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Abstract

Finding a minimum-weight spanning tree

(MST) in a graph is a classic problem in op-

erational research (OR) with important ap-

plications in network design. In this pa-

per, we consider the degree-constrained mul-

tiobjective MST problem, which is NP-hard.

We present several di�erent parameterized

problem generators for producing MST in-

stances with di�erent problem features, in-

cluding any number of objectives, varying

degrees of convexity and non-convexity in

the Pareto front, and edge weight combina-

tions that mislead greedy approaches. As

well as being useful for the OR community,

these generators are well-suited to provide

problems to form part of a wider (evolu-

tionary) multiobjective test problem suite,

where constrained and NP-hard combinato-

rial problems are sometimes poorly repre-

sented. Fifteen instances are generated using

the presented methods, and benchmark re-

sults on these instances for a multiobjective

EA, AESSEA, are presented. These are com-

pared with results from two di�erent non-EA

methods. All of our problem instances, gen-

erators, and solution sets will be made avail-

able for use by other researchers.

1 Introduction

For many years, minimum spanning tree (MST) prob-

lems have been of great interest to the operational re-

search community. More recently, the multiobjective

minimum spanning tree (mc-MST)

1

problem, in which

there are multiple weights de�ned on each edge, and

1

It is often called the multi-criterion MST, hence mc-

MST.

which is NP-hard, has become subject of increasing

interest. Several papers on this subject [3, 5, 14] have

proposed approximate polynomial algorithms, and ex-

act methods, for tackling the problem. With growing

interest in the evolutionary algorithm (EA) commu-

nity in multiobjective optimization, it seems likely that

this application should now become the focus of more

EA approaches also. The �rst genetic algorithm (GA)

for the mc-MST (in which a Pr�ufer number encoding

is used) was proposed by Zhou and Gen [15]. The

problems used to test their algorithm were, however,

very simple and could be much better solved using

good exact methods [14] (smaller problems), or heuris-

tic approximation methods [3, 5] (larger problems).

Nonetheless, some variants of the mc-MST may not

be easily or e�ciently solved by exact methods. One

example is when the number of objectives is greater

than two. It is then relatively straightforward for a

multiobjective EA to be applied, whereas some exact

methods [14] and heuristics have only been developed

for the bi-objective case. Furthermore, when other

constraints need to be incorporated then this may be

achieved relatively easily in an evolutionary algorithm

but not in some of the pure heuristic approaches. Un-

fortunately, these more di�cult problems are not gen-

erally available and have not yet been considered in

algorithm studies.

In order to aid in the further development of good evo-

lutionary algorithms and other metaheuristics for a full

range of variants of the mc-MST, it would be useful

to have a collection of parameterized problem gener-

ators to provide benchmark problems that could be

used in comparative studies. In this paper we present

such a collection of simple problem generators that can

provide problems with correlated and anti-correlated

weights (which critically a�ect the shape of the Pareto

front, and therefore the applicability of di�erent meth-

ods), problems with large regions that have no so-

lutions on the convex hull of the Pareto front, and

problems which are di�cult to solve when a degree

constraint is additionally imposed. All of the gener-



ators can generate problems of di�erent sizes, with a

di�ering degree of sparsity, and with any number of

objectives (except for the concave graph generator).

The generators proposed may also be used for testing

the general strengths and weaknesses of multiobjec-

tive EAs, as part of a wider test problem suite. Much

progress has been made recently in improving the va-

riety, di�culty, and actual use of, test problem suites

by researchers in the evolutionary multiobjective op-

timization (EMO) community. However, there is still

a shortage of parameterized combinatorial problems,

constrained problems, and problems with large num-

bers of objectives. The generators proposed here can

provide problems with all these features, separately as

well as together.

In this paper, the di�erent generators are used to pro-

vide an initial set of 15 di�erent problem instances,

each with just two objectives. These instances are then

tackled using a multiobjective EA called AESSEA,

which is described in detail in a recent paper by us [9],

where it was used to solve some much simpler random-

weight mc-MST problems. The AESSEA results are

also compared with an enumerative algorithm (smaller

problems) and a polynomial-time iterated heuristic ap-

proach (larger problems) to provide the �rst bench-

mark results over a wide range of mc-MST problem

types with constraints. All of the problem instances,

generators, and results sets are available for others to

use by e-mail contact with the �rst author.

The remainder of the paper is organized as follows:

Section 2 de�nes the mc-MST problem and a degree-

constrained variant. In Section 3, the di�erent prob-

lem generators are described. Section 4 then describes

AESSEA, the encoding and operators used, and the

other non-EA algorithms. Section 5 provides details

of the experimental method including all parameter

settings, and describes the statistical method used to

analyze the results. Section 6 presents the results, and

Section 7 concludes.

2 Multiobjective Degree-Constrained

Minimum Spanning Tree Problem

A spanning tree of an undirected, connected graph,

G = (V;E), is a subgraph T = (V;E

T

); E

T

� E that

contains all vertices in V and connects them with ex-

actly jV j � 1 edges, so that there are no cycles. If G

is complete, then the set S of spanning trees T of G

has jSj = jV j

jV j�2

members. If each edge (i; j) 2 E

has K > 1 associated non-negative real numbers, rep-

resenting K attributes de�ned on it and denoted with

w

i;j

= (w

1

i;j

; w

2

i;j

; : : : ; w

K

i;j

), then the mc-MST problem

may be de�ned as:

\minimize" W = (W

1

;W

2

; : : : ;W

K

)

with W

k

=

X

(i;j)2E

T

w

k

i;j

; k 2 1::K

(1)

where the term `minimize' is in quotation marks to

indicate that it may not be possible to �nd a single

solution that is minimal on all the components of W.

Instead, one is required to �nd a set of spanning trees

S

�

� S, called the Pareto optimal set, with the prop-

erty that:

8T

�

2 S

�

� 6 9T 2 S � T � T

�

(2)

where T � T

�

() 8k 2 1::K � W

k

� W

k
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^ 9 k 2

1::K � W

k

< W

k

�

. The expression T � T

�

is read as

T dominates T

�

, and solutions in the Pareto optimal

set are also known as e�cient or admissible solutions.

If there is, in addition, a constraint d on the maximum

vertex degree in the spanning tree, then the problem is

called the multiobjective degree-constrained minimum

spanning tree (mcd-MST) problem.

3 Problem generators

We propose generators for the following types of non-

Euclidean problems:

Random Random (uncorrelated) integer or real

number weighted graphs;

Correlated: Random correlated real number

weighted graphs;

Anti-Correlated: Random anti-correlated real

number weighted graphs;

M-Correlated: Correlated real number weighted

graphs with high vertex degree in the underlying

MST;

Concave: Real number weighted graphs that have a

large concave region in their Pareto front.

All of the above can be generated as either sparse

graphs, or complete graphs. We consider only com-

plete graphs in this paper. Similarly, all but the con-

cave graphs can be generated with an arbitrary num-

ber of objectives, K, although here we restrict our at-

tention to bi-objective problems only.

Random

The random graph generator simply sets each com-

ponent of each edge weight vector to a value drawn

from a uniformly random distribution within some



range, U(min;max). In this paper we do not con-

sider graphs of this type but we have already shown [9]

that our AESSEA algorithm using a direct coding and

specialized operators is superior to the AESSEA al-

gorithm using a Pr�ufer encoding [12, 15] on problems

of this type. Here we restrict our attention to more

di�cult problem types.

Correlated and Anti-Correlated

The correlated (and anti-correlated) graphs are gen-

erated by using the algorithm given in Figure 1. The

procedure takes the required correlation � 2 [�1; 1]

as an argument and returns a weight vector of K

weights where the �rst component is drawn from a

uniform distribution, and all subsequent weights are

either positively or negatively correlated with respect

to the �rst component, and lie within the same range

of values. Note that since the correlation exists be-

tween the �rst and each other component of the weight

vector, a correlation of j�j exists between all pairs of

components w

k

; w

l

k; l 2 2::K. The correlation be-

tween the components of a weight vector a�ects the

shape of the associated Pareto front of the MST prob-

lem of the graph. A zero correlation gives a smooth,

convex Pareto front with a fairly constantly varying

gradient along its length. In contrast, a large positive

correlation gives a convex Pareto front with more of a

discontinuous change in the gradient. With a correla-

tion approaching +1, the front becomes smaller until

in the limit, it will only contain one optimal point.

With a strong negative correlation, the front is convex

but approaches a straight line or at surface in objec-

tive space as the correlation approaches -1. Because of

this there tend to be a large number of non-supported

e�cient solutions (those that do not lie on the con-

vex hull of the Pareto front). This shape of Pareto

front might make it di�cult for methods based on the

use of weighted sum aggregation of objectives, to �nd

a good approximation to the Pareto front since they

tend to �nd it di�cult to discover non-supported so-

lutions, and also rely on a changing gradient in the

Pareto front to �nd a good range of points on it.

M-Correlated

The M-Correlated graph generator is based on a graph

generator developed by us [6] for producing `mislead-

ing' or M-graph problems for the standard (single-

objective) d-MST problem, and combining this with

the correlated graph generator described above. The

M-Correlated graphs are designed to be particularly

di�cult to solve when a low maximum vertex degree

constraint must be satis�ed.

Algorithm: Gen correlated wts

� 2 [�1; 1] is the correlation, provided by the user

� is the o�set, calculated from �

 is the variation, calculated from � and �

U(min;max) is a uniformly distributed random devi-

ate 2 [min;max)

if (� � 0)

�  1=2(1� �)

  �

else

�  1=2(1 + �)

  � � �

foreach edge (i; j) 2 E

w

1

i;j

 U(0; 1)

foreach objective k 2 2::K

w

k

i;j

 �w

1

i;j

+ � +  U(�1; 1)

Figure 1: An algorithm for generating a graph with

correlated weight vectors

In theory, the maximum vertex degree of a MST in

a graph of random edge weights is jV j � 1. However,

in practice, when reasonably large uniformly random

weight graphs are generated, the maximum vertex de-

gree of the graph's MST rarely exceeds four or �ve.

Due to this fact, some researchers [1, 10] have devel-

oped methods for generating biased random graphs

where the graphs' MSTs have a high maximum ver-

tex degree. Knowles and Corne [6] further developed

the graph generator of Boldon et al. to bias the edge

weights in such a way as to mislead any algorithm that

greedily chooses edges of low weight in an attempt to

grow a low-weight spanning tree. The M-graph gener-

ator, as it is called, requires four parameters to be set:

jV j the number of vertices in the graph;

f the number of vertices with large degree;

ld the lower bound on the degree of

large-degree vertices; and

ud the upper bound on the degree of

large-degree vertices,

with the constraints that f:ud < jV j and ld < ud .

The generator has two main stages. In the �rst stage

a spanning tree that will be the MST of the graph is

formed. In the second stage other edges are added to

form a graph of the required density. The �rst stage

begins by forming f di�erent `star' graphs with the

degree of each star centre vertex chosen uniformly at

random in [ld; ud]. These disconnected components

are then connected by adding f � 1 edges at random,

to form a tree. The set of connected vertices, V

T

, in

the tree will have fewer than jV j members, so that

the tree is not spanning. To span the whole graph,

additional vertices in V n V

T

, not in any of the stars,



will be added. However, �rst the edges in the (non-

spanning) tree formed so far, are all assigned uniformly

random weights in [0; �). Next, all remaining uncon-

nected vertices are connected to the tree by adding an

edge between them and exactly one of the star centre

vertices. The weight of these edges is assigned a uni-

formly random weight in [�; �). Additional edges are

then added between any pair of non-adjacent vertices,

until the graph reaches the required density of connect-

edness. The weights assigned to these additional edges

are uniformly random in [�; !] for any pair of vertices

where both are members of V

T

, and uniformly random

in [ ; !] for all other vertex pairs. If the weight pa-

rameters are set so that 0 < � < ��  < ! then the

resulting graph will be a misleading graph, that is the

graph's structure will successfully mislead algorithms

that favour choosing low-weight edges. This can be

understood by �rst noticing that the edges incident

to the vertices in V n V

T

have two di�erent ranges of

values. Those edges whose other incident vertex is a

star-centre have a low weight, whereas all others have a

high weight. However, often a greedy-style algorithm

will be forced to choose the higher weighted edge to

connect these vertices because in earlier choices it will

favour the edges that are incident to a star centre ver-

tex (because these have the lowest range of weights in

the graph) thereby causing the star centre vertex to

reach its maximum allowed degree, and so preventing

the connection of it to one of the vertices in V n V

T

.

Because  � � this will lead to a heavier graph, over-

all.

To make a multiobjective version of an M-graph, we

use the M-graph procedure to set the weights of the

�rst component of all the edge weight vectors. The

others components of the edge weight vectors are then

set using the correlation procedure outlined above. If

a large positive correlation is used then the graph will

be misleading in all of its components, and it will be

di�cult for a greedy approach to �nd a low-weight

solution if the degree constraint is much lower than

the parameter ud.

Concave

The Concave problem generator can only be used to

make bi-objective problems at present. It works by

setting the edge weights of three `special' vertices (la-

belled 1, 2, and 3) in such a way that a large con-

cave region in the Pareto front will result. If we re-

strict all edge weights to lie in [0,1], then the weights

that can be used are the following: W

0;1

= (�; �),

W

0;2

= (0; 1 � �), and W

1;2

= (1 � �; 0). All other

edges are W

i;j

= (U(�; �);U(�; �)) for i; j > 3 and

W

i;j

= (U(1 � �; 1);U(1 � �; 1)) if i xor j � 3, with

i; j 2 V , � a small positive value of the order of 1=jV j,

� < � � 1 � �, and U(min;max) giving a uniformly

3
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Figure 2: A plot showing true nondominated points

on a 25 vertex concave problem

random deviate in [min;max].

An example of (an approximation of) the Pareto front

of a concave graph problem is given in Figure 2. The

graph has 25 vertices and the values of the parameters

for generating it were: � = 0:05 and � = 0:2.

4 Algorithms

In a recently submitted paper [9], we studied the per-

formance of two di�erent encodings within a multi-

objective evolutionary algorithm called AESSEA, on

the mc-MST problem without degree-constraints. In

that work, it was found that a mixed method based

on a decoder-style encoding for initialization, and a

direct encoding with specialized crossover and muta-

tion operators was superior to the Pr�ufer encoding, in

the same evolutionary algorithm. We also concluded

in the paper that for un-constrained random-weight

problems, a simple approach based on iterating Prim's

algorithm [11] for di�erent weighted-sum aggregations

of the objectives in the given mc-MST, actually pro-

duces results that are far better than the Pr�ufer en-

coded evolutionary algorithm, and about the same as

the mixed encoded evolutionary algorithm, but in far

less time. However, we also noted that for various con-

strained problems and for situations where the Pareto

front may contain many non-supported solutions, the

Prim's algorithm approach would fail to perform well.

Our aim here is to test those ideas by applying

AESSEA with a mixed encoding to a range of degree-

constrained problems with di�erent shaped Pareto

fronts and once again we compare our results with

our iterated mcd-Prim algorithm procedure, and also

against a complete enumeration of the space on the

smaller 10-vertex problems. The algorithms mcd-Prim

and AESSEA are described briey below, including

the encodings and operators used in the latter.



Algorithm mcd-Prim

Prim's algorithm [11] is a well-known polynomial

time constructive algorithm for solving the (single-

objective, unconstrained) MST problem. It can be

adapted to the d-MST by changing it so that at each

step, in its construction of a tree, it checks for a degree-

constraint violation before adding in the next edge.

We call this constrained version of Prim's algorithm,

d-Prim. Of course, since d-MST is NP-hard, d-Prim

does not guarantee an optimal solution.

For tackling the mcd-MST, a multiobjective version

of d-Prim is easily devised. By simply replacing the

vector of edge weights in the graph by a weighted sum

scalarization of them, optimization can be carried out

in one `direction' of the objective space. In mcd-Prim,

this procedure is iterated for many di�erent weightings

of the objectives, giving a whole range of solutions

approximating the Pareto front.

The scalarization of the objectives is achieved by re-

placing the vector weights de�ned on each edge in

G by a scalar weight b formed by taking the inner

product of a normalized scalarizing vector, �, and w,

b = �:w. To obtain di�erent weightings, we use ev-

ery normalized scalarizing vector, �, with components

equal to l=s; l = 0::s where s is a parameter controlling

the number of di�erent vectors that will be generated.

This gives

8

>

:

s+K � 1

K � 1

9

>

;

di�erent, evenly distributed,

scalarizing vectors. For each di�erent � vector, the

constrained version of Prim's algorithm (d-Prim) is ap-

plied.

For a large number of di�erent scalarizing vectors (in

our experiments we set s = 1000, giving 1001 di�erent

� vectors), mcd-Prim may generate an approximation

to S

�

, the set of Pareto optimal spanning trees, that is

satisfactory in many cases. However, with a low degree

constraint the algorithm may not generate many (or

any) optimal solutions on a single run. Therefore, it

may be useful to run the algorithm several times with

a di�erent start vertex. In the experiments reported

below, we always run mcd-Prim �ve times, each with

a di�erent start vertex.

AESSEA

The multiobjective evolutionary algorithm, AESSEA,

is based closely on procedures already de�ned for the

Pareto archived evolution strategy (PAES) [7], and is

described more fully in [9]. AESSEA is a steady-state

EA, that is, only one new solution is evaluated per

`generation'. It keeps a set of non-dominated solutions

in an archive, and uses this set of solutions to estimate

the quality of newly generated solutions. The algo-

rithm is elitist in the sense that parents and o�spring

compete, but the overall selection pressure of the al-

gorithm is not too strong since selection for mating is

purely random, and o�spring only replace one of their

parents, rather than the weakest member of the popu-

lation. Some testing of this algorithm and comparison

with PESA [2] suggest that it is both an e�ective and

computationally e�cient, multiobjective EA.

RPM decoder encoding

The randomized primal method was put forward in [6]

(where it is described in detail) as an encoding for

solving the d-MST problem using any metaheuristic

search method. It is a decoder type of representation,

that is the chromosome encodes for choices that are

made when a constructive algorithm builds a tree. The

problem with this type of encoding is that it does not

exhibit good locality, and it has super-linear growth

in complexity for linear increase in the graph size jV j.

However, it is good for initialization where it used only

a small number of times.

Direct encoding and operators

The direct encoding and operators used in AESSEA

are multiobjective versions of those put forward by

Raidl in [13] for the d-MST problem. We describe

how these operators were adapted for the mcd-MST

problem in detail in [9]. In summary, the operators

are adapted so that they bias the choice of edges to-

wards those that are the minima on some weighted-

sum single objective evaluation of the multiobjective

tree weight. The weights in the weighted-sum are also

encoded for by the chromosome and are subject to mu-

tation and crossover. The method ensures that good

solutions are found across the whole Pareto front.

5 Experimental method

Generated problems

Three graphs for each of the problem types: Cor-

related, Anti-Correlated, M-Correlated, and Concave

were generated; one each at sizes of 10, 25, and 50

vertices, giving 12 graphs in all, from which 15 prob-

lems are created by setting degree constraints of 3 on

all of the problems, and an additional, lighter degree

constraint of 5 on the three M-correlated problems.

The correlations for the Anti-Correlated graphs,

10vAC, 25vAC, and 50vAC were set at -0.7. For the

Correlated graphs, 10vC, 25vC, and 50vC, the corre-

lation was set at 0.7. For the M-Correlated graphs the

correlation was also set at 0.7, and the other parame-

ters were f = 1; 2; 5, ld = 6; 6; 7, ud = 8; 10; 9, for the

10vM-C, 25vM-C, and 50vM-C, respectively. There is



no correlation between the edge weight components in

the concave graphs, and the other parameters used

for generating these graphs were � = 0:1; 0:05; 0:03

and � = 0:25; 0:2; 0:125 for the 10vConc, 25vConc and

50vConc graphs respectively.

Algorithm parameters and experiments

The parameters used for AESSEA are given in Table 1.

AESSEA is run 30 times independently on each of the

15 problems and the nondominated archive returned

by it from each run is stored for statistical analysis,

and comparison with the non-EA approaches. For each

problem, mcd-Prim is run 5 times with a di�erent start

vertex, and the combined nondominated solution set

is stored. On the ten-vertex problems we also use an

enumerative procedure to give us the entire true Pareto

front for comparison.

Parameter AESSEA

population size, jP j 200

nondominated solutions

archive size, arcsize 200

initialization method RPM

mutation type edge-mutation

crossover type edge-crossover

total number of function

evaluations, num evals 20k/50k/50k

# of grid squares used

for `crowding' strategy [7] 1024

Table 1: Parameter settings for AESSEA. The three

�gures for number of evaluations relate to the three

di�erent problem sizes, 10, 25, and 50 vertices, respec-

tively

Statistical Analysis of Data

When a multiobjective EA or other approximate

method is run on a multiobjective problem, it returns a

set of (mutually nondominated) solutions that approx-

imate the true Pareto optimal set. Each of the solu-

tions also has an image in the multi-dimensional objec-

tive space, consisting of an objective vector. The set

of objective vectors approximate the true Pareto front.

How well the discovered objective vectors (points) ap-

proximate the true Pareto front is usually more im-

portant than the proportion of the Pareto optimal

solutions that have been found. But measuring the

quality of an approximation to the Pareto front is not

a straightforward problem because several dimensions

of quality in an approximation can be identi�ed. Cou-

pled with this problem is the need for some statistical

analysis of the performance of the (stochastic) approx-

imate method over multiple runs, to provide useful

summarising data for the expected performance of the

algorithm.

Our methods rely on a technique developed by Fon-

seca and Fleming [4], and later implemented and ex-

tended by us [7]. The technique relies on the notion

that the nondominated points from any approxima-

tion to a Pareto front de�ne a surface (called the at-

tainment surface), that divides up the objective space

into a region that is dominated by the discovered non-

dominated points, and a region that is not dominated

by them. Over multiple runs, an approximate algo-

rithm will generate multiple di�erent attainment sur-

faces. By sampling the distance of these surfaces from

an origin at many di�erent angles, one can obtain sta-

tistical information about the expected position of the

attainment surface along each di�erent angled direc-

tion (or sampling line). For example, one can calcu-

late the median attainment surface, or the quartile

attainment surfaces of an algorithm. One can also

compare directly the whole distribution of positions of

the attainment surfaces obtained from multiple runs

of two or more di�erent algorithms. This is particu-

larly useful when comparing the performance of two or

more EAs (e.g. see [7]). Here, where we just have bi-

objective problems, our �rst method is to simply plot

the median attainment surface of AESSEA and com-

pare it with the combined nondominated points found

by mcd-Prim.

The second method is quantitative. For a single algo-

rithm's sets of nondominated points, the method �rst

computes (a sampling of) the attainment surfaces as

above, and then calculates the (sampled) median and

quartile surfaces. Now, to convert these surfaces into

a simple �gure of merit, the size of the dominated

region of the surfaces can be calculated. For a bi-

objective minimization problem (as we have here) this

is simply the area above and to the right of the at-

tainment surface up to some bounding rectangle. How

the bounding rectangle is best set is open to debate.

Here we calculate the weight of the worst feasible so-

lution (heaviest spanning tree) for each of the objec-

tives in turn, giving us a point (z

1

, z

2

) that is used

as the upper right corner of our bounding rectangle.

(The points were calculated using Prim's algorithm

set to maximize). In our results we report the abso-

lute (unnormalized) size of the dominated region of

the median surface, and (to get an idea of the varia-

tion over di�erent independent runs), the interquartile

dominated region size. One disadvantage of this ap-

proach is that concave regions of the Pareto front are

under-represented in the statistics. This is seen in the

results section where there is a seeming di�erence in

the results shown by viewing the plots and by the nu-

merical results, for the concave graph problems.



6 Results

Problem Total size Median (Interqt)

Enum mcd-Prim AESSEA

10vAC 21.3837 20.4108 21.357 (0.0032)

25vAC 246.256 245.175 (1.428)

50vAC 1240.27 1224.07 (7.6)

10vC 36.0955 35.3919 35.7672 (0)

25vC 363.233 363.329 (0.109)

50vC 1868.59 1869.3 (3.52)

10vM-C-d3 26.8362 23.6895 26.8342 (0)

25vM-C-d3 281.923 343.892 (0.55)

50vM-C-d3 1302.33 1493.89 (3.17)

10vM-C-d5 40.0389 35.3428 40.0365 (0)

25vM-C-d5 345.62 384.511 (0)

50vM-C-d5 1496.8 1615.49 (4.56)

10vConc 37.3255 37.0848 37.2367 (0)

25vConc 334.694 334.644 (0.354)

50vConc 2122 2118.39 (1.67)

Table 2: Size of the median and interquartile dom-

inated regions for 30 runs of AESSEA, and the total

combined size of the dominated region found using �ve

runs of mcd-Prim. For the ten-vertex problems the

true size of the dominated region is represented by the

results of the Enumeration algorithm
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Figure 3: AESSEA's quartile attainment surfaces, and

mcd-Prim's combined discovered vectors, on the 50

vertex correlated problem with degree constraint 3

From the results given in Table 2, we can see that

mcd-Prim performs very well compared to AESSEA

on the correlated and anti-correlated problems, and is

considerably faster (but see Figure 3 for further help

visualizing the Pareto fronts discovered). However, on

the M-correlated graphs it clearly struggles. This is as

expected because on these problems the degree con-

straint has a real e�ect on the di�culty of �nding good

solutions. We can see that AESSEA is clearly supe-

rior here; observe the size of the region discovered by

it, compared to the enumeration method on the 10

vertex M-correlated problem for both d=3 and d=5.

This is further shown in a plot given in Figure 4. Fi-
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Figure 4: AESSEA's quartile attainment surfaces, and

mcd-Prim's combined discovered vectors, on the 50

vertex M-correlated problem with degree constraint 3
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Figure 5: Nondominated points found from 5 runs

of mcd-Prim, and the median attainment surface

achieved by AESSEA. Note how AESSEA �nds points

in the concave region of the Pareto front

nally, on the (larger) concave problems, it appears that

mcd-Prim does better than the AESSEA but in fact is

unable to �nd any solutions in the concave region of

the Pareto front. Its larger dominated region is due to

it �nding the very edge of the Pareto Front, which the

EAs do not achieve on every run. This is illustrated

in a plot showing the median attainment surface for

AESSEA, and the points found from 5 runs of mcd-

Prim is given in Figure 5.

7 Conclusion

We have presented a number of graph generators that

can produce a range of challenging graph types for the

mcd-MST problem. The generators can be used to

make problems for the OR community to test exact

and heuristic approaches to the mc-MST, and for gen-

erating benchmark problems to form part of broader

test problem suites for evaluating multiobjective EAs.



We have shown that on some problems it may not be

necessary to use an evolutionary algorithm or other

metaheuristic technique for tackling these problems,

because a simple, iterative approach | mcd-Prim |

can provide very good results in a fraction of the

time. However, we have also demonstrated that for

certain problems with constraints that are di�cult to

meet, an evolutionary algorithm, AESSEA, does ob-

tain superior results. Furthermore, AESSEA is able to

�nd points in the non-supported regions of the Pareto

front, as was clearly demonstrated using the concave

graph generator. In real problems of interest to the

telecommunications industry, the number and variety

of constraints that must be met will necessitate the use

of evolutionary algorithms similar to that investigated

here.

In our future work we will investigate the performance

of a memetic algorithm, M-PAES [8], on these prob-

lems. Although M-PAES has been shown to perform

well on other problems, it seems likely that in this ap-

plication, a local-search element would be particularly

useful. We base this conjecture on the observation

made by Ehrgott and Klamroth [3] that from a sample

of 50 random instances of a random weight bi-objective

MST problem, all of them were ergodic with respect to

a single exchange operator (although they prove this

will not always be true). In light of this, we predict

that further advances in tackling these di�cult con-

strained mc-MST problems will come from techniques

that incorporate a strong local search element, as used

in M-PAES.
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