of the local search phases. At
k neighbours of the current solution have been examined witthe beginning of a local search phaggjs cleared and filled
no improvement. An elitist strategy is also incorporated inwith solutions fromG which do not dominate the candidate
the procedure. The algorithm was tested on some Flowshagolutione. The archiveH is then used as in (1+1)-PAES to
Scheduling tasks but comparison was limited to fairly out-improvec, i.e. H is maintained and used as a comparison
dated multiobjective algorithms including VEGA [25]. More set, whileG is continually updated but plays no part in the
recently, two proposals for novel algorithms were put forwardestimation of the quality of new solutions.
in a paper by Jaszkiewicz [12]. The first was based on a hy- The PAES local search procedure used by M-PAES to im-
brid with simulated annealing, and the second is similar tgorove solutions inP is almost the same as the basic (1+1)-
Ishibuchi and Murata’s but introduces a form of mating re-PAES algorithm. However, it differs in the way that termi-
striction, so that only théV best solutions measured using a nation of the procedure is determined. Termination may be
random utility function are allowed to mate. The two pro- invoked when either of two conditions are fulfilled: (1) If the
posed algorithms were tested and compared with Ishibuchihaximum number of local search movkspt is exceeded.
and Murata’s on a set of multiobjective travelling salespersor§2) If the maximum number of local search fallgails is ex-
problems. On these problems, global convexity may be exeeeded. To achieve (2), the variabigails, initially zero, is
ploited [1], and so restricting mating is advantageous. Théncremented every time the mutant is dominated by the cur-
results of the comparison reflect this fact. rent solution. It is reset to zero every time a move occurs

In this paper, a direct comparison is made between the pei-e. when the mutant is accepted as the new current solution.
formance of the new memetic algorithm proposed, and twdlence,#fails effectively counts the number of potentially
existing approaches: The local search method, (1+1)-PAESietrimental moves between improving moves. If this number
and the strength Pareto evolutionary algorithm (SPEA) [30exceeds the thresholdfails, the local search is stopped. The
31, 32]. To make the comparison, each algorithm is rurocal search procedu4 ES (¢, G, H) is shown in Figure 2.

30 times on a suite of 9 multiobjective 0/1 knapsack prob- In the recombination phase, parents are randomly selected



Generate initial population P of n random sol utions and eval uate
Pl ace each nondoni nated nmenber of P in a global archive G

Do

For (each candi date solution c€ P) %% local search phase
Set the current local archive H=10
Fill H with any solutions from G that do not dom nate ¢
Copy the solution ¢ fromP into H
Perform | ocal search using procedure PAES(c,G,H)
Repl ace i nproved sol ution ¢ back into popul ation P

End For

Set internedi ate popul ation enpty: n; =0, P' =

Do %% recombination phase
Set # reconbination trials r=0
Do

Random y choose two parents from PUG and reconbine to formoffspring ¢
Conmpare ¢ with the solutions in G
Update G with ¢ as necessary
r++
Wiile (((c is domnated by G)Vv(c is in nmore crowded grid |ocation than both parents))A
(r < recomb_trials-maz))
If (¢ is dominated by G)
Di scard ¢ and use binary tournanent to select a new solution ¢ fromd@
Endi f
Pl ace offspring ¢ into internmedi ate popul ation P/, n;++
While (n; <n)
Updat e popul ation: P« P’
While (stopping criterion is not satisfied)
Return gl obal archive G of unique nondom nated sol utions

Figure 1: The M-PAES Algorithm.

from the union of the post-local search population, and thanultiobjective EA, as well as two versions of SPEA, were
global archive. The resultant child is accepted only if it isrun 30 times with different random seeds on each of the prob-
nondominated with respect to the entire global archive, andems, for 500 generations using the same population’sizes
it resides in a less crowded region (grid location [17]) than afThe nondominated sets generated from each of the runs were
least one of its parents. If it dominates any membeZdf ~ used to make a statistical comparison of the algorithms tested.
is naturally accepted too. However, solutions that are domi- The findings of the ZT study show that SPEA is superior
nated by member(s) a¥, or that reside in crowded regions to each of the other MOEASs on all of the knapsack problems.
are rejected. In this case two new parents are selected agditowever, also included in the set of eight algorithms tested
and recombination is applied once more. The procedure ig [32], are two single-objective EAs that use weighted-sum
repeated until either a child is accepted or a threshold numaggregation of the objectives. The relative performance of
ber of recombinationsecomb_trials_maz is exceeded. In  SPEA and these algorithms is not clear-cut. Hence, in this
the latter case, a solution is selected by binary tournamenstudy we select as benchmarks, the data sets from the SPEA
from the global archive, to join the intermediate populationruns and those of the more powerful of the two single objec-
P'. The recombination strategy is, as a whole, extremely elitive algorithms, SO-5. The other algorithms are not consid-
tist, following the general form of the (1+1)-PAES algorithm ered.

employed in the local search phase. In the development of As addition comparators, we generated our own data sets
M-PAES, early versions did not have the facility of repeat-for the (1+1)-PAES algorithm, and an enhanced setup of
edly rejecting children of recombination. However, we foundSPEA, on the knapsack problems. The parameter settings for
that this weakened the effectiveness of the elitism inherent irach of these five algorithms are described in Section 3.2.
(1+1)-PAES and so the recombination phase was made more

stringent in later versions. 3.1 Multiobjective 0/1 Knapsack Problems

) The knapsack problems have been described fully in [32].
3 Experimental Method There are nine problems altogether, of differing combinations

The M-PAES algorithm is tested on a suite of muItiobjec—Of size (number .Of |tems),_§1nd number of objectives (knap-
sacks). At the time of writing, the problems are available

gvree((")érlnkns pesra ékz]pgoblzeig Ise.r ;nh de_lpr:it)etl)ée(ng?)arii ﬁliecﬂ IL%r?rom an Internet web-site Provided at the same site are the
bap y ' raw results obtained in the ZT study, for all the algorithms

general ability of their strength Pareto evolutionary algorithm
(SPEA) was demon_Strated' In [3213 thelperformance of SPEA Lin the case of SPEA, an internal and an external populatiést. ekhe
on these problems is compared with eight other evolutionargizes of these were chosen to provide a fair comparison \mithother

algorithms (EAs). Four of the algorithms, each a well-knownMOEAs in the study.
2http:/www.tik.ee.ethz.chézitzler




Whi | e( (#fails < _fails) AN( #moves < [_opt))
Mitate ¢ to produce m and eval uate m
If (c dom nates m) discard m, #fails++
El se if (m domi nates c)
Replace ¢ with m, add m to H, #fails =20
Else if (m is dom nated by any nmenber of H) discard m
El se apply test(c,m,H) to determ ne which becormes the new
current solution and whether to add m to the archive
Archive m in G as necessary
#movest++
End while

Figure 2: ThePAES (¢, G, H) procedure.

If the archive is not full
Add m to the archive
If (mis in aless crowded region of the archive than ¢)
Accept m as the new current solution
El se naintain ¢ as the current solution
El se
If (mis in aless crowded region of the archive than z for
some nmenber x on the archive)
Add m to the archive, and renpve a nenber of the archive from
the nost crowded region
If (misin aless crowded region of the archive than ¢)
Accept m as the new current solution
El se naintain ¢ as the current solution
El se
If (misin aless crowded region of the archive than ¢)
Accept m as the new current solution
El se naintain ¢ as the current solution

Figure 3: Pseudocode foest(c, m, archive).

tested. We make use of some of this data as baseline resus®©-5

for compz_irison purposes. In particular, the data sets from th¢e 5O-5 data comes from one of two single-objective EAs
two algorithms, SO-5 and SPEA are used here. ‘used in [32]. Unlike the other algorithms considered, these

We employ the same chromosome encoding and constraigfgle-objective EAs were run 100 times per test problem,
handling techniques as described in [32], and no additional;cp run optimizing toward a different randomly chosen
heuristics for use with the knapsack problems are employeginear combination of the objectives. The resultant non-

This allows for a direct comparison between our results angiominated solutions among all those generated in the runs

those published by Zitzler and Thiele. form the tradeoff front achieved by the algorithm. The two al-
) gorithms both employed equal population sizes to their mul-
3.2 Parameter Choices tiobjective rivals, and differed only in that one (SO-1) was

Our philosophy in comparing the performance of M-PAESUn for 100 g_enerationg, and the other (SO-5) was run for 500
with the other algorithms considered, (1+1)-PAES and SPEAJENerations in every single _of the 100 runs used to form the
is that each algorithm be run with settings, found throughon-dominated front. Thus, in the case of SO-5, one hundred
some experimentation, to provide near-best performance fdfmes as many function evaluations as in the other MOEAs
that algorithm. The aim is to demonstrate the utility of thein the ZT study were performed in order to generate the (sin-
three algorithms on the knapsack problems considered, arfile) set of nondominated solutions. Zitzler and Thiele did not
we do not claim that the parameter choices can be rigorousljerform the whole process thirty times to give thirty differ-
justified, although some explanation is given. Indeed, th&nt data sets, but instead just used the same set repeatedly in
main objective is to show that the proposed memetic algothe statistical analysis carried out. We follow this approach,
rithm can produce competitive results on a well-knowi@- ~ USINg ZT's da_ta sets. Hence, wher(_e stau_stlcal information is
hard problem [7]. given in relation to the SO-5 algo_rlthm, it sho_uld b_e noted
Details of the parameter choices made for each of the athat, in fact only one data set for this algorithm is being used,
gorithms tested are given below. The data from the setup dft contrast to all the other algorithms in this study for which

SPEA used in [32] is referred to as SPEA(ZT). Our own setup30 "uns were performed. _ .
of SPEA is labelled SPEA(KC). As with the other algorithms in the ZT study, one-point

crossover was used. The mutation probability and crossover
rate were fixed at 0.01 and 0.8 respectively, as for SPEA(ZT).
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Figure 4: Median surfaces calculated from 30 runs of each algorithm, on theljective knapsack problems.
SPEA(ZT) SPEA requires two population size§,and N’ to be set.

The setup of SPEA is described fully in [32]. The studyZT selected to us&v = 4/5 andN' = 1/4 of the size of
was designed to show that SPEA could clearly Outpencor,.,!popuIatlon used by the other GAs in their study. Experiments
the other MOEAS tested, even with very conservative choiceBerformed by us show that the performance of SPEA on these
of parameters. Thus the authors kept the external populatidfif@Psack problems is improved significantly when popula-

quite small - 1/5 of the population size of the other MOEAstion sizes ofV = 1/5 andN' = 4/5 are used, for the same
in the study. total number of function evaluations.

It is important to note that the data sets for SPEA(ZT) Our experiments also indicate that changing the crossover
record the off-line performance of the algorithm. That is, YP€ from one-point to uniform improves the performance of
all of the nondominated solutions returned in a run wereSPEA on the knapsack problems. Thus, SPEA(KC) employs
recorded. With the exception of SO-5 the other algorithmg/niform crossover. A fixed per-bit mutation raig, = 0.01
in this study are judged using the on-line performance. Thal® Used, as in [32]. No experiments in whigy was varied

is, only solutions stored in the external population (or archive)Vere undertaken by us. Since no other parameters need to be
at the end of the run are recorded. set for SPEA, we believe that SPEA(KC) is close to the best

setup of SPEA possible for the problems tackled.
SPEA(KC)

In [32], the authors chose to run the algorithms for a fixed(:L?L]')_PAES

number of generations and increase population size with thé/ith (1+1)-PAES, very few parameters must be set. The
size and number of objectives of the knapsack problem beingfchive size was set equal to the external populationsize
tackled. To make direct comparison possible, we choose t8f SPEA, s0 that the same number of solutions is returned by
use the same number of function evaluations as ZT, but géach algorithm. Similarly, the number of evaluations is set in
not deem it necessary to employ equal population sizes. 1gccordance with the total number performed by SPEA.

fact, the total number of evaluationsuz_evals used by each The mutation ratg,,, was set to 4L (whereL is the num-
of the algorithms in this study is the same for a given knap-ber of bits in the chromosome) for all problems. This setting

sack problem. Figure 6 lists the valuemfiz_evals for each follows our principle of using the best setting for the particu-
knapsack problem. lar algorithm.



Knapsack Algorithm
problem|| (1+1)-PAES| SPEA(ZT) | SPEA(KC) |  S0-5

2-250| [87.2,0] | [61.6,24.5]| [28.1,21.8]] [64.3, 27.5]
2-500 [100, 0] [100, O] [80.9,7.2] | [92.8,3.6]
2-750 [100, 0] [100, O] [95.5, 0] [100, O]

3-250 [100, 0] [69.1,18.7]| [53.6,26.6]| [44.4,51.8]
3-500 [100, 0] [93.7,0] | [67.9,20.8]| [74.5,21.7]
3-750 [100, 0] [100, O] [84.2,3.9] | [94.2,3.6]
4-250 [100, 0] [46.1,31.6]| [32.9,43.4]| [10.0, 85.9]
4-500 [100, 0] [92.5,3.7] | [63.3,21.7]| [35.5, 56.6]
4-750 [100, 0] [100, O] [82.9,7.4] | [71.7,25.4]

Figure 5: The results of testing M-PAES against the algorithmsvshasing our statistical techniques [17]. The knapsack
problems have 2, 3 or 4 objectives and 250, 500 or 750 items, as indicated.

The number of bisections of the objective spacesed in Knapsack Parameter
the adaptive grid algorithm for maintaining diversity [17] was | _Problem || I_fails | l-opt | cr_trials | maz_evals
set according to the number of objectives of the problem. The 2-250 20| 100 25 75000
valuesl = 5,1 = 4,1 = 3 were used for the 2, 3, and 4 2-500 20| 100 25 100000
objective multiple knapsack problems, respectively. 2-750 20| 100 25 125000
3-250 20 50 100 100000
M-PAES 3-500 5 20 125 125000
The total number of evaluations, number of bisections of ob- 3-750 20 50 150 150000
jective spacel, and per-bit mutation rate used in M-PAES are 4-250 20| 50 125 125000
as for (1+1)-PAES. The population si2€, was set equal to 4-500 20| 50 150 150000
the internal population of SPEA(KC). The two archives were 4-750 S 20 150 175000

sized equally, to match the external population of our setup

of SPEA. Thus, the same number of solutions are returned bfyigure 6: Parameter settings used in the M-PAES algorithm
SPEA(KC), M-PAES and (1+1)-PAES. or the various multiple objective knapsack problems. The

ame total number of function evaluationgz _evals, shown

In M-PAES, three more parameters must be set. Thes :
are the number of crossover trials, the maximum number O%:f)e_lggé)sroblem, was used in M-PAES, SPEA(KC) and

local moved _opt, and the maximum number of consecutive
failing local movesi_fails. Choices that give good general
performance were found to Beopt = 50, [_fails = 20, and  959%). Second, for two-objective problems we can plot sur-
cr_trials = 25. However, it was found that increasing the faces representing the median, best, or worst surface that the
number of crossover trials for the 3 and 4-objective problemgygorithm returns. Here, we plot just the median surface of the

increased performance further. A list of the best parametefive algorithms tested, for the two-objective problems only.
selections found is given in Table 6. The results presented in

Figure 4 and Table 5 are for these settings. 4.2 Analysis

The median surfaces plotted for the two-objective problems
are shown in Figure 4. A number of observations can be made
from these plots. First, our setup of (1+1)-PAES gives very
. . similar levels of performance to the setup of SPEA used by
As in previous research, we measure the performance of thgitzjer and Thiele on the three problems. This observation
algorithms tested using a statistical comparative assessmegti,, keeping with previous research where (1+1)-PAES was
technique adapted from [5]. We refer the reader to [14, 16]::ompared with SPEA [15]. Second, in all cases SPEA(KC)
for a complete description of our implementation of the teCh'outperforms SPEA(ZT). Third, M-PAES is very competitive
nique and a discussion of its advantages and disadvantagesyith SPEA(KC) and clearly outperforms both (1+1)-PAES
Here, the reader need only understand that the techniqug,q SPEA(ZT). In the largest of the three problems, M-PAES
allows us to present results in two ways. First, as a pair ofenerates a median surface that is not dominated in any part
numbersfa, b] indicating respectively the percentage of they the median surface of any of the other algorithms. On the
space where algorithm outperforms algorithnB, and the  gmaller problems, M-PAES fails to generate solutions as far
percentage of the space where algoritArautperforms algo-  towards the extremes of the objective space as either SO-5
rithm A. The percentages returned are the product of a Mannsr SpEA(KC), but has generated a median surface that domi-
Whitney U test [18] at a given confidence level (we choosenates these algorithms in the region where the two objectives

4 Results

4.1 Performance Metrics



trade off most rapidly with each other.

The statistical results for all the problems are summarised
in Table 5. Comparisons between M-PAES and each of the al-
gorithms are presented only. Thus, the statistic [100, 0] in the
upper left entry in the table means that M-PAES gives a bet-
ter distribution of surfaces over 100% of the combined non-
dominated front than (1+1)-PAES on the 250 item, 2 knap-
sack problem. Again, several observations from these results
can be made. First, the first three rows of the table verify 13]
that M-PAES performs well on the two-objective problems,
as suggested by the plots in Figure 4. Its relative performance
increases as the number of items increases. This is true, not
only on the 2-objective problem but on all the problems pre-
sented. However, as the number of objectives increases, th¢4]
performance of SPEA(KC) and SO-5 increase relative to M-
PAES, so that M-PAES is outperformed by SO-5 on the two
smaller four-objective knapsack problems. SPEA(KC) only
outperforms M-PAES on one problem, the smallest of the 4-
objective knapsack problems, and only by a small margin,
according to our statistical analysis.

5 Conclusion [5]
A memetic algorithm for multiobjective optimization, M-
PAES, was described. It uses the local search method of
(1+1)-PAES, and combines it with the use of a population
and crossover. The utility of M-PAES was verified on a set of ]
nine multiobjective 0/1 knapsack problems. On these prob-
lems, the performance of M-PAES and a selection of other
algorithms was compared. The results indicate that M-PAES
performs better than (1+1)-PAES on all problems. Compared
with the strength Pareto evolutionary algorithm (SPEA), the
performance of M-PAES is similar for a setup of each algo- [7]
rithm empirically derived to give near-best performance. In-
deed, M-PAES appears to be superior on some problem in-
stances, although comparison between these very different
algorithms is difficult. Nonetheless, the findings indicate that
further investigation into the use of memetic algorithms in
this problem domain is warranted.

In future work, comparison between M-PAES, local-
search methods from the MCDM field, and other recently
proposed memetic algorithms should be performed. We
would also like to investigate how mating restrictions and the 9]
changing of the local search topology, as suggested in [12]
and [13] respectively, could be used to improve the perfor-
mance of M-PAES still further.
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