
A Comparison of Diverse Approaches to Memetic Multiobjective

Combinatorial Optimization

Joshua D. Knowles and David W. Corne

Department of Computer Science, University of Reading, UK

J.D.Knowles@reading.ac.uk, D.W.Corne@reading.ac.uk

FAX: +44(0) 118 975 1994, TEL: +44 (0) 118 931 8983

http://www.rdg.ac.uk/�ssr97jdk

Abstract

Memetic algorithms (MAs) are, at present,

amongst the most successful approximate

methods for combinatorial optimization. Re-

cently, their range of application in this do-

main has been extended, with the introduc-

tion of several MAs for problems possessing

multiple objectives. In this paper, we con-

sider two of the newest of these MAs, the

random directions multiple objective genetic

local searcher (RD-MOGLS) of Jaszkiewicz,

and the memetic Pareto archived evolution

strategy (M-PAES), recently introduced by

us. The two algorithms work in di�erent

ways: M-PAES employs a form of Pareto

ranking in its selection mechanism, as used

in several multiobjective evolutionary algo-

rithms (MOEAs); whereas RD-MOGLS uses

randomly weighted utility functions to judge

solution quality, drawing from multiobjec-

tive tabu search and simulated annealing ap-

proaches. These two di�erent approaches

to memetic multiobjective optimization are

brie
y described, and their possible strengths

and weaknesses identi�ed. Finally, the two

algorithms are applied to the multiobjective

0/1 knapsack problem. Their performance

is compared on nine instances of the prob-

lem, using statistical methods developed pre-

viously.

1 Introduction

The general (unconstrained) multiobjective combina-

torial optimization (MOCO) problem can be expressed

as:
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where x is a discrete solution vector, and X is a �-

nite set of feasible solutions. The objective function

f(x) maps X into <
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objectives. The term maximize appears in quotation
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where x � x

�

is read as x dominates x

�

, and solutions

in the Pareto optimal set are also known as e�cient or

admissible solutions.

Many single-objective combinatorial optimization

problems that can be solved in polynomial time, be-

come NP-hard when formulated as corresponding

MOCO problems [15], e.g. the assignment problem,

minimum spanning tree etc. This makes the need

for good approximation methods for MOCO espe-

cially important. Thus, memetic algorithms (MAs),

which are amongst the most successful metaheuristics

in combinatorial optimization, would seem a natural

choice for this domain.

In recent years, there has already been growing inter-

est in good approximate methods for MOCO. The ap-

proaches taken so far can be roughly split into two

families: The local search methods, including tabu

search and simulated annealing, e.g. [3, 5, 14], and

the population-based multiobjective evolutionary al-

gorithms (MOEAs) [2]. In either case, a key issue is

how solution quality is judged in order to direct the

search. Generally, one of two methods is employed:

Pareto ranking of solutions, or achievement scalariz-

ing (utility) functions. The local search methods pro-

posed to date have used, almost exclusively, scalarizing

functions, whereas MOEAs have mainly used Pareto



ranking. In order to design a MA for MOCO, one must

also choose which of these paradigms would be most

appropriate. In the next section we examine each of

them in turn.

2 Methods

Pareto ranking uses the notion of dominance, as used

in Equation 2, to estimate solution quality. That is,

solutions are compared one against the other, and each

is judged based on whether it dominates, or is domi-

nated by, other solutions. This method is well suited to

assigning mating opportunities (�tness) to the mem-

bers of a whole population of solutions, because all

directions of the search are implicitly and simultane-

ously accounted for, in such a process. This e�ciency

at dealing with populations of solutions has led to its

widespread use in MOEAs. However, a problem arises

when Pareto ranking is used in local search where only

two solutions, the current and candidate (mutant) so-

lution, are compared at each step. Frequently, pairs

of solutions (x;x

0

2 X) will be nondominated with

respect to each other:
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That is, neither is better than the other on all objec-

tives. Thus, it is not possible to judge which of the

current and mutant solutions is better, and much of

the selection pressure is lost. However, if a comparison

set of the best (non-dominated) solutions found during

the search is maintained, and used to aid in judging

solution quality in these undecidable cases, then a very

high selection pressure can result. This is the basis of

the local search method, (1+1)-PAES, introduced by

Knowles and Corne [10, 11]. The PAES technique has

the advantage that one particular search direction is

not favoured in the local search, so solutions spread

across the whole Pareto front can be found from a sin-

gle search. Pseudocode for a very simple, PAES-like

local searcher is given in Figure 1. In fact, in (1+1)-

PAES, e�ciency is ensured by storing only a limited

number of nondominated solutions in P , and a tech-

nique for encouraging diversity is also employed.

In contrast to Pareto ranking, achievement scalarizing

functions work by aggregating the vector of objective

scores into a scalar measure of quality. For a detailed

account see [16]. In many cases, a simple linear blend

of the objectives is achieved by taking the inner prod-

uct of the vector of objective values, and a vector of

weights � having the following properties:
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Figure 1: PAES-like Pareto ranking local search. P is

the set of nondominated solutions.
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In order to approximate the whole Pareto front, a dis-

persed set of weight vectors must be used to direct the

search. A maximally dispersed set can be constructed

using a technique described in [1]. The advantages of

the scalarizing technique include computational parsi-

mony, and the fact that solution quality is judged inde-

pendently from other solutions. The latter makes it a

good candidate for use in a parallel memetic algorithm.

However, it has disadvantages: When a population of

solutions is available and mating opportunities are to

be allocated, it is di�cult to use scalarizing functions.

Often, the method of assigning �tness based on a ran-

domly selected weight vector is used, but this does not

seem to be a good way of making maximum use of the

current solutions available.

Which of the two methods of assessing solution quality,

described above, is more e�ective, is still an open ques-

tion. In [7], Jaszkiewicz argues that MOEAs that use

Pareto ranking are not ideal for MOCO because they

must use niching methods to ensure solution diver-

sity, and at their heart they lack an objective function

to drive the search. The argument is not supported

by reference to any empirical or theoretical evidence,

showing that MOEAs using Pareto ranking actually

perform poorly compared to any other method, how-

ever. In the same paper, Jaszkiewicz states that the

use of Pareto ranking is not suited to local search, ei-

ther, reasoning that selection pressure cannot be main-

tained. These aspersions of Pareto ranking may yet be

vindicated, but the use of linear scalarizing functions

can also be criticized. Theoretically, they cannot be



used to �nd non-supported e�cient solutions, i.e. so-

lutions lying in non-convex portions of the true Pareto

front. Of course, this problem can be overcome with

the use of non-linear Tchebyche� utility functions [16],

but these do not perform as well as linear functions

in some cases, e.g. see [7]. And empirically, where

linear weighting methods have been used in MOEAs,

they have not been successful when compared to other

methods [17]. Nonetheless, until multiobjective tabu

search and simulated annealing methods, employing

linear aggregation, are compared directly with the best

MOEAs, one should not be too dogmatic about which

approach is more e�cient.

Up to now, the MAs proposed for MOCO [6, 7] have

used achievement scalarizing functions because the lo-

cal search phases in them are based on the vast major-

ity of local search methods which use this technique.

However, we have introduced a new MA for MOCO,

called the memetic Pareto archived evolution strategy

(M-PAES), which is based on (1+1)-PAES. In a recent

paper [12] we have demonstrated that it is competitive

with one of the best MOEAs, the strength Pareto evo-

lutionary algorithm (SPEA) of Zitzler and Thiele [18].

In [12], detailed pseudocode of the M-PAES algorithm

is also given.

In this paper, M-PAES is compared with a memetic

algorithm that employs achievement scalarizing func-

tions; the RD-MOGLS algorithm of Jaszkiewicz,

which is fully described in [7]. The comparison is a

�rst step towards understanding the di�erent perfor-

mance characteristics that may be achieved from these

two di�erent approaches to directing multiobjective

searches in MAs.

3 Experiments

We use for testing, a well-known MOCO problem, the

multiobjective 0/1 knapsack problem, de�ned thus

1

:

Given a set of n items and a set of k knapsacks, with

p
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The de�nition is taken directly from [17]
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and x

j

= 1 if and only if item j is selected.

The instances of the problem that we use here, are

taken from a recent paper [18] by Zitzler and Thiele

(ZT), where they are described fully. There are nine

problems altogether, of di�ering combinations of size

(number of items), and number of objectives (knap-

sacks). At the time of writing, the problems are avail-

able from an Internet web-site

2

.

Comparison is made between three algorithms: M-

PAES, RD-MOGLS, and (1+1)-PAES. (The latter is

used as a baseline.) Setting the parameters of the

three algorithms to provide a fair comparison, is not

easy. As in [12], our approach is to use a `good' set

of parameters, found empirically, for each algorithm.

It is not possible, or even desirable, to use exactly the

same parameter settings for each algorithm, as they

di�er considerably. However, we do hold a number of

core parameters/conditions constant across the three

algorithms. These are: The neighbourhood operator,

which is a random bit-
ip mutation applied with a

probability of 4=n, where n is the length of the chro-

mosome; the constraint handling, which is carried out

in the same way as described in [18]; the stopping

criterion, which is the maximum number of evalua-

tions, max evals , set for each problem size as described

in [12]; and the recombination operator used by both

RD-MOGLS and M-PAES, which is two-parent uni-

form crossover. For M-PAES and (1+1)-PAES, the

other parameters are set exactly as described in [12].

To help understand the other parameters that must

be set in RD-MOGLS, the algorithm is described in

outline: An initial population of S solutions is gen-

erated, one by one, by selecting a utility function at

random, and starting from a randomly generated solu-

tion vector, optimizing locally. The initial population

are placed in a set, CS , of the current solutions. A set

of potentially e�cient solutions, PE , (initially empty)

is also maintained, and this is updated with the initial

population of solutions, as well. During the main loop

of the algorithm, a utility function is selected at ran-

dom. The best N solutions in the current population,

CS , on the utility function, are then copied to a tem-

porary population, TP . The following steps are then

repeated N times: Two solutions in TP are selected

at random and recombined to generate an o�spring;

2

http:/www.tik.ee.ethz.ch/�zitzler



then the o�spring is optimized locally on the utility

function; the o�spring is added to CS , and it is also

added to TP , replacing the worst member; �nally, the

set PE is updated with the o�spring.

initial population size S: 100

temporary population size N : 20

e�cient solution set size jPE j: 100

local search fails l fails : 5

Figure 2: Parameter settings for RD-MOGLS.

The parameters chosen for RD-MOGLS are given in

Figure 2. The initial and temporary population sizes

were derived empirically from a few test runs of RD-

MOGLS. The size of PE was set equal to the equiv-

alent nondominated archive, used in M-PAES and

(1+1)-PAES. Finally, there must also be a stopping

criterion for each of the local search phases. This de-

tail is omitted in [7], so we choose to end each local

search phase when l fails consecutive moves do not im-

prove the solution. This is similar to the method used

in M-PAES. Once again, l fails was set empirically.

4 Results

4.1 Performance Metrics

As in previous research, we measure the performance

of the algorithms tested, using a statistical compara-

tive assessment technique adapted from [4]. We refer

the reader to [8, 11] for a complete description of our

implementation of the technique and a discussion of

its advantages and disadvantages.

objective 1
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Figure 3: A collection of two sets of nondominated vec-

tors. Each set of vectors de�nes an attainment surface,

dividing the objective space. The attainment surfaces

can be sampled using a number of angled sampling

lines, as shown.

Here, the reader need only understand the following

points. 1. Any set of objective vectors can be viewed

as de�ning a surface (an attainment surface) in objec-

tive space, dividing the space into a dominated region

and a nondominated region (Figure 3). 2. A collec-

tion of runs of an algorithm will thus generate a collec-

tion of such surfaces. 3. The collection of attainment

surfaces can be sampled at various points using lines,

angled in the direction of increasing value in each ob-

jective, that intersect the surfaces (Figure 3). 4. The

intersection points along each of sampling lines gives

a univariate distribution which can be analysed using

standard non-parametric statistical tests. 5. When

the collections of attainment surfaces come from dif-

ferent algorithms, statistical inferences as to which al-

gorithm's distribution of surfaces is `better', along each

sample line, can be made. Using these points, we are

able to input collections of individual runs from each

of a pair of algorithms, and from these, present results

in two ways: First, as a pair of numbers [a,b] indi-

cating, respectively, the percentage of the space where

algorithm A outperforms algorithm B, and the per-

centage of the space where algorithm B outperforms

algorithm A. The percentages returned are the result

of a set of Mann-Whitney U tests [13] performed on

each sample line on the collections of data, at a given

con�dence level (we choose 95%). Second, for two-

objective problems, we can plot surfaces representing

the median, best, or worst surface that the algorithm

returns. Here, we plot only the median surface of the

three algorithms tested, on the two-objective prob-

lems. In all cases approximately 500 lines were used

to sample the attainment surfaces.

4.2 Analysis

Each algorithm was run 30 times on each problem.

The set of nondominated solutions found in each run

was used to give a statistical indication of perfor-

mance, using the techniques referred to above. The

median surfaces plotted for the two-objective prob-

lems are shown in Figure 4. A number of observa-

tions can be made from these plots. In all three plots

the median surface generated by RD-MOGLS extends

beyond the surface generated by M-PAES in at least

one of the objectives. However, the M-PAES algo-

rithm generates a median surface that dominates the

surface of RD-MOGLS over a larger portion of the

tradeo� front. With increasing problem size (items),

the M-PAES algorithm's performance improves rela-

tive to RD-MOGLS. Both M-PAES and the baseline

algorithm (1+1)-PAES give smoother, more convex

median surfaces than RD-MOGLS.

The statistical results for all the problems are sum-

marised in Table 5. Comparison is made between M-

PAES and RD-MOGLS only. Thus, the statistic [65.4,
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Figure 4: Median surfaces calculated from 30 runs of the three algorithms, M-PAES, RD-MOGLS, and (1+1)-

PAES, on the 2-objective knapsack problems.

Knapsacks Items

250 500 750

2 [65.4, 28.2] [49.4, 0] [61.5, 0]

3 [72.7, 25.1] [89.8, 0] [100, 0]

4 [0, 0] [0, 0] [0, 0]

Figure 5: The results of testing M-PAES against RD-

MOGLS using our statistical techniques [11] and 30

independent runs of each algorithm. The knapsack

problems have 2, 3 or 4 objectives and 250, 500 or 750

items, as indicated.

28.2] in the upper left entry in the table means that

M-PAES gives a better distribution of surfaces than

RD-MOGLS over 65.4% of the tradeo� front, and vice-

versa, RD-MOGLS gives a better distribution than M-

PAES on 28.2%, on the 250 item, 2 knapsack prob-

lem. Again, several observations from these results

can be made: The �rst row of the table veri�es that

M-PAES performs well on the two-objective problems,

as suggested by the plots in Figure 4. Its relative per-

formance increases as the number of items increases.

This is true, not only on the 2-objective problem but

also the 3-objective problems. However, as the num-

ber of objectives increases, the performance of RD-

MOGLS increases relative to M-PAES, so that there

is no statistical di�erence between the non-dominated

surfaces generated by M-PAES and RD-MOGLS on

the 4-objective problems.

5 Summary and conclusion

Multiobjective combinatorial optimization (MOCO)

problems often demand the application of approximate

methods for their solution. So, memetic algorithms,

which have proved to be very e�ective on a number of

single-objective combinatorial problems, may o�er an

ideal approach to MOCO. However, dealing with mul-

tiple objectives is not straight forward: One must de-

cide how to guide selection, given a vector of objective

values. In this paper two di�erent approaches to solv-

ing this problem, within a memetic algorithm frame-

work, were outlined. One, M-PAES, uses the method

of Pareto ranking of solutions, while the other, RD-

MOGLS, employs random utility functions to linearize

the objective vector. The two approaches were applied

to a well-known MOCO problem, the multiobjective

0/1 knapsack problem. Both algorithms work well,

generating results that are better than the baseline



local search algorithm, (1+1)-PAES, produced. How-

ever, on the small number of experiments carried out,

M-PAES, was found to be superior overall, using a so-

phisticated statistical measure of the solution sets dis-

covered. Nonetheless, RD-MOGLS, seemed capable of

generating solutions over a wider range in each of the

objectives, than M-PAES, and on the four-objective

problems there was no discernible di�erence in per-

formance between the two MAs. Clearly, further in-

vestigation of both approaches is needed; this study

merely begins a process of development and compar-

ison of MAs for MOCO. Further work will be aimed

at continuing this investigation on a number of other

MOCO problems. In addition to the quality of solu-

tions generated, the computational cost and ease of

parallelization will also be considered.
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