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Abstract. In this paper we assess the performance of three modern mul-

tiobjective evolutionary algorithms on a real-world optimization prob-

lem related to the management of distributed databases. The algorithms

assessed are the Strength Pareto Evolutionary Algorithm (SPEA), the

Pareto Archived Evolution Strategy (PAES), and M-PAES, which is a

Memetic Algorithm based variant of PAES. The performance of these al-

gorithms is compared using two distinct and sophisticated multiobjective-

performance comparison techniques, and extensions to these comparison

techniques are proposed. The information provided by the di�erent per-

formance assessment techniques is compared, and we �nd that, to some

extent, the ranking of algorithm performance alters according to the com-

parison metric; however, it is possible to understand these di�erences in

terms of the complex nature of multiobjective comparisons.

1 Introduction

In real-world applications, obtaining the complete set of Pareto optimal solutions

for a multiobjective problem may be impossible to attain, and instead we seek

a `good' approximation to this set, which may in fact contain no true Pareto

optima. Measuring the quality of approximations such as these is a problematic

area but a variety of methods have been put forward (e.g. [1, 3, 5, 8{12]), and

most have been put to use in establishing di�erences in algorithm performance.

However, further investigation of these methods is much needed because, as

yet, no single method can determine and present in a concise form, unequivocal

information about both the statistical and geometric properties of an algorithm's

approximations to the Pareto set.

In this paper, a real-world telecommunications problem is considered un-

der two slightly di�erent multiobjective formulations. In both cases, we wish to

make no a priori judgments about the preferences of the telecommunications

company with regard to how they might view the QoS delivered to customers

as a function of the objectives considered. Three modern, and competitively-

matched multiobjective optimization algorithms are to be tested on a suite of
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di�erent versions of the problem representing a number of di�erent scenarios.

Thus, the aim is to judge which algorithm obtains the `best' sets of solutions

on this suite of problems, using only the weak Pareto assumption. Rather than

just viewing the results from the single perspective of just one statistical method

of judging performance, we instead consider and extend several methods, and

observe the di�erences and similarities in the information they provide.

The three algorithms we consider are all modern solutions to the problem

of Pareto optimization. All three of them are elitist approaches, and they each

maintain a list of (a limited number of) the nondominated solutions that they

�nd. The �rst algorithm, the Strength Pareto Evolutionary Algorithm (SPEA)

of Zitzler and Thiele [11, 12], has been widely tested. The second algorithm is

(1+1)-PAES, originally put forward by us as a simple baseline algorithm [2].

Its performance has also been tested elsewhere on several problems [3]. Third,

is an extension of the basic (1+1)-PAES algorithm; a memetic approach called

M-PAES. Its performance was shown to be competitive with SPEA on a suite

of multiobjective 0/1 knapsack problems [4].

The remainder of this paper is organised as follows. In the next section,

the Adaptive Distributed Database Management Problem (ADDMP) is de�ned

in general, and then the particular choice of scenarios tackled here is explained.

Section 3 provides details of the experimental methods used, including algorithm

parameter settings, and the performance assessment techniques employed. In this

section, extensions to previous methods of assessing performance are included.

The results of the experiments are presented and discussed in Section 4. Finally,

in the concluding section, a summary of the �ndings, and ideas for future work

are given.

2 The Adaptive Distributed Database Management

Problem

The Adaptive Distributed Database Management problem (ADDMP) is a prob-

lem faced by distributed database service providers (DDSPs), such as video-on-

demand, genome databanks, and so forth. Oates and Corne [7] gives a detailed

description, and C source code for the evaluation function can be found via the

�rst author's website

1

. Here, we provide basic details of the ADDMP, aimed at

conveying an understanding of its multiobjective nature.

A DDSP needs to regularly ensure that database users (clients) are receiving

adequate quality of service (QoS). Indeed, clients' subscription to the database

may involve guarantees from the DDSP of distinct levels of QoS, perhaps varying

with subscription cost. A key factor in QoS is the delay (or response time)

experienced by a client for a typical database query. In maximizing QoS, the

DDSP aims to minimize the delay for each client. However, since copies of all

or parts of the database exist on several perhaps globally distributed servers,

this minimization must occur in the context of load balancing. That is, we may

1
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be able to minimize the delays experienced by certain clients by routing their

queries to the fastest server which contains the required data; however, the extra

load on this server will degrade the delays. So, the optimal solution will involve

a careful balancing of clients across servers.

The ADDMP is hence the problem of �nding the best client/server con-

nection con�guration, given a particular scenario which speci�es details of the

underlying communications network, server speeds, and access rates for each

client. What counts as `best' depends on many things, but a single-objective

QoS measure will typically involve combining the worst client delay with the

mean or median delays. However, such QoS measures are growing increasingly

inadequate as distributed database service provision becomes more widespread

and complex as regards the range of service guarantees on o�er. For example,

consider two potential solutions to a 5-client ADDMP in which the vectors of

client delays (in milliseconds) are, respectively: Solution 1 (155, 130, 140, 140,

140), Solution 2 (350, 80, 90, 90, 90).

In a single-objective approach, which of solution 1 or 2 is preferred depends

very much on the relative weightings given to the worst and mean (or median)

components. It is hence complex, and perhaps impossible, to derive `correct' rel-

ative weightings for these components, especially considering the widely di�erent

kinds of ADDMP scenarios which exist.

A multiobjective approach therefore seems more sensible and 
exible. Client

1, for example, may have paid for a QoS guarantee which indicates that their

delay will always be below 200 ms. Client 2, on the other hand, may have been

given a guarantee that their delay would be always within 20% of the median

delay level at any snapshot in time. With varied sets of factors like this, the task

of an optimizer addressing an ADDMP would be to quickly produce a good and

diverse spread of solution con�gurations, leaving it to a later decision process to

then choose from these on the basis of the various QoS guarantees in operation

for the clients currently using the service.

The problem we address in this paper is therefore that of quickly providing a

good set of diverse ADDMP con�gurations, from which a second decision-making

process can then choose the best according to prevailing QoS issues.

ADDMP Variants

ADDMP instances can occur in great variety. The numbers of clients and servers

can range typically between 2 and 20, and the number of clients between 10 and

several thousand. Access patterns can vary equally dramatically. E.g., access to

share price and similar �nancial databases may be very frequent with constantly

changing global activity, and hence re-optimization of client/server access con-

�gurations may need to occur every few minutes. In other scenarios, involving a

small number of clients, re-optimization may only need to occur every few hours.

A key part of the data�le de�ning an ADDMP instance is an array of client

access rates. Over time, we can expect these to vary, leading to di�erent ADDMP

instances requiring re-optimization to redistribute the load according to current

usage.
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In this paper we look at scenarios involving 10, 20, and 40 client/servers, and

in each case we consider 5 separate problems which re
ect possible changes in ac-

cess patterns over time. Thereby, we are comparing the quality of SPEA, PAES,

and M-PAES on the ADDMP over a wide but representative range of potential

instances. We are interested particularly in ADDMPs which need constant, and

hence fast, re-optimization. I.e., results must arrive quickly. Hence, in increasing

order of the problem sizes, the maximum allowed number of evaluations is 500,

2000 and 5000.

We consider both 2-objective and 3-objective versions of each problem. In

the 2-objective version, the objectives are the worst delay �gure and the median

delay �gure. In the 3-objective version, the objectives are the 90% delay �gure

(i.e. 90% of clients will have a better delay �gure than this), the 80% delay �gure,

and the median �gure.

3 Parameter control and performance assessment

The problems of comparing and assessing the performance of multiobjective

optimizers fall broadly into two categories; controlling the parameters of the

various algorithms, and actually measuring the performance. Space restrictions

preclude proper discussion relating how parameters were controlled, but the

ranges of values used are shown in Fig. 1.

algorithm crossover mutate internal external

p

c

type p

m

type pop. pop. l fails l opt cr trials l

M-PAES N/A uniform 1=L 
ip 5{20 80{95 1{20 2{100 5 5 / 3

SPEA 0.8 uniform 1=L 
ip 5{20 80{95 N/A N/A N/A N/A

1+1-PAES N/A N/A 1=L 
ip 1 99 N/A N/A N/A 5 / 3

Fig. 1. Parameter settings for the three algorithms. Bold face indicates a �xed value

in all experiments. The ranges of values used for the free parameters is shown. These

were investigated on an ad hoc basis to provide `best' performance. The two values

shown for l, the number of bisection levels in the adaptive grid algorithm [4], refer to

the values for the two and three objective problems, respectively. Please refer to [4] for

a description of the parameters used in M-PAES.

The quality of a set of nondominated vectors can be assessed in several

distinctly di�erent ways, leading to many possible metrics. Our preferences (at

least in this study) are towards methods that do not require knowledge of the

true Pareto front, such as Generational Distance or Error Ratio [9], because

these are often not available. Nor do we consider cardinal measures, e.g. the

Coverage metric [11], and again Error Ratio, to be very satisfactory because

they can give extremely misleading information (see [3]). Instead, metrics based

on measuring the position of the discovered attainment surface (the boundary

between dominated and nondominated regions) [1], or the size of the dominated

region itself [5, 11], seem preferable because they conform more closely to the

ideals of Pareto optimization. The speci�c metrics we use are described next.
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Fig. 2. A plot of the objective space of a 2-objective minimization problem. There are

two attainment surfaces de�ned by two sets, A and B, of solution vectors. The combined

dominated region S(A [ B) can be calculated easily. By subtracting the dominated

region of A, S(A), from S(A [ B), the combined size of the regions dominated by B

but not A (e.g. dark shaded region), S

BnA

, can be calculated. Similarly, the combined

size of regions dominated by A but not B (e.g. light shaded region), S

AnB

, can be

calculated by subtracting S(B) from S(A [B).

In [1], a means of combining the information from several runs of an algorithm

was put forward. To date, this has been our favoured means of performance as-

sessment, and we have extended the approach to cater for comparison of multiple

algorithms. As a whole, we refer to the method as attainment surface sampling.

In brief, the method works by taking samples of the attainment surfaces de-

�ned by the discovered solution sets from independent runs of an algorithm or

algorithms. The samples allow us to calculate and plot the best, median and

worst attainment surfaces from a collection of runs. This information is not easy

to analyse, however, except when there are only two objectives, so that surface

plots are easy to interpret. Fortunately, statistical comparison of algorithms is

also strongly catered for by these techniques; because each sampling of the at-

tainment surfaces provides a univariate distribution, standard non-parametric

statistics can be applied.

We use two statistical methods for comparing algorithms, one for comparing

a pair of algorithms only, and another for comparing n algorithms at once.

When comparing algorithms we must have a collection of solution sets from

independent runs of each algorithm. If we adopt the phrase `A beats B' at a

particular sampled region of the Pareto front if in that region the distribution

of attainment surfaces from multiple runs of algorithm A is better than that

from multiple runs of algorithm B at a statistically signi�cant level, according

to some non-parametric test, then we can de�ne our two measures: In the case

of comparing just two algorithms denoted by A and B, the statistics returned



6

are a pair of numbers, ha; bi, where a indicates the percentage of the front on

which A beats B, and where b indicates the percentage of the front on which B

beats A. When comparing n > 2 algorithms, n(n� 1) pair-wise comparisons are

made as above, but with the sampling of the surfaces always carried out on the

full extent of the combined discovered Pareto front. Two statistics can then be

de�ned for each algorithm. The algorithm's unbeaten statistic is the percentage

of the front on which no other algorithm beats it, and it's beats all statistic is

the percentage of the front on which it beats all of the other algorithms. For

the univariate statistical tests that the above metrics depend upon, we use the

Mann-Whitney U test [6] at the 95% con�dence level. A fuller explanation of

our implementation and criticisms of these techniques are given in [3].

Our other measures are based on the size of the dominated region, S(C

�

),

de�ned as the union of regions dominated by each individual solution vector in

the set, C

�

, of nondominated vectors found during optimization run �, within

some bounding rectangular polytope, as in [5]. However, we do not size the

bounding polytope based on the location of an ideal point, but just ensure that it

contains all of the nondominated vectors. (Note: Both methods of normalization

induce rather arbitrary scalings of the objectives that are hard to fully justify in

a multiobjective context.) We propose using the size of the dominated region in

three new ways, with the aim of combining the information contained in several

runs of an algorithm, or to provide more useful comparative information. In the

following, we also consider a collection C of n sets C

�

, � 2 f1; :::; ng, of the

points found in one optimization run of an algorithm.

Our �rst measure is of the total discovered region, found over a set of n runs:

S

�

= S(

n

[

�=1

C

�

) (1)

The second measure combines the n runs by �nding the size of the median

attainment surface:

S

�

= S(MS(C)) (2)

whereMS(C) is the median attainment surface of the collection of solution sets,

C, obtained using attainment surface sampling. Finally, we propose a measure

for directly comparing two collections A and B of approximations, each obtained

from n independent runs. The measure is based on the notion of the coverage

di�erence of two sets [10] de�ned by:

S

AnB

= S(A [B)� S(B) (3)

The meaning of the coverage di�erence is illustrated in Figure 2. This measure is

useful when comparing two algorithms. Taking the two complements together,

the degree to which one set of points covers the other can be inferred. For

example, if the pair of complements S

AnB

and S

BnA

have the values 0 and 0.05

respectively then one can say that the points in B completely cover the points

in A, and also that the points in A dominate 95% of the region dominated by

B. Now, for a collection of runs from two algorithms, A and B, we propose

calculating the median value of the coverage di�erences.
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4 Results

In the following, all results are based on thirty independent runs of each algo-

rithm on each problem instance. The �rst set of results (Fig. 3) was obtained us-

ing attainment surface sampling and our n-algorithm comparison metric. These

ADDMP statistic 2-objective 3-objective

instance M-PAES SPEA 1+1-PAES M-PAES SPEA 1+1-PAES

10-1 unbeaten 93.8 83.1 99.2 98.0 81.3 100

beats all 0.8 0 5.0 0 0 2.0

10-2 unbeaten 100 99.8 94.9 68.5 98.2 100

beats all 0 0 0 0 0 1.8

10-3 unbeaten 100 98.7 95.2 77.3 78.4 100

beats all 0 0 0 0 0 8.3

10-4 unbeaten 100 98.9 100 64.3 51.8 100

beats all 0 0 0 0 0 34.1

10-5 unbeaten 99.8 49.7 100 35.3 54.9 100

beats all 0 0 0.2 0 0 16.3

20-1 unbeaten 100 48.7 100 95.8 24.1 100

beats all 0 0 0 0 0 3.0

20-2 unbeaten 65.0 67.2 100 63.7 63.7 99.8

beats all 0 0 32.8 0 0 36.3

20-3 unbeaten 100 0 100 98.9 67.0 100

beats all 0 0 0 0 0 1.1

20-4 unbeaten 52.1 0.5 100 95.2 41.0 100

beats all 0 0 47.9 0 0 4.8

20-5 unbeaten 49.9 50.0 100 23.8 24.7 100

beats all 0 0 50.0 0 0 74.1

40-1 unbeaten 92.0 15.6 99.9 77.4 31.0 70.8

beats all 0.1 0 8.0 9.9 0 22.6

40-2 unbeaten 69.3 7.9 93.4 76.4 26.2 87.6

beats all 4.6 0 30.7 0.5 0 23.6

40-3 unbeaten 68.7 10.3 93.8 71.7 15.0 77.4

beats all 4.2 0 31.3 10.9 0 28.3

40-4 unbeaten 100 11.2 99.5 78.2 0.1 93.1

beats all 0 0 0 6.9 0 21.8

40-5 unbeaten 68.2 12.9 94.7 69.1 57.7 73.0

beats all 4.9 0 31.8 0 0 30.9

Fig. 3. The unbeaten and beats all statistics for the combined space inhabited by the

solutions found. Two forms of the problem were investigated: The 2-objective case,

where the median response time and the worst response time are minimized. And the

3-objective case, where the median response time, the response time bettered by 80%

of requests, and the response time bettered by 90% of requests are minimized. The

di�erent problems are labelled by the number of nodes and the number of the scenario.

E.g. The third scenario of the twenty node problem is labelled 20-3.

results, taken on their own, seem to indicate that (1+1)-PAES is consistently

di�cult to beat, whereas SPEA and M-PAES are closely matched but not as
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consistently good as PAES. Results obtained from our other metrics, a key subset

of which are presented below, are not always in agreement, however.

ADDMP 2-objective 3-objective

instance M-PAES SPEA 1+1-PAES M-PAES SPEA 1+1-PAES

10-3 0.33803 0.33776 0.33810 0.2703528 0.2703444 0.2703528

20-3 0.33580 0.34616 0.34070 0.1322440 0.1322490 0.1322490

40-3 0.27758 0.30131 0.30210 0.0498326 0.0498368 0.0498400

Fig. 4. The values of the total dominated region, S

�

, for three problem instances.

ADDMP 2-objective 3-objective

instance M-PAES SPEA 1+1-PAES M-PAES SPEA 1+1-PAES

10-3 0.1551 0.1590 0.1482 0.09570 0.0867 0.0960

40-1 0.342969 0.345659 0.345649 0.024767 0.026677 0.024202

Fig. 5. The values of the Median Attainment Region, S

�

, for two problem instances.

A= B= A= B= A= B=

ADDMP obj- M-PAES 1+1-PAES SPEA 1+1-PAES SPEA M-PAES

instance -ectives S

AnB

S

BnA

S

AnB

S

BnA

S

AnB

S

BnA

sc10-1 2 0.0327 0.0124 0.0384 0.0134 0.0353 0.0216

sc10-1 3 0.0678 0.0 0.0161 0.0 0.0002 0.0266

sc20-4 2 0.0187 0.0161 0.0286 0.0153 0.0248 0.0118

sc20-4 3 0.0026 0.0 0.0239 0.0 0.0084 0.0009

Fig. 6. The median values of the coverage di�erences of alternate pairs of algorithms

on two problem instances.

The results of calculating S

�

for three of the problems are shown in Fig. 4.

First, notice that the values for the three algorithms are very close and that a

large number of �gures are signi�cant. Nonetheless, the results here still provide

extra information about the distribution of solutions found by the algorithms

over multiple runs. On the �rst two of the 3-objective cases, two algorithms

generate exactly the same total dominated region. In all probability this must

indicate that the total set of non-dominated solutions found in each case is ex-

actly the same. Interestingly, the total dominated region measure favours SPEA

over M-PAES, although (1+1)-PAES is superior overall. Using our unbeaten and

beats all statistics, M-PAES is ranked ahead of SPEA, with (1+1)-PAES in �rst

place. This disagreement must indicate that SPEA tends to generate di�erent

solutions on di�erent runs more often than M-PAES. Still, the total dominated
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region preserves the position of (1+1)-PAES as the most consistent algorithm,

it winning on three of the six measurements, and being beaten only once.

In the next set of results presented (Fig. 5) the median attainment surface

is �rst calculated for each algorithm. The size of the region dominated is then

measured. Once again, using this measure alone could lead to di�erent conclu-

sions than if using it in conjunction with other measures. For example, on the

two-objective version of problem 10-3, the rank order reported by this measure

S

�

, the S

�

measure, and our unbeaten statistic are all di�erent. Clearly the algo-

rithms perform at very similar levels on this problem, but which is best? On the

three objective version of the same problem, M-PAES and (1+1)-PAES are very

similar with regard to S

�

, whereas M-PAES is a poor third when considering

the whole distribution of attainment surfaces, using the Mann-Whitney U test.

Finally, the coverage di�erences, S

AnB

and S

BnA

were calculated for pairs of

the algorithms, for each of the thirty runs. The median values of these di�erences

are presented in Fig. 6. These results exhibit a high degree of agreement with

the equivalent results in Fig. 3. According to the former, the attainment surface

generated by (1+1)-PAES completely dominates the attainment surface found

by the other two algorithms on at least 50% of the runs, on the three-objective

versions of the two problems.

5 Conclusion

In this paper we have compared the performance of three multiobjective algo-

rithms with respect to a suite of real-world problems related to the management

of distributed databases. Several test metrics were employed to measure and

compare algorithm performance over collections of solution sets found from sev-

eral (30) runs. Three extensions to a metric based on the size of the dominated

space were presented and used. The results show that with such closely-matched

algorithms, it is a very di�cult matter to select the one that performs best.

In fact, from the results presented, (1+1)-PAES seems to be the best performer

all-round. However, results given by the di�erent metrics indicated that the rank

order of algorithms was certainly not independent of the test metric. This shows

that it is most important to use a number of di�erent metrics, when comparing

algorithms. Then, where a rank order is inconsistent across di�erent metrics, the

extra information provided can help to understand exactly in what way one al-

gorithm's approximations di�er from another's. Actually, more detailed analysis

of the full results reveals that SPEA was most consistent at providing an even

distribution of solutions along the front, whereas (1+1)-PAES more often found

very strong compromise solutions.

The metrics we have proposed could also be extended further. For example,

testing the coverage di�erences over a collection of runs, could be carried out by

using a statistical test such as Kolmogorov-Smirnov, rather than the median. In

addition, we are currently developing a method based on the S measure, that

can calculate and present information about the individual regions where one

attainment surface dominates another.
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