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Abstract-

Finding minimum-weight spanning trees

(MST) in graphs is a classic problem in oper-

ations research with important applications in

network design. The basic MST problem can be

solved e�ciently, but the degree constrained and

multiobjective versions are NP-hard. Current

approaches to the degree-constrained single

objective MST include Raidl's evolutionary

algorithm (EA) which employs a direct tree

encoding and associated operators, and Knowles

and Corne's encoding based on a modi�ed

version of Prim's algorithm. Approaches to the

multiobjective MST include various approxi-

mate constructive techniques from operations

research, along with Zhou and Gen's recent

evolutionary algorithm using a Pr�ufer based

encoding. In this paper we apply (appropri-

ately modi�ed) the best of recent methods for

the (degree-constrained) single objective MST

problem to the multiobjective MST problem,

and compare with a method based on Zhou and

Gen's approach. Our evolutionary computation

approaches, using the di�erent encodings, in-

volve a new population-based variant of Knowles

and Corne's PAES algorithm. We �nd the direct

encoding to considerably outperform the Pr�ufer

encoding. And we �nd that a simple iterated

approach, based on Prim's algorithm modi�ed

for the multiobjective MST, also signi�cantly

outperforms the Pr�ufer encoding.

1 Introduction

The minimum spanning tree (MST) of a graph is an im-

portant concept in network design. Given a graph, with

a cost (or weight) associated with each edge, the prob-

lem is to �nd a spanning tree of the graph with minimal

total cost. It can be solved in polynomial time, and one

of the classic and favoured algorithms [22] is Prim's al-

gorithm [15], which grows a tree gradually by incremen-

tally adding minimal-cost feasible edges. In real-world

problems, the vertices (or nodes) are usually subject to

a degree constraint. For example, exchanges or switches

will typically have a restricted number of communication

ports. Unlike the MST, the general degree-constrained

MST (d-MST) is NP-hard.

Recent research has seen progress in the development

of approximate algorithms for the d-MST. Boldon et al.'s

`dual simplex' approach [1], based on Prim's algorithm,

was found to perform very well on some benchmarks.

More recently, Zhou and Gen [23] described a simple evo-

lutionary algorithm (EA) using a Pr�ufer based encoding

(see Section 3.2) and applied it to some small d-MST

problems. In [9], Knowles and Corne improved on these

with an EA with a decoder style representation called

the randomized primal method (RPM) which employed

a modi�ed version of Prim's algorithm called `d-Prim'.

In RPM, a spanning-tree is encoded by an ordered list of

integers which guides the series of edge-inclusion choices

made by d-Prim.

Meanwhile, Raidl and Julstrom [18], also using an

EA, explored a similar approach, but where a chromo-

some encoded for a list of multiplicative biasing weights;

these weights were used to temporarily bias the edge

weights of the graph, while d-Prim built the tree. This

generally outperformed RPM. The best technique so far,

however, seems to be Raidl's more recent work [17] which

uses a direct spanning tree encoding, with associated

specialized mutation and recombination operators.

In the multiobjective MST (mc-MST), a vector of

weights is de�ned for each edge, and the problem is

to �nd all Pareto optimal (or e�cient) spanning trees.

This is NP-hard [4] even in its unconstrained form. The

mc-MST is commonly found in network-design oriented

applications. For example, one set of weights may be

associated with �nancial cost, while another may be as-

sociated with link reliability.

There has been much interest in the mc-MST in the

operations research literature, e.g. [4, 7, 19]. But, there

has, to our knowledge, been only one EA previously pro-

posed for the mc-MST: a Pr�ufer-encoded multiobjective

GA proposed by Zhou and Gen [24], which uses Srini-

vas and Deb's Non-Dominated Sorting method [20] and

a Pr�ufer based encoding. They apply their method to

randomly generated biobjective mc-MSTs ranging from

10 nodes to 50 nodes in size. The goal of their paper is to

compare their EA with the results from an enumerative

method (which is meant to �nd all true Pareto optimal

solutions) which they propose in the same paper. Al-

though the enumerative method is of course infeasible

for large problems, comparisons of their EA with the



enumerative method are meant to give an idea of how

much of the true Pareto front the EA �nds on small

problems.

In this paper we describe two evolutionary algo-

rithms for the mc-MST. One employs both the RPM

method (see above) and the direct encoding and op-

erators from Raidl's state-of-the-art approach (all with

necessary modi�cations to address the multiobjective

case). The other follows Zhou and Gen's approach

from [24]. In addition, we describe an algorithm we

call `mc-Prim', which simply iterates Prim's algorithm

for di�erent weighted-sum single-objective forms of the

given mc-MST. The techniques are all compared on a

suite of test mc-MST problems generated in the same

way as the test problems used by Zhou and Gen [24].

Unfortunately, direct comparison with Zhou and

Gen's reported results is di�cult because of the way

their results are presented. As discussed above, Zhou

and Gen verify the quality of solutions generated by

their proposed GA using an enumeration method that

is intended to �nd all e�cient mc-MSTs. However, in a

recent submission [11] we show that the proposed enu-

meration method of Zhou and Gen fails both to guar-

antee �nding all Pareto optimal solutions, and to guar-

antee �nding only Pareto optimal solutions. So when,

for example, it is stated in [24] that their method found

85% of the true Pareto front on a particular problem,

this must be considered to be unreliable (and perhaps a

considerable overestimate).

Therefore, rather than comparing our results with ta-

bles of results in [24], we are limited to comparing with

our implementation of their approach. Using a correct

enumeration method we are able to �nd all true Pareto

optima for the smaller problems, and using mc-Prim's we

are able to �nd a subset of the true Pareto optima on the

larger problems. Comparison of the di�erent EA results

with these sets takes the place of the comparisons done

by Zhou and Gen with the results of their enumeration

method.

In the following, Section 2 de�nes the mc-MST, and

also describes Prim's algorithm [15] and our basic exten-

sion of Prim's for multiobjective problems. In Section 3

we further describe the RPM, Pr�ufer, and Raidl (direct)

encodings and operators. Section 4 describes the mul-

tiobjective EA we use, and Section 5 describes experi-

ments and results. We conclude in Section 6.

2 MST Problems and Basic Methods

A spanning tree of an undirected, connected graph,

G = (V;E), is a subgraph T = (V;E

T

); E

T

� E that

contains all vertices in V and connects them with ex-

actly jV j � 1 edges, so that there are no cycles. If G

is complete, then the set S of spanning trees T of G

has jSj = jV j

jV j�2

members. If each edge (i; j) 2 E
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where the term `minimize' is in quotation marks to in-

dicate that it may not be possible to �nd a single solution

that is minimal on all the components of W. Instead,

one is required to �nd a set of spanning trees S

�

� S,

called the Pareto optimal set, with the property that:

8T

�

2 S

�

� 6 9T 2 S � T � T

�

(2)

where T � T

�

() 8k 2 1::K � W

k

� W

k

�

^ 9 k 2

1::K � W

k

< W

k

�

. The expression T � T

�

is read as T

dominates T

�

, and solutions in the Pareto optimal set

are also known as e�cient or admissible solutions.

We now describe an e�cient way of �nding at least a

subset of the true Pareto optimal solutions to an instance

of the mc-MST. First we recall Prim's classic algorithm

for the single objective MST, and then we indicate how

this can be embedded in a slightly more sophisticated

procedure for the multiobjective case.

Prim's algorithm uses two sets of vertices, C (con-

nected) and U (unconnected). Initially, C contains a

single, arbitrarily chosen vertex, while U contains all of

the remaining vertices. The algorithm proceeds by mov-

ing vertices from U to C one at a time until U is empty.

Each such move is associated with the addition of a spe-

ci�c edge to the growing tree. When U is empty, the

tree is complete. The edge chosen at each step is one of

minimal weight among those for which the following is

true: it connects vertex u 2 U to c 2 C, and its addition

will not introduce a cycle. Clearly, having decided to

add edge (u; c), vertex u is the one moved from U to C.

This procedure quickly and e�ciently solves the single

objective MST. A simple modi�cation, in which we add

an extra obvious feasibility test when moving a vertex

between the two sets, enables it to build solutions to the

dc-MST, but in that case it is an approximate heuristic

rather than an exact method.

In preparation for the multiobjective version of

Prim's, we �rst observe that a true Pareto optimal so-

lutions to the mc-MST problem can be found by simply

using Prim's algorithm (or any algorithm for the single-

objective MST), by substituting the weight vector at

each vertex with a weighted sum. This may be achieved

since, for any scalarizing vector � = (�

1

; �

2

; : : : ; �

K

)

with

P

K

k=1

�

k

= 1, and �

k

� 0; k = 1::K, the following

holds:

X
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K

X
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k

(

X

(i;j)2E

T

w

k

i;j

): (3)



A tree which optimizes the term on the left will be

a solution to the MST for the single-objective problem

de�ned by the scalarization, and hence easily found by

Prim's algorithm. But the rewrite of this term on the

right reveals that this tree must also be on the true

Pareto front of the corresponding mc-MST. If not, a

tree exists which must improve one or more of the in-

ner summed weight terms, contradicting the assumption

that this sum was already minimal.

So, we can �nd an optimal solution to the mc-MST by

replacing the vector weights de�ned on each edge in G

by a scalar weight b formed by taking the inner product

of � and w, b = �:w, and then �nding a spanning tree

that minimizes the sum of the scalarized edge weights.

Algorithm: mc-Prim

U is the unconnected set of vertices

C is the connected set of vertices

E

T

is the edge-set of the spanning tree T

S is the set of nondominated spanning trees

S  ;

i 0

while (i <

�

s+K � 1

K � 1

�

) /* Main Loop */

� nextvector(�)

E

T

 ;

U  V

C  ;

v  rand(V ) /* Begin Prim's Algorithm */

C  C [ v

U  U n v

while (jCj < jV j)

select an edge (u; v) with u 2 C; v 2 U so that

8i 2 C; j 2 U

P

K

k=1

�

k

:w

k

u;v

�

P

K

k=1

�

k

:w

k

i;j

E

T

 E

T

[ (u; v)

C  C [ v

U  U n v

S  S [ T  (V;E

T

)

i i+ 1

return (S) /* Termination */

Figure 1: mc-Prim

The algorithm, mc-Prim, shown in Figure 1 itera-

tively changes the scalarizing vector � and uses Prim's

algorithm to �nd a set of optimal solutions to an mc-

MST. At each iteration of the main loop, a new scalariz-

ing vector � is generated by the function nextvector(�),

which successively generates every normalized scalar-

izing vector, �, with components equal to l=s; l =

0::s where s is a parameter controlling the number of

di�erent vectors that will be generated. This gives

�

s+K � 1

K � 1

�

di�erent scalarizing vectors. For each dif-

ferent � vector, Prim's algorithm is applied. This begins

with the selection of a random vertex from V using the

function rand(V ), and at each subsequent step a min-

imum weight edge, that connects a vertex in the con-

nected list to one in the unconnected list, is added to

E

T

.

For a large number of di�erent scalarizing vectors (in

our experiments we set s = 1000, giving 1001 di�erent

� vectors), mc-Prim may generate an approximation to

S

�

, the set of Pareto optimal spanning trees, that is sat-

isfactory in many cases. However, in general mc-Prim

cannot usually discover the complete set S

�

because it

can only �nd solutions on the convex hull of the true

Pareto front | the so-called supported e�cient solutions.

Such trees are Pareto optimal, but not minima of any

single-objective scalarization.

3 Representations and Operators

We make use of three distinct spanning tree encodings

in the experiments which follow, each with associated

operators speci�c to it. They are described here.

3.1 The Randomized Primal Method

Recall that Prim's algorithm (after initialization in

which the tree is set to contain a single arbitrary ver-

tex) iterates through jV j � 1 steps. At each of these

steps, the least cost edge is found which feasibly links

an unconnected vertex to the growing tree. In RPM,

each of these steps now involves choosing any feasible

edge, rather than a minimal-cost edge, although there is

a bias towards low-cost edges. For a k-vertex problem,

an encoding of a spanning tree in the RPM method is

a vector of k � 1 integers, each associated with a choice

of edge addition. With vertex 1 assumed to be initially

in the connected set C, each integer in turn is used as

an index into a lookup table of feasible edges sorted by

cost. The table is initialized by simply sorting all edges

in ascending order of cost. After addition of an edge to

the growing tree, all edges which could no longer feasi-

bly be added to the tree at the next step are removed.

Prim's algorithm corresponds to a vector of all 1s in this

representation. In practice (details in Section 4), chro-

mosomes are initialized using an exponential distribution

biased towards lower values.

3.2 The Pr�ufer Encoding

Cayley [2] proved that there are n

n�2

distinct labeled

trees for a complete graph with n vertices. By providing

a constructive proof of this, Pr�ufer established a bijec-

tive mapping between the set of distinct labeled trees

and the set of all combinations of n�2 n-ary digits from

n [16]. The details of the encoding are fairly well known

and can be found in [24], for example. For present pur-

poses, it is only necessary to note that this enables an



encoding to be used in which a chromosome is simply a

string of n�2 digits, where each can vary independently

between 1 and n. Following [24], our implementation of

the Pr�ufer encoding uses single-gene random mutation

(a gene is chosen at random, and changed to any new

integer between 1 and n), and uniform crossover [21].

3.3 Direct Tree Encoding and Operators

Raidl [17] uses a direct encoding of a spanning tree. That

is, a spanning tree is explicitly represented by the list

of edges which comprise it { Raidl calls this the `edge-

set' representation. Raidl's mutation operator simply

replaces one of the existing edges of a tree with a new

edge, all the time respecting feasibility constraints. In

operation, it works as follows. First, an edge currently

not in the tree is chosen to insert; this choice is biased

towards lower cost edges. Naturally, this will temporar-

ily introduce a cycle. A random choice among the edges

in that cycle is then made (excluding the new edge), and

the chosen one is removed from the tree.

Raidl's crossover operator is constructed on the prin-

ciple of inheriting as many edges as possible from two

parent trees. Initially, a child is set to contain the inter-

section of its parents' edge-sets, and hence will almost

always be a forest of unconnected non-spanning trees.

Next, remaining edges (from those which were in one

parent but not both) are successively selected, and in-

cluded in the tree if such inclusion is feasible. In order to

bias this step towards considering the lower cost edges,

Raidl uses binary tournament selection. At the end of

this process, if the child is not yet a spanning tree, edges

between its components are chosen randomly until it is.

Notably, Raidl's technique is challenging to imple-

ment e�ciently. In particular, a fast way is needed to

check whether or not a path exists between two given

vertices in a given edge-set. We note, in agreement with

Raidl [17], that the use of a union-�nd data-structure [8]

is very helpful in this respect.

Finally, we add here that direct encodings of spanning

trees, and associated e�cient operators have also been

proposed by Li and Bouchebaba [14] and Li [13] for the

optimal communication spanning tree problem [6].

4 Algorithms

4.1 AESSEA

An evolutionary algorithm, AESSEA, based closely on

procedures already de�ned for the Pareto archived evo-

lution strategy (PAES) [10] is presented in Figure 2.

AESSEA is a steady-state EA, that is, only one new

solution is evaluated per `generation'. It keeps a set

of non-dominated solutions in an archive, and uses this

set of solutions to estimate the quality of newly gener-

ated solutions. The algorithm is elitist in the sense that

parents and o�spring compete, but the overall selection

Algorithm: Archived Elitist Steady-State EA

P is the population

N is the archive of nondominated spanning trees

a;b; c, and x are solution vectors

N  ; /* Initialization */

foreach (x 2 P )

init(x)

evaluate(x)

archive(x)

i 0

while (i < num evals) /* Main Loop */

if rand() < p

c

a rand mem(P )

b rand mem(P )

c crossover(a;b)

else

a rand mem(P )

c a

c mutate(c)

evaluate(c)

if (c � a)

archive(c)

P  P [ c n a

else if ((9j 2 N j j � a) ^ (9k 2 N j k � c))

P  P [ c n a

else if (:9j 2 N j j � c)

if ((g pop(c) < g pop(a)) _ (9j 2 N j c � j))

archive(c)

P  P [ c n a

i i+ 1

return (N) /* Termination */

Figure 2: AESSEA

pressure of the algorithm is not too strong since selection

for mating is purely random, and o�spring only replace

one of their parents, rather than the weakest member of

the population. Some testing of this algorithm and com-

parison with PESA [3] suggest that it is both an e�ective

and computationally e�cient, multiobjective EA.

In AESSEA, the function rand() returns a uni-

formly distributed deviate in [0; 1), and the function

rand mem(P ) returns with uniform probability a mem-

ber of the current population, P . The function archive(c)

updates the nondominated solutions archive N with c,

that is c is added to N if it is nondominated with re-

spect to the other solutions in N , and if c dominates

any members of N the dominated members are removed.

The archive N has a �nite capacity arcsize and in the

case where adding c to N would cause jN j > arcsize,

a solution in the most crowded region in N is removed.

This archiving strategy is exactly the same as in the



PAES algorithm, described in greater detail in [10]. The

function g pop(x) returns the number of solutions in the

same grid location in objective space as the solution x.

This is part of a crowding strategy described in detail

in [10].

The functions, init(x), evaluate(x), crossover(a;b),

and mutate(c), are to be de�ned depending on the ap-

plication of the algorithm. In the following, we describe

each of these functions for the two di�erent representa-

tions that we use with AESSEA: the Pr�ufer coding, and

the direct coding.

4.2 AESSEA+Pr�ufer

In the AESSEA+Pr�ufer algorithm, we closely follow the

operators used in [24]. The chromosome is an integer

string of length jV j � 2, and cardinality jV j. This is de-

coded using a function described in [24], so that there

is a one to one correspondence between chromosomes

and spanning trees. The resultant spanning tree is then

evaluated by summing the weights over the edges in the

spanning tree. Initialization is performed by simply set-

ting each gene to a uniformly random value in [1; jV j],

for every chromosome in the population. Mutation is

applied to every gene with probability p

m

, and sets the

value of the mutated gene to a uniformly random value

in [1; jV j]. The crossover used is uniform crossover [21].

4.3 AESSEA+Direct/RPM

In the AESSEA+Direct/RPM algorithm, the direct rep-

resentation and specialized operators used follow those

described in detail in [17], but they are adapted to deal

with multiple weights on each edge. We also use the ran-

domized primal method (RPM) [9] in the initialization

process.

As indicated previously, a chromosome for the RPM

procedure is a string of jV j integers used as lookups into

a dynamically adjusted table of edges ordered by weight.

The integers are biased towards low values, and hence to-

wards choosing lower cost edges, by setting each gene to

an allele value q = be

x

p

log(jV j)

c, where x is a uniformly

distributed random number in [0; 1), and p is a param-

eter that controls how strong is the bias towards lower

allele values. We set p = 2 in our experiments.

In addition to the chromosome, a scalarizing vector

� = (�

1

; : : : ; �

K

) is initialized from a uniformly random

distribution such that

P

K

k=1

�

k

= 1 and 8k 2 1::K; �

k

�

0. Each chromosome is then decoded into a spanning

tree using the RPM and with the vector of edge weights

replaced by a set of scalar edge weights, b

i;j

, produced

by taking the inner product of the scalarizing vector �

and w: 8(i; j) 2 E; b

i;j

= �:w

i;j

.

After the initialization procedure, the direct tree en-

coding only is used. Heuristic edge crossover and heuris-

tic edge mutation, described briey above and more fully

in [17], are adapted to operate with vector edge weights.

In our adapted heuristic edge crossover, the o�spring in-

herits the scalarizing vector � from parent a. Then the

scalarized weights b

i;j

are used in the tournament selec-

tion of edges used in the edge union operation of the

heuristic edge crossover.

Adapting the heuristic edge mutation operator is a

little more di�cult. In Raidl's operator, the edges are

sorted in order of weight (once at the beginning of the

algorithm) and the heuristic mutation operator uses this

sorted list to bias the selection of an edge to be in-

serted, towards cheaper edges. In the mc-MST prob-

lem, it is not possible to order the edges by weight, so

that method cannot be applied without adaption. How-

ever, if the vector weights of edges are replaced by scalar

edge weights c

i;j

, produced by taking the inner prod-

uct of the edge weight vectors with a scalarizing vec-

tor �, with

P

K

k=1

�

k

= 1 and 8k 2 1::K; �

k

� 0:

8(i; j) 2 E; c

i;j

= �:w

i;j

, then the edges can be sorted

in increasing order of c, and the bias can be applied us-

ing this sorted list. We could use the scalarizing vector

� that is associated with each solution vector, putting

� = �, to generate all the c

i;j

, but we do not wish to

have to re-sort the edges for each di�erent � vector, as

this would strongly compromise the computational ef-

�ciency of the mutation operator. To get around this,

we pre-sort the edges for a small sample of di�erent,

evenly distributed � vectors at the beginning of the al-

gorithm. In the mutation operator itself, we �rst mutate

the � vector of the current solution vector by adding a

Gaussian random deviate of mean zero and standard de-

viation � = 0:05 to each of the components of � and then

re-normalizing it. Then, when choosing an edge to insert

into the current tree, the sorted edge list that was gen-

erated using a � vector which most closely matches the

updated � vector of the solution undergoing mutation

is used. In our experiments, 5 di�erent representative

� vectors: (0,1),(0.25,0.75),(0.5,0.5),(0.75,0.25),(1,0) are

de�ned, so that just 5 edge-sorts must be performed (just

once) at the beginning of the algorithm. Thus, our adap-

tions of Raidl's operators preserve their linear time com-

plexity whilst also maintaining the heuristic nature of

their biasing edge choices towards lower-weighted edges.

5 Experiments

5.1 Problem instances

Following [24], we generate biobjective MST instances

using complete graphs of size 10, 20, 30, 40, and 50 ver-

tices with uniformly randomly distributed edge weights

w

1

i;j

2 [10; 100]; w

2

i;j

2 [10; 50];8(i; j) 2 E.

5.2 Method

Three di�erent instances at size 10 are generated, and

on these instances the complete space of solutions is enu-



merated so that we obtain all Pareto optimal solutions.

For these problems we then present results in terms of

the proportion of the e�cient set that is discovered by

the genetic algorithms, over 30 independent runs. This

is a similar method to that used by Zhou and Gen for

verifying the e�ectiveness of their GA. However, we enu-

merate the set of e�cient spanning trees using a straight-

forward technique where every possible spanning tree is

generated using a Pr�ufer code, and then those that are

dominated are discarded. Although better techniques

exist [19], we have been unable to obtain source code for

these methods to date. Nonetheless, our enumeration

does correctly guarantee to �nd all and only nondomi-

nated spanning trees, in contrast to the method used by

Zhou and Gen [11].

For the other sizes of network, just one instance

at each size is used. Because of the larger size

of these problem instances, we cannot use our enu-

meration method. Therefore, we instead compute

a subset of the supported e�cient solutions using

our mc-Prim algorithm for 1001 di�erent � vectors:

(0; 1); (0:001; 0:999); : : : ; (0:999; 0:001); (1; 0).

On the small problems, since we know the complete

true Pareto front, we evaluate algorithm results by look-

ing at the percentage of the true Pareto front found by

the algorithm. We in fact look at the percentages of

both the full Pareto front and its complete supported

subset. For the larger problems, however, only a subset

of the true supported Pareto front is available to us. In

these cases we look at the size of the total discovered

region [12]. This is simply the area (since our problems

are two-dimensional) contained by the approximation to

the Pareto front which the algorithm discovers.

The parameters used in the AESSEA algorithms are

given in Table 1. The mutation rate is quoted as 1=L,

where L is the length of the chromosome. For the Pr�ufer

encoding L = jV j � 2. For the AESSEA+Direct/RPM,

this parameter is not actually set but it refers to the

fact that using Raidl's edge encoding and heuristic edge

mutation, exactly one edge in the tree is changed per

mutation, which is equivalent to a mutation rate of 1=L

on a direct edge encoding.

5.3 Results

Table 3 shows the results on the 10-node problems. On

the small problems, AESSEA+Direct/RPM �nds all op-

tima on all individual runs, and in only 20000 evalua-

tions. The AESSEA+Pr�ufer method performs consider-

ably worse, often �nding no true Pareto optima at all.

On the larger problems, with results summarised in Ta-

ble 4, the discovered Pareto front of AESSEA+Pr�ufer is

considerably smaller than that from either of the other

methods.

Such �ndings are illustrated in Figure 3, clearly in-

dicating how well AESSEA+Direct/RPM approximates

Parameter AESSEA+Pr�ufer AESSEA+D/RPM

jP j 200 200

arcsize 100 100

p

c

0.2 0.2

p

m

1=L 1=L

num evals 100000 20000

grid squares 1024 1024

Table 1: Parameter settings for the two AESSEA al-

gorithms, all kept constant across the di�erent problem

instances. The parameter arcsize is the capacity of the

nondominated solutions archive, and the grid squares

parameter refers to the number of grid locations the ob-

jective space is divided into for the crowding strategy

(see Section 4.1).

Problem AESSEA+Pr�ufer AESSEA+D/RPM

20v1 19:7s 14:2s

50v1 49:6s 28:0s

Table 2: Run-times for the two algorithms on two

di�erent-sized problems. The algorithms were run on

a Sun SPARC Ultra 5 300MHz with 256MB RAM.

The timings are the mean of 10 runs. On each run,

AESSEA+Pr�ufer performed 100000 function evalua-

tions, and AESSEA+Direct/RPM performed 20000, as

in the experiments reported.

the true Pareto front in comparison to AESSEA+Pr�ufer.

As we note from similar �gures (not displayed here) for

the other problems, this di�erence is increasingly marked

as problem size increases.

The runtime �gures given in Table 2 seem to indicate

that both EAs scale well with increasing problem size.

6 Concluding Discussion

The results indicate that a direct encoding is more ef-

fective than a Pr�ufer-based encoding when using an EA

to address the mc-MST. We should point out that our

conclusions di�er from those made by Zhou and Gen

for their Pr�ufer GA, which seemed to show that their

method was able to �nd high proportions of the true

Pareto front on all sizes of problem, which is surprising

in light of the results we �nd using the Pr�ufer encoding

on large problems. We suggest the discrepancy arises

from Zhou and Gen's use of an unreliable Pareto front

enumeration method, as noted earlier. In addition to

the results we report, reported theoretical notes provide

additional evidence for direct encodings being a better

choice than the Pr�ufer encoding for MST problems. For

example, Ehrgott and Klamroth [5] noted that, in 50 ran-

dom instances in which they generated a complete set of

e�cient spanning trees, the set was ergodic with respect

to a single-edge exchange operator (although they prove



Problem AESSEA+Pr�ufer AESSEA+Direct/RPM

instance jSPF

t

j jPF

t

j %jSPF

t

j %jPF

t

j jPF j mean jPF j� %jSPF

t

j %jPF

t

j jPF j mean jPF j�

10v1 10 42 80 76 2.47 1.33 100 100 42.00 0.00

10v2 12 28 67 71 0.50 0.78 100 100 28.00 0.00

10v3 12 25 83 84 0.57 0.82 100 100 25.00 0.00

Table 3: Results on three 10-vertex mc-MST instances using the two di�erent EAs. jSPF

t

j and jPF

t

j, give the

number of supported e�cient points and the total number of e�cient points on the true Pareto front, respectively,

for each problem instance. %jSPF

t

j gives the percentage of the supported e�cient points that were found over the

30 runs combined, for each algorithm. Similarly, %jPF

t

j gives the percentage of the total number of e�cient points

that were found over the 30 runs combined, for each algorithm. jPF j mean, and jPF j�, give respectively the mean

and standard deviation of the number of e�cient points found per algorithm run, for each algorithm.

Problem Upper limit of Size of the total discovered region

instance jSPF

Pr

j bounding box mc-Prim AESSEA+Pr�ufer AESSEA+Direct/RPM

20v1 25 832 x 574 0.2949 0.1488 0.2986

30v1 54 1280 x 838 0.3780 0.1249 0.3792

40v1 63 1882 x 1181 0.4200 0.1150 0.4196

50v1 85 2425 x 1494 0.4473 0.0943 0.4451

Table 4: The size of the total discovered region of the AESSEA algorithms and mc-Prim on four mc-MST problem

instances of increasing size. The column, jSPF

Pr

j, gives the number of supported e�cient solutions found by mc-

Prim, using 1001 di�erent � vectors. The upper limit of the bounding box is determined, in each dimension, by

taking the maximum value (over all algorithms) of any point on the combined Pareto front of each algorithm. The

lower limit is taken to be zero in each dimension.

AESSEA+Prufer

mc-Prim

400
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Figure 3: Combined discovered points found by the two

versions of AESSEA and mc-Prim on a 50-vertex prob-

lem

that this will not always be true). A direct encoding

such as Raidl's, which naturally allows for such opera-

tors (as indeed used here) seems thus well-designed for

the problem, while the high non-locality of the Pr�ufer

encoding seems ill-chosen in light of this. A further dif-

�culty with the Pr�ufer encoding is the fact that many

real problems will have sparse graphs. That is, although

the problem may still be very large in terms of allowed

edges, most edges will not be allowable. This could be

dealt with in Prim's algorithm, for example, by giving

those edges massive weight (vectors), large enough to

guarantee that they would never be chosen in tree con-

struction. A far better approach, however, is simply not

to include these edges in the edge array accessed by the

algorithm. The latter natural and e�ective way to deal

with sparse problems is trivial for both RPM and Raidl's

direct encoding, but is unavailable to the Pr�ufer encod-

ing. This is because it is impossible to control which

edges are coded for by a Pr�ufer number, so the decoding

process will typically yield infeasible trees (containing

edges not members of the sparse graph).

It is also worth noting that mc-Prim's alone is capable

of �nding well-spread sets of true Pareto optima for the

mc-MST much faster than an EA. However, mc-Prim's

is incapable of �nding unsupported Pareto optima, of

which there may be many between any two neighbour-

ing supported optima. For these reasons, mc-Prim's is

able to display impressive results in Table 4, but will

always fail to o�er a �ne-grained view of the tradeo�

surface, such as would be desired in many applications.

Also, note that although mc-Prim's is easily adaptable

to degree-constrained problems, it certainly no longer

guarantees to �nd true optima in those cases.

We suspect that many real-world problems, as well

as having degree-constraints, are also quite sparse, and

have a considerable number of unsupported solutions.
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