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Abstract:
EMO) now boasts a proliferation of algorithms and bench-
g

Evolutionary multi-objective optimisation

mark problems. We need principled ways to compare the
performance of different EMO algorithms, but this is com-
plicated by the fact that the result of an EMO run is not
a single scalar value, but a collection of vectors forming
a non-dominated set. Various metrics for non-dominated
sets have been suggested. Here we compare several, using
the framework of ‘outperformance relations’ (Hansen and
Jaszkiewicz [4]). This enables us to criticise and contrast a
variety of published metrics, leading to some recommenda-
tions on which seem most useful in practice.

1 Introduction

Evolutionary multi-objective optimisation (EMO) is
growing rapidly and several successful algorithms have
emerged recently [6, 10, 3, 1]. The proliferation of such
algorithms, along with a growing interest in benchmark
multiobjective problems [10, 2, 8]) boosts the impor-
tance of performance comparison issues. This is com-
plicated, however, since the result of an EMO run is
not a single scalar ‘best-fitness’ value which can be sub-
jected to univariate statistical tests. Instead, the result
(except in pathological cases) is a non-dominated col-
lection of vectors (given any two vectors in such a set
that are not equal on all objectives, one cannot be bet-
ter or equal to the other on all objectives — i.e. no
vector in the set dominates another).

In the absence of other factors (e.g. preference for
certain objectives, or for a particular region of the
tradeoff surface), the task of an EMO algorithm is to
yield as good an approximation as it can to the true
Pareto front. Comparing two EMO algorithms hence
requires comparing the nondominated sets they pro-
duce. Pathological cases aside, there is no straightfor-
ward way to distinguish the quality of different non-
dominated sets. E.g. if we call the true Pareto front
Z*, then how do we compare a result which produces
a single point @ € Z* with another result which yields
a widespread set of non-dominated points B, none of
which is either dominated by a or in Z*7 In the for-
mer case we have a true Pareto point, which means
that no solution exists which dominates the discovered
solution. But in the latter case, although every discov-
ered point can be dominated, we have perhaps a very
wide representation of the shape of the tradeoff surface
(absent in the former case) and perhaps some of the
points are not very far from true Pareto optimal.

Until recently, it has been common in EMO litera-
ture for performance to be indicated simply by way of a

graphic plot. As Van Veldhuizen [9] remarks (but using
our notation): “Comparative results are then ‘clear-
ly’ shown in graphical form indicating which algorith-
m performed better, often implying the new MOEA’s
returned Z is a better representation of Z*.” More
recently, several metrics have been proposed for com-
paring non-dominated sets, each of which attempts to
boil down the (maybe comparative) ‘quality’ of such
a set into a single number. Such a measure can then
underpin statistical comparisons between EMO algo-
rithms as well as convergence studies.

In the remainder we discuss and contrast several re-
cently proposed non-dominated set comparison met-
rics (NDSCMs), in the light of the goals of EMO
search, and also in the light of a framework proposed
by Hansen and Jaszkiewicz ([4]) which enables us to
compare them in terms of the kind of ordering an ND-
SCM induces on non-dominated sets. In section 2 we
review the ‘goals’ of EMO search, and also set out the
framework for assessing NDSCMs proposed by Hansen
and Jaszkiewicz [4]. In Section 3 we analyse several
NDSCMs from the recent literature with reference to
the framework described in section 2, leading to a brief
summary and recommendations in section 4.

2 EMO Objectives and Outper-
formance Relations

To properly compare and contrast NDSCMs we need to
identify desirable aspects of non-dominated sets. Zit-
zler et al [11] suggest three goals that can be identified
and measured:

1. The distance of the resulting nondominated set to
the Pareto-optimal front should be minimized.

2. A good (in most cases uniform) distribution of the
solutions found 1s desirable.

3. The extent of the obtained nondominated front
should be maximized, i.e., for each objective, a
wide range of values should be present.

These describe desirable outcomes, but we can ques-
tion whether they fully capture EMO comparison need-
s. E.g. if |Z*| = 1, then (3) is not appropriate. Also,
if points on Z* are not uniformly distributed, then a
result Z that contains nearly all of the points in Z* will
not comply with (2). Thus, although the above serve
well as an intuitive guide to the goals of Pareto search,
a more general (and economic) statement might be to



expand on the first point only, defining what is meant
by the distance of one set from the other. This may
lead to more useful metrics.

More recently, Hansen and Jaszkiewicz [4] have con-
sidered the problem of evaluating approximations to
the true Pareto front. They define a number of oui-
performance relations that express the relationship be-
tween two sets of internally nondominated objective
vectors, A and B, as follows. where ND(.S) denotes the
non-dominated points in S:

Weak Outperformance: AOwB <= ND(AU
B)=Aand A # B. Le. A weakly outperforms B if all
points in B are ‘covered’ by those in A (where ‘covered’
means is equal to or dominates) and there is at least
one point in A that is not contained in B.

Strong outperformance: AOgB <= ND(A4 U
B) = A and B\ND(AUB) # 0. le. A strongly
outperforms B if all points in B are covered by those
in A and some point in B is dominated by a point in
A.

Complete outperformance: AOsB =
ND(AUB) = A and BNND(AUB) = 0. Te. A
completely outperforms B if each point in B is domi-
nated by a point in A.

Notice that AOcB = AOsB = AOwB. In other
words, complete outperformance is the strongest and
weak outperformance is the weakest of the relations.

These valuably describe the relationships between
approximations to Z* since they are compatible with,
and only depend upon, standard Pareto dominance.
They are not metrics of performance, however, and are
silent in the often encountered case where each set con-
tains points that are not covered by the other set. But,
we can use them to assess the usefulness of NDSCMs.
Any metric not compatible with these relations is lca-
pable of giving misleading results. In this vein, Hansen
and Jaszkiewicz formally define compatibility and weak
compatibility with an outperformance relation, as fol-
lows:

Weak compatibility: A comparison metric R is
weakly compatible with an outperformance relation <
if for each pair of nondominated sets A, B with A < B,
R will evaluate A as being no worse than B.

Compatibility: A comparison metric R is compat-
tble with an outperformance relation < if for each pair
of nondominated sets A and B, such that A < B, R
will evaluate A as being better than B.

In the remainder, we compare and contrast different
proposed NDSCMs in terms of their compatibility with
the outperformance relations.

3 Analysis of NDSCMs

In this section we analyse several NDSCMs, discussing
their compatibility with the outperformance relations
and other relevant factors. For each metric, we in-
troduce 1t and then discuss it under three headings:
Pareto compatibility, Pros, Cons/caveats. The
analysis 1s summarized in Table 1 When introduced,
we note its purpose and how it actually compares t-
wo approximation sets A and B. There are several
alternative approaches to this. A ‘direct comparative’
metric compares A and B directly using a scalar mea-
sure R(A, B) to describe how much better A is than B.

If R(A,B) = ¢ — R(B, A) for some constant ¢ for all
pairs of nondominated sets A, B then R is ‘symmetric’.
Alternatively, a ‘reference metric’ uses a reference set,
perhaps Z*; it scores both sets against this reference
set, and then compares the results. Clearly, any di-
rect comparative metric can also be used as reference
metric by specifying a particular reference set. The
converse 1s not true because their definition depends
on a particular reference set (often 7*). Lastly, an ‘in-
dependent’ metric measures some property of each set
that is not dependent on any other, or any reference
set. Another important feature of a metric is whether
it induces a complete ordering of all possible nondom-
inated sets. This ensures transitivity, so that when A,
B, and C' are compared, if A beats B and B beats C
then it is always true that A beats C'. Often, direct
comparative metrics do not induce a complete order-
ing, and the relations between different sets may be
intransitive. Using reference sets in such cases would
then ensure transitivity. Transitivity is not generally a
problem with independent metrics as they all induce a
complete ordering. Finally, we also note if the metric
is a cardinal measure (based on counting the number
of vectors in some set) or non-cardinal.

The Pareto compatibility section of each analysis is
concerned with compatibility with the outperformance
relations Oy, Og, and O¢. The less compatible the
metric is, the more misleading it may be, giving scores
for nondominated sets that do not accurately reflect
their relative worth in a Pareto sense. The hardest re-
lation to be (weakly) compatible with is Oy, and the
easiest is O¢. We note that compatibility with Ow 1is
necessary and sufficient for ensuring monotony and
sufficient but not necessary for ensuring relativity,
which are defined as follows (and are clearly desirable
features of an NDSCM):

(weak) monotony Given a nondominated set A,
adding a nondominated point improves (does not
degrade) its evaluation.

(weak) relativity The evaluation of Z* is (non)-
uniquely optimal, i.e., all other nondominated sets
have a strictly inferior (non-superior) evaluation.

Weak compatibility with Oy is sufficient for the
weak versions to be exhibited.

The last two headings summarize the advantages and
disadvantages of the metric, considering compatibility
with the outperformance relations and additional fac-
tors such as computational cost, whether or not it is
scaling independent (is the ordering of approximations
affected 1f one objective is scaled relative to the other-
87), and whether it relies on knowledge of Z* or any
other reference set or point, and whether it can dif-
ferentiate between different levels of complete outper-
formance. This means that given three approximation
sets A, B, C' with AO¢B and BO&C, would the metric
give a different evaluation if A and B were compared
than if A and C' were compared?

The S metric

A definition of the & metric is given in [10]. Tt calcu-
lates the hypervolume of the multi-dimensonal region



Figure 1: The relative value of the § metric depends
upon an arbitrary choice of reference point. In the
upper half, two nondominated sets are shown, A and

B, with §(A) >8(B). In the lower half the same sets

have a different ordering in S.

enclosed by A and a ‘reference point’ (see Figure 1),
hence computing the size of the region A dominates.
It is independent (although needs a reference point to
be chosen), so it induces a complete ordering, and it
is non-cardinal. Pareto compatibility: Compatible
with Ow provided that the reference point is set so that
all feasible nondominated sets are evaluated as positive.
Pros: There are many: compatible with the outperfor-
mance relations, independent, differentiates between d-
ifferent degrees of complete outperformance of two sets,
scaling independent, and i1ts meaning is intuitive. Con-
s/caveats: It requires defining some upper boundary
of the region within which all feasible points will lie.
This choice does affect the ordering of nondominated
sets (see Figure 1), and is relatively arbitrary. It has
a large computational overhead, O(n*+1), rendering it
unusable for many objectives or large sets. It multi-
plies ‘apples’ by ‘oranges’; that 1s, different objectives
together, but arguably this does not matter, since the
metric is scaling independent anyway, and the units are
irrelevant.

Error ratio (ER)
This [8] is defined as (3", €;)/n, where n is the num-

ber of vectors in the approximation set 7; ¢; = 0 if
vector ¢ is in Z* and 1 otherwise. Lower values of the
error ratio represent better nondominated sets. ER is
the proportion of non true Pareto points in 7. It 1s a
reference metric using Z* as reference set. It induces a
total ordering, and is cardinal. Pareto compatibil-
ity: It is only weakly compatible with O¢. It is not
weakly compatible with Og or Oy ; e.g. if an algorith-
m finds two nondominated vectors, one in Z*, and the

other far from Z*, then its error ratio is 0.5. If it find-
s one hundred solutions, 99 of which are very close to
7Z* (and perhaps distributed evenly along it over a wide
range in the objectives), and one (as before) which isin
Z*, then its error ratio will be 0.99. Clearly the second
set of points is far better, but the first has a much worse
ER. It strongly violates monotony; given a nondomi-
nated set A with one or more Pareto optimal points
in 1t, addition of more nondominated but non-Pareto
optimal points makes the ER score worse. It violates
relativity too, since any non-empty subset of Z* has an
opimal error ratio. However, it exhibits weak relativity
because the Pareto front itself is evaluated not worse
than any other set. Pros: It is easy to understand and
easy to calculate. It is scaling independent. For test
problems it can be used as a quick and rough mean-
s of assessing progress towards Z*. Cons/caveats:
Knowledge of Z* is needed. It is incompatible with
the outperformance relations.

Generational distance (GD)

™ 2

This [8] is #, where n is the number of vectors
in the approximation set, and d; is the distance in ob-
jective space between vector ¢ and the nearest member
of Z*. Lower values represent better sets. GD mea-
sures general progress towards Z*. It is a reference
metric using Z* as reference. It induces a total order-
ing, and is non-cardinal. Pareto compatibility: It
is not weakly compatible with Oy, but 1s compatible
with Og. It violates weak monotony. E.g., the GD
score favours one vector close to Z* over a set contain-
ing that vector plus others, as long as the others are
not closer on average to Z* than the first one. It does
exhibit weak relativity, since any subset of Z* has an
optimal GD. Pros: For a constant size of nondomi-
nated set, GD is compatible with Og. It is relative-
ly cheap to calculate. Cons/caveats: Because it is
not compatible with Ow 1t cannot be used confidently
for nondominated sets that are changing in cardinality
(typical, for example, of the non-dominated portion of
an EMO population over time). It cannot reliably dif-
ferentiate between different levels of complete outper-
formance. Knowledge of Z* is required. The distance
metric will either add or multiply different objectives
together, introducing scaling and normalization issues
that cannot be properly resolved without reference to
additional preference information.

Maximum Pareto Front Error (MPFE)
This [8] is defined as follows:

max(min | (%) = A (@) + | £(2) — f @) (1)

where ¢ = 1,...,ny and j = 1,...,ny index vectors
in Z and Z* respectively, and p = 2. Lower values
represent better sets. MPFE measures the largest dis-
tance between any vector in Z and the corresponding
closest vector in Z*. It is a reference metric using Z*
as a reference. It induces a complete ordering, and is
non-cardinal. Pareto compatibility It is not weakly
compatible with any outperformance relation. It vio-
lates weak monotony. It is better, according to MPFE,



to find one solution close to Z* than to find ten solu-
tions, nine of which are in Z* and one which is some
distance away. This does not sit well with typical in-
tuitions about the quality of a nondominated set. It
exhibits weak relativity because any subset of Z* is
optimal. Pros: It is cheap to compute. It provides in-
formation about whether any points found are far from
the true front. Cons/caveats Even if a nondominated
set has a very low MPFE, it does not make it a good
front, and doesn’t necessarily make i1t better than an-
other one with a much worse MPFE. As with the other
distance metrics, different objectives must be combined
to get a single figure of merit, bringing in scaling and
normalization issues. Knowledge of Z* is required.

Overall Nondom. Vector Generation (ONVGQG)

A further metric in [8], ONVG, is simply defined as
|Z|. Measuring the number of distinct non-dominated
points produced, this is an independent metric, induces
a complete ordering on the set of approximations, and
it is a cardinal measure. Pareto compatibility: It
is not weakly compatible with any outperformance re-
lation. It does not exhibit either weak monotony or
weak relativity. Pros: It is easy to compute. It is
scaling independent. There are a few special patholog-
ical cases where this metric can be used to gauge the
quality of a nondominated set, for example, if the en-
tire search space contains only nondominated points.
Cons/caveats: See Pareto compatibility. In gener-
al, it 1s straightforward to come up with scenarios in
which A outperforms B on this metric but in which B
is clearly ‘better’ than A. E.g. A contains a million
nondominated points and B contains just 1, but this
point dominates all of those in A.

Van Veldhuizen ([8]) also defines ‘Overall nondomi-
nated vector generation ratio’ (ONVGR) as |Z|/|Z%|.
We omit a fuller discussion of this and further metrics
proposed in [8], since the above are representative, and
fuller analysis can be found in [5].

Schott’s Spacing metric (SS)
Schott [7] describes the following spacing metric:

i -

where d; = mins(£{(2) = FL()] + |558) - £ 7).
i,j = l..n, d is the mean of all d; and n = |Z].

SS tries to gauge how evenly the points are distribut-
ed. It is independent metric, induces a complete order-
ing, and is cardinal. Pareto compatibility: SS is not
even weakly compatible with Oys. It exhibits nether
monotony nor relativity, since Z* may be non-uniform.
Pros: Used in conjunction with other metrics (as it is
designed to be), it provides information about the dis-
tribution of vectors obtained. It has low computation-
al overhead. It can be generalized to more than two
dimensions by extending the definition of d;. Con-
s/caveats: Schott’s definition of d; does not specify
the use of normalized distances, which may be prob-
lematic. Its incompatibility with the outperformance
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Figure 2: C(R,A) =0, C(R,A") =1/3,C(A,R) =3/4,
C(A', R) = 3/4 so against the reference set R, A’ seems
to evaluate worse than A according to the C metric.
But A’Ow A so we may conclude that the C metric is
not weakly compatible with the weak outperformance
relation when used with a general reference set R. The
alternative view is to say that A is not evaluated ‘worse’
than A by the C metric, arguing that we should adopt
the convention that unless one of a C metric pair gives
output 1, the evaluation is meaningless. However, that
severely restricts its general usefulness.

relations and the fact that it violates both monotony
and relativity make it unreliable.

Deb et al [3] also define a spacing metric. We omit
details for space reasons, but can say that it turns out
to have very similar properties to Schott’s metric in the
sense of table 1 [5].

The C metric

Let A, B C X be two sets of vectors. C maps the or-
dered pair (A, B) to the interval [0,1]:

C(A,B) _ |{bEB|E||aBE|A:ajb}|

The value C(A, B) = 1 means that all decision vec-
tors in B are weakly dominated by A. The oppo-
site, C(A, B) = 0, represents the situation when none
of the points in B is weakly dominated by A. Note
that always both orderings have to be considered, s-
ince C(A, B) is not necessarily equal to 1 — C(B, 4).

C is a cardinal measure, and a direct comparative
approach giving a single figure of merit that is not sym-
metric. It is difficult to establish whether the metric
induces a complete ordering because it is not clear how
the pair of C values should be interpreted together.

Pareto compatibility: The non-symmetric nature
of C complicates the analysis of its compatibility with
the outperformance relations. This depends on how
we interpret or combine the two outputs of the metric.
Space restrictions force us to omit a fuller discussion,
which can be found in [5]; here we provide a summary.

It is generally possinble for C(A, B) to differ from
C(B,A). However, if we take it that in general a set
A is evaluated better than a set B according to C if
C(A,B) = 1 and C(B, A) < 1, then C is compatible
with Ow . There are further constrained situations in
which C can be coerced into compatibility with O,
when used either as a direct comparative metric or as
a reference set metric. However, in general (fuller dis-
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Figure 3: Cycling in the € metric. C(A,B) =
0,6(B,A) = 3/4C(B,C) = 0,C(C,B) = 1/2 and
C(A,C) = 1/2,(C, A) = 0 so, C considers B better
than A, C better than B, but A better than C

cussion in [5]), C is not compatible with Oy (see figure
2). Tt is, however, compatible with Og and O¢.

Any pair of C metric scores for a pair of sets A and
B in which neither C(A, B) = 1 nor C(B,A) = 1, in-
dicates that the two sets are incomparable according
to the weak outperformance relation. Drawing any
further conclusions from C in this case is inadvisable.
E.g. Figure 3 shows that if three sets are compared
using C, they may not be ordered. l.e. C is cycle-
inducing. Further, C does not give an output which is
representative of our intuitions about the relative qual-
ity of two sets unless the two sets contain very evenly
distributed points, and are of very similar cardinality.
Pros: It has low computational overhead compared to
S. It is compatible with Og, and scale and reference
point independent. It requires no knowledge of Z*.
For two evenly-distributed sets, of the same cardinal-
ity, it gives results compatible with intuitive notions
of quality. Cons/caveats: Its incompatibility with
Oy . If two sets are of different cardinality and/or the
distributions of the sets are non-uniform, then it gives
unreliable results. It cannot determine the degree of
outperformance if one set completely outperforms the
other.

D1y (Czyzak and Jaszkiewicz)

1

DIg(AA) = 1 Y minfdra)}  (3)
reER

where A 1s the approximation set, R is a refer-
ence set, d(r,z) = maxp{A;(ry — z1)} and A =
[/\1,/\2, .. /\K],/\k = 1/Rk,]€ = 1..K with Rk being
the range of objective k in set R.

D1pg measures the mean distance, over the points in
a reference set, of the nearest point in an approxima-
tion set. It 1s a reference metric which induces a com-
plete ordering, and is non-cardinal. Pareto compat-
ibility: D1pg is weakly compatible with Oy, but not
compatible with O¢c. Pros: It is cheap to compute. Its
weak compatibility with the outperformance relations.
It can differentiate between different levels of complete
outperformance given an appropriate choice of refer-
ence set. Cons/caveats: It effectively calculates a
weighted average where the reference points have equal
weight. Hence the score is strongly dependent upon the

distribution of points in the reference set, and on the

choice of A.

R1 and Rlp (Hansen and Jaszkiewicz)

RI(A,B,U,p) = C(A, B,u)p(u)du , where
uel
1 if w*(A) > u*(B)
C(A,B,u) = 1/2 if u*(A) = u*(B)

0 if u*(A) < u*(B)

where A and B are two approximation sets, U 1is
some set of utility functions, u : R — R which
maps each point in the objective space into a mea-
sure of utility, p(u) is an intensity function express-
ing the probability density of the utility v € U, and
u*(A) = max gea{u(z)} and similarly for u*(B).

R1 is based on calculating the probability that A is
better than B over a set of utility functions. It i1s a
direct comparative metric and non-cardinal. It does
not induce a total ordering. Rlg is R1 when it is
used with a reference set, in which case it does induce
a total ordering. Pareto compatibility: Assuming
we are maximizing all objectives, a utility function u
is strictly compatible with the dominance relation if-
fvzt,z? 2! > 22 = u(z') > u(z?). The set of all
utility functions that are strictly compatible with the
dominance relation is Us.. Let U(A > B) = {u €
Ul u*(A) > u*(B)}. If the probability density func-
tion p(u) is such that the probability of selecting a
utility function v € U(A > B) is positive whenever
UA > B) 2 0 and U C U;, then R1 is compati-
ble with Oy . Under the same conditions, R1g is only
weakly compatible with Op and is not compatible with
O¢. Pros: The metrics are scaling independent, and
have a lower computational overhead than §. R1g can
differentiate between different levels of complete out-
performance provided that an appropriate reference set
is chosen. Cons/caveats: Rl is cycle-inducing. The
metrics depend upon being able to define a set of utili-
ty functions. In general, however, this can be achieved
without any knowledge of Z*.

R2 and R2p (Hansen and Jaszkiewicz)

RQ(A,B,U,p) =
= [0 = (B

E(u™(A)) = E(u”(B))

where A and B are two approximation sets, U 1is
some set of utility functions, u : R — R which
maps each point in the objective space into a mea-
sure of utility, p(u) is an intensity function express-
ing the probability density of the utility v € U, and
u*(A) = max gea{u(z)} and similarly for u*(B).
Where R1 just uses the function C(A, B,u) to de-
cide which of two approximations is better on utility
function u, without measuring by how much, R2 takes
into account the expected values of the utility. R2
calculates the expected difference in the utility of an
approximation A with another one B. It is a direct
comparative metric. It induces a complete ordering. It
1s a non-cardinal measure. R2g 1s R2 when used as



a reference metric. It also induces a complete order-
ing. Pareto compatibility: R2 is compatible with
Ow subject to the same set of conditions on the set of
utility functions used as outlined for R1. R2pg is also
compatible with Ow given this set of conditions. Pros:
The advantages of R2 arise from its compatibility with
all of the outperformance relations and the fact that
it can differentiate between different levels of complete
outperformance. Cons/caveats: The application of
R2 depends upon the assumption that it is meaningful
to add the values of different utility functions from the
set U. This simply means that that each utility func-
tion in U must be appropriately scaled with respect to
the others and its relative importance.

R3 and R3p (Hansen and Jaszkiewicz)

Hansen and Jaszkiewicz also propose a similar met-
ric to R2 whereby the ratio of the best utility values
is calculated instead of the differences. These metrics
are called R3 and R3g. The latter is similar to the
approach used in single objective optimization, where
an approximate solution is evaluated by the ratio of
its value to that of a fixed bound, note Hansen and
Jaszkiewicz.

4 Summary of Analysis

From the analysis above, summarised in table 1, we
would recommend to EMO researchers the use of the
R1, R2, and R3 metrics of Hansen and Jaszkiewicz,
and (for relatively few objective dimensions and not
overlarge non-dominated sets) the & metric of Zitzler.
The other metrics may not be as useful because they
generally suffer from poor compatibility with the out-
performance relations and cannot differentiate between
different levels of complete outperformance.
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patible with Og and O¢, and “3” means compatible
with all three. Y in the remaining columns indicates
the following: C: non cycle-inducing; R: independen-
t of reference set; S: independent of scaling (i.e. the
ordering of approximations would not be affected by
scaling the objectives differently); ¢: a non-cardinal
measure. [): differentiates between levels of complete
outperformance (see section 2). The @ column indicu-
ates computational overhead, and the final column in-
dicates the metric under study in each row, using ab-
breviations indicated in the text.
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