
The Pareto Envelope-based Selection Algorithm

for Multiobjective Optimization

David W. Corne, Joshua D. Knowles, Martin J. Oates

School of Computer Science, Cybernetics and Electronic Engineering

University of Reading, Reading RG6 6AY, UK

D.W.Corne, J.D.Knowles, M.J.Oates@reading.ac.uk

Abstract. We introduce a new multiobjective evolutionary algorithm

called PESA (the Pareto Envelope-based Selection Algorithm), in which

selection and diversity maintenance are controlled via a simple hyper-grid

based scheme. PESA's selection method is relatively unusual in com-

parison with current well known multiobjective evolutionary algorithms,

which tend to use counts based on the degree to which solutions dominate

others in the population. The diversity maintenance method is similar

to that used by certain other methods. The main attraction of PESA

is the integration of selection and diversity maintenance, whereby essen-

tially the same technique is used for both tasks. The resulting algorithm

is simple to describe, with full pseudocode provided here and real code

available from the authors. We compare PESA with two recent strong-

performing MOEAs on some multiobjective test problems recently pro-

posed by Deb. We �nd that PESA emerges as the best method overall

on these problems.

1 Introduction

Following seminal work on multiobjective evolutionary algorithms (MOEAs)

such as the Niched Pareto Genetic Algorithm (Horn et al., 1994; Horn and

Nafpliotis, 1994), and the Non-Dominated Sorting method (Srinivas and Deb,

1994), more recent work on MOEAs has resulted in improved techniques which

provide fast and e�ective approximations to the Pareto frontier for a variety

of benchmark problems. These new methods include SPEA (Strength Pareto

Evolutionary Algorithm {Zitzler and Thiele, 1999), and PAES (Pareto Archived

Evolution Strategy { Knowles and Corne, 2000). Both PAES and SPEA have

been shown to outperform sophisticated versions of NPGA and NDS on a variety

of benchmark problems, while various other modern MOEAs exist which have

been shown to perform well on particular applications (eg: Fonseca and Fleming,

1995; Parks and Miller, 1998), but have not yet been systematically compared

against other modern MOEAs on a common set of test problems.

Somewhat removed from the MOEA research community, researchers in mul-

tiple criteria decision making (MCDM) and operations research communities

have also worked on multiobjective optimization over the years, and produced



a variety of local-search based multiobjective techniques These include, for ex-

ample, Czyzak and Jaszkiewicz (1998), Gandibleux et al. (1996), and Hansen

(1996; 1997). Cross comparison of techniques between these communities and the

MOEA community has not yet been done to any signi�cant extent, although it

seems clear from the results reported in Zitzler and Thiele (1999) and Knowles

and Corne (2000) that the MOEA community would be best represented by

either SPEA or PAES in such a comparative study.

Here we introduce a new multiobjective evolutionary algorithm called PESA

(the Pareto Envelope-based Selection Algorithm), which incorporates ideas from

each of SPEA and PAES, and which performs quite well in comparison to both

of these new methods. In fact, PESA seems to be the overall best on the suite

of test functions used in this paper.

Like SPEA, PESA uses a small `internal population' and a (usually) larger

`external population'. The external population is actually the archive which

stores the current approximation to the Pareto front, and the internal pop-

ulation are new candidate solutions vying for incorporation into the archive.

Like PAES, PESA implicitly maintains a hyper-grid division of phenotype space

which allows it to keep track of the degree of crowding in di�erent regions of

the archive. However, unlike both PAES and SPEA, selection in PESA is based

on this crowding measure (in PAES, selection is trivial { there is just a single

current solution, as in local search, which is the parent for a mutation; in SPEA,

selection is based on a sophisticated and ingenious `strength' measure). However,

like both PAES and SPEA, replacement (deciding what must leave the archive

if it becomes over-full) is also based on a crowding measure.

Each of SPEA, PAES and PESA are compared on six test functions from

Deb (1998), and results are analysed using a sophisticated statistical comparison

method based on ideas from Fonseca and Fleming (1995a). Both SPEA and

PESA have already been found to outperformNDS and NPGA on these functions

(Zitzler et al, 1999; Knowles and Corne, 1999). We �nd that each algorithm turns

out to be the winner on at least one of the test functions, but PESA is the overall

best performer.

The remainder of the paper is organized as follows. In Section 2 we describe

the PESA algorithm, and in Section 3 we describe the test functions. Experimen-

tal design is discussed in Section 4 and Results given and discussed in Section

5. Section 6 indicates our conclusions and notes for further work.

2 The PESA Algorithm

Apart from standard parameters such as crossover and mutation rates, PESA has

two parameters concerning population size, and one parameter concerning the

hyper-grid crowding strategy. A high-level description of the PESA algorithm is

as follows, in which the two population based parameters are P

I

(the size of the

internal population, IP) and P

E

(the maximum size of the archive, or `external

population', EP).



1. Generate and evaluate each of an initial `internal' population (IP) of P

I

chromosomes, and initialise the `external' population (EP) to the empty set.

2. Incorporate the non-dominated members of IP into EP.

3. If a termination criterion has been reached, then stop, returning the set of

chromosomes in EP as the result. Otherwise, delete the current contents

of IP, and repeat the following until P

I

new candidate solutions have been

generated:

{ With probability p

C

, select two parents from EP, produce a single child

via crossover, and mutate the child. With probability (1�p

C

), select one

parent and mutate it to produce a child.

4. return to Step 2.

In the `archive incorporation' step (step 2), the current set of new candidate

solutions (IP) are incorporated into the archive one by one. A candidate may

enter the archive if it is non-dominated within IP, and if is not dominated by

any current member of the archive. Once a candidate has entered the archive,

members of the archive which it dominated (if any) will be removed. If the

addition of a candidate renders the archive over-full (its size temporarily becomes

P

E

+1), then a current member of EP is removed. The choice of which member

is removed will be detailed later.

The selection of a parent in PESA, within step 3, is based on the degree of

crowding in di�erent regions of the archive. This is simply illustrated by Fig-

ure 1. In the �gure, a number of points are shown in the phenotype space of a

two-objective minimization problem. The circles are non-dominated points, and

hence might currently be in the PESA archive. The squares are dominated by

members of the archive, but they may be points in the current internal popula-

tion.

B

A

minimizing

m
in

im
iz

in
g

Fig. 1. PESA's crowding strategy



The crowding strategy in PESA works by forming an implicit hyper-grid

which divides (normalised) phenotype space into hyper-boxes. In Figure 1, this

is illustrated by the thick horizontal and vertical lines; the problem is two-

dimensional and hence these hyper-boxes are simply squares. Each chromosome

in the archive is associated with a particular hyper-box in phenotype space, and

has an attribute called a `squeeze factor', which is simply the total number of

other chromosomes in the archive which inhabit the same box. For example, the

squeeze factor of chromosome A in Figure 1 is 2, and the squeeze factor of chro-

mosome B is 1. The squeeze factor is used for selective �tness. For example, when

PESA uses binary tournament selection, two chromosomes are taken at random

from the archive, and the one with the lowest squeeze factor is chosen (break-

ing ties randomly), hence orienting search e�ort towards areas of the emerging

Pareto frontier which currently have little representation in the population.

The squeeze factor is also used for archive update. As indicated above, the

incorporation of an internal population member into the archive may lead to

the the archive size temporarily exceeding the maximum size E

P

. One solution

must therefore be removed from the archive. The choice is made by �rst �nd-

ing the maximal squeeze factor in the population, and removing an arbitrary

chromosome which has this squeeze factor.

We can now more easily distinguish between the selection and archive-update

strategies of PAES, SPEA, and PESA< again with reference to Figure 1. As we

have seen, PESA uses the squeeze factor for both of these tasks. PAES uses a

hyper-grid strategy, but only for archive update. In the selection step of PAES,

since PAES is actually a hillclimbing algorithm, selection is only between two

candidates: the current solution, and a mutant. If the archive is full, squeeze

factor is indeed used in PAES, and if the mutant has a lower squeeze factor than

the current then it will become the new current solution. To some extent PAES

is therefore similar to PESA in employing squeeze factor in both selection and

archive update, however the fact that PAES is a local search method and PESA

is a population based technique render them fundamentally di�erent algorithms.

SPEA, on the other hand, uses a novel selection strategy in which a `strength'

is associated with each member of the archive, based on the number of chromo-

somes in the internal population which it dominates. Each member of the internal

population is also given a strength value, based on summing the strengths of the

archive members which dominate it. This is illustrated by the dashed lines in

Figure 1. Chromosome A clearly has a higher strength value than chromosome

B, since it dominates more members of the internal population than B. In SPEA,

this means that B will have a higher selective �tness than A (�tness for selection

is based on minimal strength value).

Archive update in SPEA is also quite di�erent to the hyper-grid strategy. In

SPEA, a simple agglomerative clustering algorithm is used based on phenotypic

distance, which prunes an archive of k > E

P

chromosomes into a an archive of

E

P

chromosomes. It �rst produces E

P

clusters of chromosomes from the over-

full archive. The chromosomes in each cluster which are nearest to its centre

then become the E

P

chromosomes in the pruned archive.



3 The Test Problems T1{T6

Deb (1998) gives a procedure for designing tunable test functions for multiobjec-

tive optimisation, involving a range of characteristics which may or may not be

present to varying degrees in the Pareto surface. In particular, Deb argues that

key aspects of a multiobjective search landscape which would cause di�culty for

an optimizer are, among others, discontinuities in the Pareto front, non-uniform

distribution of solutions along the Pareto front, and deception. The test function

design scheme produces test functions which vary in these aspects.

Six test functions, T

1

-T

6

, designed using Deb's scheme, were used in a com-

parison of the performance of eight di�erent MOEAs by Zitzler et al (1999). T

1

has a convex Pareto front but no particular di�culty characteristics; T

2

has a

non-convex Pareto front; T

3

has many discontinuities in the Pareto front; T

4

is

highly multimodal and has 21

9

Pareto fronts; T

5

is a deceptive problem, and

T

6

has a non-uniformly distributed search space with solutions non-uniformly

distributed along the Pareto front.

Each is a two-objective problem de�ned on m parameters, in which both

objectives are to be minimized. In �ve of the problems the parameters x

i

were

coded as a binary string decoded such that x

i

2 [0; 1]. The remaining function

(T

5

) also employed a binary chromosome but this time unitation was used to

evaluate each of the parameters. The experiments in this paper employ iden-

tical functions to those presented in Zitzler et al (1999) and are coded onto

chromosomes using identical numbers of bits to represent each parameter.

The results of Zitzler et al (1999) indicated that on three of the test func-

tions, T

1

� T

3

and T

6

, SPEA (Zitzler and Thiele, 1999) generates solution sets

which consistently dominate all of the other algorithms tested. On test function

T

4

SPEA is clearly superior to all other algorithms, although it no longer consis-

tently beats two of the algorithms, namely NSGA (Srinivas and Deb, 1994), and

SOEA (a single objective EA run 100 times with a di�erent randomly chosen

linear combination of the objectives). On T

5

, SPEA and NSGA perform very

similarly, with SOEA performing slightly better according to the measures used

by Zitzler et al (1999).

In summary, Zitzler's study indicated that SPEA seemed to be the best

algorithm overall (of the eight tested) on Deb's test functions. In this study, we

hence use SPEA as our main comparative algorithm, but also use PAES. We

therefore compare the performance of SPEA against two rival techniques, one

of which has been found best on the Deb functions when compared with a wide

range of other multiobjective approaches.

4 Experimental Design

4.1 Experiments

Our experiments sought to determine the relative quality of PESA, SPEA and

PAES on the Deb test functions. Guided by real-world considerations, we were

also very interested in speed. That is, we were interested in the development



of the approximations to the Pareto front over time. In some applications (for

example, design) the optimisation method must develop as good as possible an

approximation to the Pareto tradeo� surface, but without any real-time or near

real-time processing constraints. In other applications, for example optimal mul-

tiobjective control, good approximations to the Pareto front must be produced

very quickly.

To compare the algorithms along these lines we therefore performed three sets

of experiments, to di�erent time limits, of 1,000, 5,000, 20,000 evaluations. In

each set of experiments, 20 trial runs of PESA, PAES, and SPEA were performed

on each of the six test functions. Parameters were set as described in Table 1.

Crossover rate 0.7 in PESA and SPEA; not used in PAES

Crossover method uniform crossover in PESA and SPEA; not used in PAES

Mutation rate bit-ip mutation set to 1=L where L is chromosome length

Populations archive 100 in all algorithms, IP size 10 in PESA and SPEA

Chromosome lengths 900 in T

1

, T

2

and T

3

, 300 in T

4

and T

6

, 80 in T

5

Hyper-grid size 32�32 grid in PESA and PAES, not used in SPEA

Table 1. Parameter settings

In the next section we summarise the statistical comparison method used to

analyse the results within a set of experiments.

4.2 Statistics

Given the results of 20 or more trial runs for each algorithm, we compare the

performance of two or more multiobjective optimisers using a method proposed

originally by Fonseca and Fleming (1995a) which we have implemented with cer-

tain extensions. When comparing two multiobjective algorithms (A and B), this

method essentially returns two numbers: the percentage of the Pareto frontier on

which algorithm A conclusively beats algorithm B (based on a Mann-Whitney

U test at the 95% con�dence level), and the percentage of the Pareto frontier on

which algorithm B conclusively beat algorithm A.

Typically, for example, two very good MOEAs with similar performance on

a problem might yield a result like [3.7, 6.1], indicating that each algorithm was

de�nitely better than the other in small regions of the space, but they performed

similarly well on the majority of the Pareto frontier. A clear indication that one

algorithm is superior to another, however, is given by a comparison result such

as [58.3, 2.2], or [100, 0.0].

In a comparison of k > 2 algorithms, the comparison code performs pairwise

statistical comparisons, as before, for each of the k(k � 1)=2 distinct pairs of

algorithms. The results then show, for each algorithm, on what percentage of

the space we can be statistically con�dent that it was unbeaten by any of the

other k � 1 algorithms, and on what percentage of the space it beat all k � 1



algorithms. For example, in Table 2, we can see that, on problem T

1

, PESA was

conclusively better than both PAES and SPEA on more than half of the Pareto

Tradeo� surface, and was only bettered (in this case by PAES) on 28% of this

frontier. SPEA performed particularly poorly in this case, being conclusively

outperformed by the other methods on all but about 1% of the Pareto surface.

5 Results and Discussion

Table 2 summarises all results for the set of experiments in which each trial

run was allowed just 1,000 �tness evaluations. The best performing algorithm

for each problem has its table entries highlighted in bold; when there is little

di�erence between the best two (or all three), both sets of entries are highlighted

in bold.

Problem PAES SPEA PESA

unbeaten (beats all) T

1

44.7 (28.0) 0.9 (0.0) 72.0 (54.4)

unbeaten (beats all) T

2

0.0 (0.0) 1.8 (0.0) 100 (98.2)

unbeaten (beats all) T

3

0.0 (0.0) 98.9 (0.0) 100 (1.1)

unbeaten (beats all) T

4

24.6 (0.0) 18.2 (0.0) 100 (57.2)

unbeaten (beats all) T

5

0.9 (0.0) 100 (36.8) 63.2 (0.0)

unbeaten (beats all) T

6

16.3 (0.0) 100 (0.0) 100 (0.0)

Table 2. Comparison of PAES, SPEA and PESA at 1,000 evaluations

As Table 2 shows, PESA was clearly the best method on three of the func-

tions, and joint best with SPEA on a further two. On the one remaining function

it achieved the second-best performance. SPEA is clearly best on just one func-

tion, and joint best with PESA on two. PAES is the worst performer here, being

clearly worst on three of the test functions, and second or joint second best on

the remaining three.

In Table 3, we can see the results when trials were set to run for 5,000

evaluations. PESA is now clearly best on two of the six test functions, and joint

best with SPEA on a further two. It is second best on the remaining two test

functions. Given the greater time limit available, PAES starts to improve its

comparative performance, now being clearly best on one function and joint best

on two. SPEA seems to lose out to PAES somewhat with the increased time

limit, now being clearly best on one function, but worst or joint worst on the

remaining �ve.

Table 4 indicates the results when trials were given a full 20,000 evaluations

each. PESA is now best or joint best on �ve of the six test functions. In the

other case it is second best, beating SPEA, although rather a poor second to

PAES. PAES is clearly best in one case and joint best in another, while SPEA

is joint-best in two cases, second best in two cases, and worst in the remaining

two cases.

All of these results are summarised in Table 5, in which we show the rank for

each algorithm at each evaluation time limit, on each problem. For example, the



Problem PAES SPEA PESA

unbeaten (beats all) T

1

94.3 (76.5) 0.0 (0.0) 23.5 (5.7)

unbeaten (beats all) T

2

0.0 (0.0) 0.0 (0.0) 100 (100)

unbeaten (beats all) T

3

66.2 (21.7) 23.7 (0.0) 78.3 (21.1)

unbeaten (beats all) T

4

96.1 (0.0) 40.5 (0.0) 100 (0.0)

unbeaten (beats all) T

5

0.0 (0.0) 100 (24.0) 76.0 (0.0)

unbeaten (beats all) T

6

15.5 (4.6) 0.0 (0.0) 95.4 (84.5)

Table 3. Comparison of PAES, SPEA and PESA at 5,000 evaluations

Problem PAES SPEA PESA

unbeaten (beats all) T

1

99.6 (98.7) 0.0 (0.0) 1.2 (0.2)

unbeaten (beats all) T

2

0.5 (0.0) 41.4 (2.4) 97.6 (58.6)

unbeaten (beats all) T

3

47.9 (9.1) 37.4 (0.0) 90.9 (18.3)

unbeaten (beats all) T

4

99.9 (0.0) 100 (0.0) 100 (0.0)

unbeaten (beats all) T

5

0.0 (0.0) 100 (2.3) 97.7 (0.0)

unbeaten (beats all) T

6

11.2 (8.5) 0.1 (0.0) 97.5 (88.7)

Table 4. Comparison of PAES, SPEA and PESA at 20,000 evaluations

entry `1/3/3' for SPEA under T

3

indicates that for the shorter time limit it was

the best algorithm (indicated by the `1'), but then became third-best (ie: worst)

at the moderate time limit of 5,000 evaluations (indicated by the �rst `3'), and

also at the longest time limit of 20,000 evaluations (indicated by the second `3').

Problem PAES SPEA PESA

rank (at 1k/5k/20k evals) T

1

2/1/1 3/3/3 1/2/2

rank (at 1k/5k/20k evals) T

2

3/3/3 2/3/2 1/1/1

rank (at 1k/5k/20k evals) T

3

3/1/2 1/3/3 1/1/1

rank (at 1k/5k/20k evals) T

4

2/1/1 3/3/1 1/1/1

rank (at 1k/5k/20k evals) T

5

3/3/3 1/1/1 2/2/1

rank (at 1k/5k/20k evals) T

6

3/2/2 1/3/3 1/1/1

Table 5. Summary of PAES, SPEA, PESA comparisons on Functions T1{T6

With reference to Table 5, PAES clearly seems to be a slow starter, with

poor comparative performance at short time limits, but quite able to compete

with other methods at longer time limits. To some extent this would indicate

that PAES is best not used for (near) real-time applications. However, the time

complexity of PAES algorithm is much more favourable than population-based

multiobjective optimisers (Knowles and Corne, 2000), so this conclusion may

not be fair. The conclusion stands, however, in the case of applications where

�tness evaluation is the bottleneck.

There is no clear pattern to the performance of SPEA as we increase the

time limit, except for the fact that its rank generally worsens from the fast to

the moderate time limit as PAES `catches up' with it. PESA, on the other hand,

seems to successfully hold its own at all time limits. reference to table 5 seems to

suggest it is generally the best of the three algorithms compared here on these

test functions.



It is instructive to now consider performance in terms of the problem char-

acteristics. T

1

is not a particularly di�cult problem (lacking multimodality,

deception, and so forth), and this was the only problem on which PESA was

not best or joint best at the longest time limit. It seems reasonable to conclude

that this is because the hillclimbing strategy of PAES (the clear winner on this

problem) is particularly suitable here. the problem has none of the characteris-

tics that the sophisticated aspects of PESA or SPEA (such as use of crossover,

and selection from a population) are designed to address. PAES therefore makes

aggressive and fruitful use of its time on this problem, while PESA and SPEA es-

sentially waste much of their search e�ort. This intuition seems to be con�rmed

by the fact that one of the problems on which PAES performed particularly

badly was T

5

, which is the deceptive problem in the suite.

6 Conclusion

We have described the Pareto Envelope-based Selection Algorithm, and com-

pared its performance with two recent strong-performing multiobjective optimis-

ers on a suite of test functions devised by Deb (1998). Comparative performance

was measured using a sophisticated statistical comparison technique, and per-

formance was compared in respect of three separate time limits, reecting the

varying needs for solution speed in real-world applications. We found that PESA

generally outperforms both SPEA and PAES on these functions. It was never

the worst of the three, and tended to perform best or joint best (with SPEA),

whether solutions were needed quickly, moderately quickly, or without stringent

time constraints.

PAES and SPEA are both modern multiobjective optimisation methods

which have previously been found to outperform a wide range of classical meth-

ods on a wide range of problems, The relative performance of PESA demon-

strated here therefore suggests that PESA may be well quali�ed to join these

two methods in the current set of `best performers' in the multiobjective evolu-

tionary algorithm community. However, results on a limited set of test functions

must always be regarded as tentative, and hence much further work is needed

on further problems to better assess the value of PESA.

Acknowledgments

The authors are grateful to British Telecommunications Plc for �nancial support

of the second and third authors.

References

Czyzak, P. and Jaszkiewicz, A. (1998). Pareto simulated annealing - a meta-

heuristic technique for multiple-objective combinatorial optimization. Journal

of Multi-Criteria Decision Analysis 7, 34{47.



Deb, K. (1998). Multi-Objective Genetic Algorithms: Problem Di�culties and

Construction of Test Problems. Technical Report CI-49/98, Department of Com-

puter Science, University of Dortmund.

Fonseca, C. M. and Fleming, P. J. (1995). An Overview of Evolutionary Algo-

rithms in Multiobjective Optimization. Evolutionary Computation 3, 1{16.

Fonseca, C. M. and Fleming, P. J. (1995a). On the Performance Assessment and

Comparison of Stochastic Multiobjective Optimizers. In Voigt, H-M., Ebeling,

W., Rechenberg, I. and Schwefel, H-P., editors, Parallel Problem Solving From

Nature - PPSN IV, pages 584{593, Springer.

Gandibleux, X., Mezdaoui N. and Freville, A. (1996). A tabu search procedure to

solve multiobjective combinatorial optimization problems. In Caballero, R. and

Steuer, R., editors, in Proceedings volume of Multiple Objective Programming

and Goal Programming '96, Springer-Verlag.

Hansen, M. P. (1996). Tabu Search for Multiobjective Optimization : MOTS.

Presented at MCDM '97, Cape Town, South Africa, Jan 6-10.

Hansen, M. P. (1997). Generating a Diversity of Good Solutions to a Practical

Combinatorial Problem using Vectorized Simulated Annealing. Submitted to

Control and Cybernetics, August 1997.

Horn, J., Nafpliotis, N., Goldberg, D.E. (1994). A niched Pareto genetic algo-

rithm for multiobjective optimization, in Proceedings of the First IEEE Con-

ference on Evolutionary Computation IEEE World Congress on Computational

Intelligence, Volume 1, pages 67{72. Piscataway, NJ: IEEE Service Centre.

Horn, J. and Nafpliotis, N. (1994). Multiobjective Optimization Using The Niched

Pareto Genetic Algorithm. IlliGAL Report 93005, Illinois Genetic Algorithms

Laboratory, University of Illinois, Urbana, Champaign.

Knowles, J. D. and Corne, D. W. (1999). Local Search, Multiobjective Optimi-

sation and the Pareto Archived Evolution Strategy, in Proceedings of the Third

Australia-Japan Joint Workshop on Intelligent and Evolutionary Systems, pp.

209{216.

Knowles, J. D. and Corne, D. W. (2000). Approximating the Nondominated

Front Using the Pareto Archived Evolution Strategy. Evolutionary Computation,

8(2):149{172.

Parks, G. T., Miller, I. (1998). Selective Breeding in a Multiobjective Genetic

Algorithm. In Fifth International Conference on Parallel Problem Solving from

Nature (PPSN-V), pages 250{259. Springer.

Srinivas, N., Deb, K. (1994). Multiobjective optimization using nondominated

sorting in genetic algorithms. Evolutionary Computation, 2(3), 221{248.

Zitzler, E. and Thiele, L. (1999). Multiobjective Evolutionary Algorithms: A

Comparative Case Study and the Strength Pareto Approach. IEEE Transactions

on Evolutionary Computation, 2(4), 257{272.

Zitzler, E., Deb, K. and Thiele, L. (1999) Comparison of multiobjective evolu-

tionary algorithms: empirical results. Technical report 70, Computer Engineering

and Networks Laboratory (TIK), Swiss Federal Institute of Technology (ETH)

Zurich.


