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Abstract

Finding a minimum-weight spanning tree

(MST) in a graph is a classic problem in

operational research with important appli-

cations in network design. In this paper,

we consider the degree-constrained multi-

objective MST problem, which is NP-hard.

On �fteen benchmark instances, we com-

pare the performance of three di�erent algo-

rithms: the Pareto archived evolution strat-

egy (PAES); a new multiobjective evolution-

ary algorithm, AESSEA; and the memetic

PAES algorithm, M-PAES, all employing the

same initialization procedure, encoding and

operators. We �nd M-PAES performs well

on the whole range of problem types, gener-

ally outperforming the pure evolutionary and

local search algorithms.

1 Introduction

For many years, minimum spanning tree (MST) prob-

lems have been of great interest to the operational

research community. More recently, the multiobjec-

tive minimum spanning tree (mc-MST) problem, in

which there are multiple weights de�ned on each edge,

has become subject to considerable attention. Sev-

eral papers on this subject [1, 3, 12] have proposed

both approximate polynomial algorithms, and worst-

case exponential time exact methods, for tackling the

problem.

Zhou and Gen [13] have also proposed a multiobjective

GA approach to the mc-MST. However, the instances

tackled were very simple and could, in fact, be much

better solved using good exact methods [12] (smaller

instances), or heuristic approximation methods [1, 3]

(larger instances). In a recently published paper by

us [8], we extended on the work of Zhou and Gen by

developing a new multiobjective EA for the mc-MST

problem, called AESSEA, and compared a Pr�ufer en-

coding [10] (as used by Zhou and Gen) with a direct en-

coding and specialized operators that we adapted from

those of Raidl [11] for the degree-constrained MST (d-

MST). Our results demonstrated clear superiority of

the direct encoding method on some simple problem

instances without constraints. However, the simple in-

stances could also be tackled more e�ciently using a

polynomial-time, constructive heuristic approach.

In this paper, we tackle a set of more challenging

benchmark instances developed by us, with constraints

and other di�cult problem features. Using the same

initialization, encoding and operators developed pre-

viously, we compare the performance of PAES [5] - a

local search strategy, AESSEA [8], and our multiobjec-

tive MA, M-PAES [6]. All of the problem instances,

generators, and results sets are available for others to

use by e-mail contact with the �rst author.

2 Multiobjective Degree-Constrained

Spanning Tree Problem

A spanning tree of an undirected, connected graph,

G = (V;E), is a subgraph T = (V;E
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where the term `minimize' is in quotation marks to

indicate that it may not be possible to �nd a single

solution that is minimal on all the components of W.

Instead, one is required to �nd a set of spanning trees

S

�

� S, called the Pareto optimal set, with the prop-

erty that:
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. The expression T � T

�

is read as

T dominates T

�

, and solutions in the Pareto optimal

set are also known as e�cient or admissible solutions.

If there is, in addition, a constraint d on the maximum

vertex degree in the spanning tree, then the problem is

called the multiobjective degree-constrained minimum

spanning tree (mcd-MST) problem.

3 Algorithms

Details of the PAES algorithm can be found in [5],

details of the M-PAES algorithm can be found in [6],

and AESSEA is described in [8]. A baseline polyno-

mial algorithm mcd-Prim, used for benchmarking the

EA results, is described brie
y below, as are the ini-

tialization procedure, direct encoding and operators

used in the EAs.

Algorithm mcd-Prim

Prim's algorithm [9] is a well-known polynomial

time constructive algorithm for solving the (single-

objective, unconstrained) MST problem. It can be

adapted to the d-MST by changing it so that at each

step, in its construction of a tree, it checks for a degree-

constraint violation before adding in the next edge. Of

course, since d-MST is NP-hard, the resulting algo-

rithm does not guarantee optimality. For tackling the

mcd-MST, a multiobjective version of this constructive

algorithm is also easily devised. By simply replacing

the vector of edge weights in the graph by a weighted

sum scalarization of them, optimization can be car-

ried out in one `direction' of the objective space. In

mcd-Prim, this procedure is iterated for many di�er-

ent weightings of the objectives, giving a whole range

of solutions approximating the Pareto front. We use

mcd-Prim (using 1001 di�erent weightings) here as a

baseline algorithm. In the experiments reported be-

low, we always run mcd-Prim �ve times, each time

with a di�erent start vertex.

Randomized primal method for initialization

The randomized primal method (RPM) was put for-

ward in [4] (where it is described in detail) as an en-

coding for solving the d-MST problem using any meta-

heuristic search method. It is a decoder type of repre-

sentation, that is, the chromosome encodes for choices

that are made when a constructive algorithm builds a

tree. The problem with this type of encoding is that it

does not exhibit good locality, and it has super-linear

growth in complexity for linear increase in the graph

size jV j. However, it is good for initialization where it

is used only a small number of times. The RPM for

multiobjective problems is, like mcd-Prim, based on a

weighted scalarization of the objectives. Note also that

RPM reduces to mcd-Prim if the chromosome control-

ling it is set to all zeros. We use a slightly more random

initialization than this, though with a strong bias to-

wards lower allele values, for initialization to provide

slightly more initial diversity. We note that on easy

problems, using the mcd-Prim (all-zeros) initialization

would make the EAs converge slightly faster.

Direct encoding and operators

The direct encoding and operators used in AESSEA

and M-PAES are multiobjective versions of those put

forward by Raidl in [11] for the d-MST problem. We

describe how these operators were adapted for the

mcd-MST problem in detail in [8]. In summary, the

operators are adapted so that they bias the choice

of edges towards those that are the minima on some

weighted-sum single objective evaluation of the mul-

tiobjective tree weight. The weights in the weighted-

sum are also encoded for by the chromosome and are

subject to mutation and crossover. The method en-

sures that good solutions are found across the whole

Pareto front.

4 Experimental method

Generated instances

Four types of problems were considered: Correlated,

Anti-Correlated, M-Correlated, and Concave. Each

presents a particular di�culty to an optimizer. These

problems are described in detail in [7].

Three graphs for each of the problem types were gen-

erated: one each at sizes of 10, 25, and 50 vertices,

giving 12 graphs in all, from which 15 instances are

created by setting degree constraints of 3 on all of the

instances, and an additional, lighter degree constraint

of 5 on the three M-correlated instances.

The correlations for the Anti-Correlated graphs,

10vAC, 25vAC, and 50vAC were set at -0.7. For the

Correlated graphs, 10vC, 25vC, and 50vC, the corre-

lation was set at 0.7. For the M-Correlated graphs the



Parameter PAES AESSEA M-PAES

population size, jP j 1 200 50

nondominated solutions archive size, arcsize 200 200 G = 200; H = 200

initialization method RPM RPM RPM

mutation type mutate RPM edge-mutation edge-mutation

crossover type | edge-crossover edge-crossover

total number of function evaluations, num evals 20k/50k/50k 20k/50k/50k 20k/50k/50k

# of grid squares used for `crowding' strategy [5] 1024 1024 1024

Table 1: Parameter settings for the three algorithms; in addition l opt = 50, l fails = 20, cr trials = 10 for

M-PAES (see [6] for the meaning of these parameters). The three �gures for number of evaluations relate to the

three di�erent problem sizes, 10, 25, and 50 vertices, respectively

correlation was also set at 0.7, and the other parame-

ters were f = 1; 2; 5, ld = 6; 6; 7, ud = 8; 10; 9, for the

10vM-C, 25vM-C, and 50vM-C, respectively. There is

no correlation between the edge weight components in

the concave graphs, and the other parameters used

for generating these graphs were � = 0:1; 0:05; 0:03

and � = 0:25; 0:2; 0:125 for the 10vConc, 25vConc and

50vConc graphs respectively.

Algorithm parameters and experiments

The parameters used for each of PAES, AESSEA, and

M-PAES are given in Table 1. Each of the algorithms

was given 30 independent runs on each of the 15 in-

stances and the nondominated archive returned by

each algorithm from each run was stored for statis-

tical analysis, and comparison with the other non-EA

approaches. For each problem instance, mcd-Prim was

also run 5 times with a di�erent start vertex, and the

combined nondominated solution set was stored. On

the ten-vertex instances we also use an enumerative

procedure to give us the entire true Pareto front for

comparison.

Statistical Analysis of Data

We use two di�erent methods to analyse the statisti-

cal performance of the three algorithms over multiple

runs on the 15 di�erent problems. Both methods rely

on a technique developed by Fonseca and Fleming [2],

and later implemented and extended by us [5]. The

technique relies on the notion that the nondominated

points from any approximation to a Pareto set de�ne

a surface (called the attainment surface), that divides

up the objective space into a region that is dominated

by the discovered nondominated points, and a region

that is not dominated by them. Over multiple runs, an

approximate algorithm will generate multiple di�erent

attainment surfaces. By sampling the distance of these

surfaces from an origin at many di�erent angles, one

can obtain statistical information about the expected

position of the attainment surface along each di�erent

angled direction (or sampling line). For example, one

can calculate the median attainment surface, or the

quartile attainment surfaces of an algorithm. One can

also compare directly the whole distribution of posi-

tions of the attainment surfaces obtained from multi-

ple runs of two or more di�erent algorithms. The �rst

method of analysis that we use here does just this.

The 30 attainment surfaces for each of the three al-

gorithms are sampled using 500 di�erent equally dis-

tributed angled sampling lines, and on each line we

obtain the positions of the 90 intersections of the at-

tainment surfaces. Using a Mann-Witney rank sum

statistical test at the 95% con�dence level we can de-

termine if one distribution of attainment surfaces is

signi�cantly superior to another's. By doing this on

each of the 500 sample lines we can calculate the per-

centage of the sample lines (and therefore the percent-

age of the Pareto front) on which one distribution of

attainment surfaces is better than another, and the

percentage where there is no statistical di�erence. For

three or more optimizers we present these results in

the form of two statistics: the `unbeaten' statistic of a

distribution of attainment surfaces describes the per-

centage of the sampling lines on which the distribu-

tion was unbeaten by any of the two or more other

distributions of attainment surfaces, against which it

is being compared; and the `beats all' statistic gives

the percentage of the sampling lines on which the dis-

tribution beats all of the other distributions, each at

a statistically signi�cant level

1

. The disadvantages of

this approach are that the results are purely compar-

ative (that is they are not absolute results that others

can compare against), and also it is not clear by how

much one algorithm's attainment surfaces dominate

1

Although the statistical signi�cance holds for each pair

of distributions in turn, the level of signi�cance is reduced

over multiple tests



another. Because of these objections we use a second

method that handles both of these problems.

The second method is not comparative - it gives a

statistic which relates to just a single algorithm's dis-

tribution of attainment surfaces. This statistic can

then be compared between algorithms. So for a single

algorithm's sets of nondominated points, the method

�rst calculates the attainment surfaces as above, and

then calculates the median and quartile surfaces. Now,

to convert these surfaces into a simple �gure of merit,

the size of the dominated region of the surfaces can

be calculated. For a two-objective minimization prob-

lem (as we have here) this is simply the area above

and to the right of the attainment surface up to some

bounding rectangle. How the bounding rectangle is

best set is open to debate. Here we calculate the weight

of the worst feasible solution (heaviest spanning tree)

for each of the objectives in turn, giving us a point

(z

1

, z

2

) that is used as the upper right corner of our

bounding rectangle. (The points were calculated using

Prim's algorithm set to maximize). In our results we

report the absolute (unnormalized) size of the domi-

nated region of the median surface, and (to get an idea

of the variation over di�erent independent runs), the

interquartile dominated region size. The disadvantage

of this approach is that concave regions of the Pareto

front are under-represented in the statistics. This is

seen very clearly in the results section where there is

a clear di�erence in the results reported by method 1

and by method 2 for the concave graph instances.

5 Results

The results of our �rst statistical analysis method are

given in Table 2. The best results are shown in bold.

It is clear from the table that M-PAES and AESSEA

both using a direct coding and employing crossover do

favourably compared to PAES using only the RPM de-

coder encoding, and this superiority is emphasized fur-

ther as instance size increases. M-PAES and AESSEA

using the same encoding are well-matched on most in-

stances but M-PAES is clearly best overall on the set

of instances considered. It is particularly strong on

the largest of the M-correlated graphs, and the large

concave graph problem.

The results of the second statistical analysis method

are given in Table 3. The results paint a similar pic-

ture overall, although there are some interesting points

to notice as well. First, mcd-Prim performs very well

compared to the evolutionary algorithms on the cor-

related and anti-correlated instances, and is consider-

ably faster (but see Figure 1 for further help visual-

izing the Pareto fronts discovered). However, on the
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Figure 1: Median attainment surfaces on the 50 vertex

correlated problem with a degree constraint of 3

M-correlated graphs it clearly struggles. This is as

expected because on these instances the degree con-

straint has a real e�ect on the di�culty of �nding good

solutions. We can see that the EAs are managing to

cope with this; observe the size of the region discov-

ered by them compared to the enumeration method on

the 10 vertex M-correlated instance for both d=3 and

d=5. This is further shown in a plot given in Figure 2.

Finally, on the (larger) concave instances, it appears

that mcd-Prim does better than the EAs but in fact

is unable to �nd any solutions in the concave region

of the Pareto front. Its larger dominated region is due

to it �nding the very edge of the Pareto Front, which

the EAs do not achieve on every run. A plot show-

Instance PAES AESSEA M-PAES

10vAC 32.7 (0) 97.6 (0) 100 (2.4)

25vAC 0 (0) 13.3 (7.3) 92.7 (86.7)

50vAC 0 (0) 17.4 (15.7) 84.3 (82.6)

10vC 99.5 (0) 100 (0) 100 (0)

25vC 45.1 (0) 99.6 (10.8) 89.2 (0)

50vC 0 (0) 3.8 (0) 100 (96.2)

10vM-C-d3 95.6 (0) 100 (0) 100 (0)

25vM-C-d3 0 (0) 99.3 (14.5) 85.5 (0.7)

50vM-C-d3 0 (0) 17.3 (2.5) 97.5 (82.7)

10vM-C-d5 100 (0) 100 (0) 100 (0)

25vM-C-d5 0 (0) 100 (3.8) 96.2 (0)

50vM-C-d5 0 (0) 19.2 (0) 100 (81.8)

10vConc 52.1 (0) 100 (0) 100 (0)

25vConc 9.2 (0.6) 68.5 (22.7) 74.6 (30.1)

50vConc 0 (0) 36 (3.7) 96.3 (64)

Table 2: Unbeaten and (beats all) statistics for the

three EAs on the full set of instances



Instance Total size Median (Interquartile) size

Enum mcd-Prim PAES AESSEA M-PAES

10vAC 21.3837 20.4108 21.2963 (0.2014) 21.3565 (0.0032) 21.357 (0.0044)

25vAC 246.256 239.248 (32.121) 245.175 (1.428) 245.5 (1.893)

50vAC 1240.27 1040.02 (440.492) 1224.07 (7.6) 1225.67 (13.85)

10vC 36.0955 35.3919 35.7349 (0.0323) 35.7672 (0) 35.7672 (0)

25vC 363.233 362.409 (1.492) 363.329 (0.109) 363.386 (0.149)

50vC 1868.59 1853.01 (24) 1869.3 (3.52) 1873.29 (4.23)

10vM-C-d3 26.8362 23.6895 26.8399 (0) 26.8342 (0) 26.8342 (0)

25vM-C-d3 281.923 338.026 (7.135) 343.892 (0.55) 343.988 (0.005)

50vM-C-d3 1302.33 1454.86 (40.14) 1493.89 (3.17) 1493.48 (8.9)

10vM-C-d5 40.0389 35.3428 40.0365 (0) 40.0365 (0) 40.0365 (0)

25vM-C-d5 345.62 383.684 (2.801) 384.511 (0) 384.439 (0)

50vM-C-d5 1496.8 1598.07 (26.44) 1615.49 (4.56) 1616.33 (7.79)

10vConc 37.3255 37.0848 37.2362 (0.0061) 37.2367 (0) 37.2367 (0)

25vConc 334.694 332.901 (3.81) 334.644 (0.354) 334.491 (0.852)

50vConc 2122 2109.76 (19.39) 2118.39 (1.67) 2114.7 (4.29)

Table 3: Size of the median and interquartile dominated regions for the di�erent evolutionary algorithms, and

the total combined size of the dominated region found using �ve runs of mcd-Prim. For the ten-vertex instances

the true size of the dominated region is represented by the results of the Enumeration algorithm
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Figure 2: Median attainment surfaces on the 50 vertex

M-correlated problem with a degree constraint of 3

ing the median attainment surface for M-PAES, and

the points found from 5 runs of mcd-Prim (Figure 3)

clearly illustrates this.

6 Conclusion

Over the range of instances tested, M-PAES was

clearly the best approach, being only slightly outper-

formed by AESSEA on a couple of instances. Its per-

formance was also seen to be robust on these instances,

as no parameter tuning was carried out after an ini-

tial setting was chosen. Although M-PAES has been

shown to perform well on other problems, it seems

from these results that in this application, a local-
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Figure 3: Nondominated points found from 5 runs

of mcd-Prim, and the median attainment surface

achieved by M-PAES. Note how M-PAES �nds points

in the concave region of the Pareto front

search element may be particularly useful. This may

well be explained with reference to an observation re-

cently made by Ehrgott and Klamroth [1]. They found

that from a sample of 50 random instances of a ran-

dom weight bi-objective MST problem, all of them had

a connected e�cient set under a single exchange op-

erator (although they prove this will not always be

true). That is, it was possible to visit the entire e�-

cient set by �nding �rst one (extremal) e�cient so-

lution, and then by making single edge exchanges,

without encountering any non-e�cient solutions. In

light of this, we predict that further advances in tack-



ling these di�cult constrained mc-MST problems will

come from techniques that incorporate a strong local

search element, as used in M-PAES. It remains to be

seen whether the results presented here scale up to

larger problem instances, and whether the number of

objectives in
uences the relative performance of M-

PAES, AESSEA, and PAES. However, its seems plau-

sible that the results will scale up as very large d-MST

instances have been tackled previously using the op-

erators developed by Raidl that are employed in M-

PAES and AESSEA.

On some of the instances considered in this paper,

it would not be necessary to use an evolutionary or

memetic algorithm at all, because a simple, iterative

approach | mcd-Prim | was shown to provide very

good results in a fraction of the time. This indicates

that in previous studies some researchers may have

used problem instances that were too easy, for testing

their EAs. However, we have also demonstrated that

for certain problem instances with constraints that are

di�cult to meet, the evolutionary algorithms do ob-

tain substantially better solutions than the simple con-

structive iterative approach. Furthermore, the evolu-

tionary algorithms are able to �nd points in the non-

supported regions of the Pareto front, as was clearly

demonstrated using the concave graph generator. Al-

though the more di�cult instances considered in this

paper may not be realistic-looking telecommunications

problems at present, they do serve to demonstrate the

robustness of the EA and MA approach to di�erent

problem di�culties. In real problems of interest to

the telecommunications industry, a great number and

variety of constraints must be satis�ed. These real

problems may well have di�erent types of constraints

and objectives than those considered here, but these

will probably introduce greater di�culty for tailored

constructive heuristics, and necessitate further the use

of more general and robust techniques, like the MA

used in this paper for the mcd-MST problem.
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