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Abstract� Evolutionary multi�objective optimisation
�EMO� now boasts a proliferation of algorithms and bench�
mark problems� We need principled ways to compare the

performance of di�erent EMO algorithms� but this is com�
plicated by the fact that the result of an EMO run is not
a single scalar value� but a collection of vectors forming

a non�dominated set� Various metrics for non�dominated
sets have been suggested� Here we compare several� using
the framework of �outperformance relations� �Hansen and

Jaszkiewicz 	
��� This enables us to criticise and contrast a
variety of published metrics� leading to some recommenda�
tions on which seem most useful in practice�

� Introduction

Evolutionary multi�objective optimisation �EMO� is
growing rapidly and several successful algorithms have
emerged recently ��� ��� 	� �
� The proliferation of such
algorithms� along with a growing interest in benchmark
multiobjective problems ���� �� 
� boosts the impor�
tance of performance comparison issues� This is com�
plicated� however� since the result of an EMO run is
not a single scalar �best��tness� value which can be sub�
jected to univariate statistical tests� Instead� the result
�except in pathological cases� is a non�dominated col�
lection of vectors �given any two vectors in such a set
that are not equal on all objectives� one cannot be bet�
ter or equal to the other on all objectives � i�e� no
vector in the set dominates another��
In the absence of other factors �e�g� preference for

certain objectives� or for a particular region of the
tradeo� surface�� the task of an EMO algorithm is to
yield as good an approximation as it can to the true
Pareto front� Comparing two EMO algorithms hence
requires comparing the nondominated sets they pro�
duce� Pathological cases aside� there is no straightfor�
ward way to distinguish the quality of di�erent non�
dominated sets� E�g� if we call the true Pareto front
Z�� then how do we compare a result which produces
a single point a � Z� with another result which yields
a widespread set of non�dominated points B� none of
which is either dominated by a or in Z�� In the for�
mer case we have a true Pareto point� which means
that no solution exists which dominates the discovered
solution� But in the latter case� although every discov�
ered point can be dominated� we have perhaps a very
wide representation of the shape of the tradeo� surface
�absent in the former case� and perhaps some of the
points are not very far from true Pareto optimal�
Until recently� it has been common in EMO litera�

ture for performance to be indicated simply by way of a

graphic plot� As Van Veldhuizen ��
 remarks �but using
our notation�� �Comparative results are then �clear�
ly� shown in graphical form indicating which algorith�
m performed better� often implying the new MOEA�s
returned Z is a better representation of Z��� More
recently� several metrics have been proposed for com�
paring non�dominated sets� each of which attempts to
boil down the �maybe comparative� �quality� of such
a set into a single number� Such a measure can then
underpin statistical comparisons between EMO algo�
rithms as well as convergence studies�
In the remainder we discuss and contrast several re�

cently proposed non�dominated set comparison met�
rics �NDSCMs�� in the light of the goals of EMO
search� and also in the light of a framework proposed
by Hansen and Jaszkiewicz ���
� which enables us to
compare them in terms of the kind of ordering an ND�
SCM induces on non�dominated sets� In section � we
review the �goals� of EMO search� and also set out the
framework for assessing NDSCMs proposed by Hansen
and Jaszkiewicz ��
� In Section 	 we analyse several
NDSCMs from the recent literature with reference to
the framework described in section �� leading to a brief
summary and recommendations in section ��

� EMO Objectives and Outper�

formance Relations

To properly compare and contrast NDSCMs we need to
identify desirable aspects of non�dominated sets� Zit�
zler et al ���
 suggest three goals that can be identi�ed
and measured�

�� The distance of the resulting nondominated set to
the Pareto�optimal front should be minimized�

�� A good �in most cases uniform� distribution of the
solutions found is desirable�

	� The extent of the obtained nondominated front
should be maximized� i�e�� for each objective� a
wide range of values should be present�

These describe desirable outcomes� but we can ques�
tion whether they fully capture EMO comparison need�
s� E�g� if jZ�j � �� then �	� is not appropriate� Also�
if points on Z� are not uniformly distributed� then a
result Z that contains nearly all of the points in Z� will
not comply with ���� Thus� although the above serve
well as an intuitive guide to the goals of Pareto search�
a more general �and economic� statement might be to
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expand on the �rst point only� de�ning what is meant
by the distance of one set from the other� This may
lead to more useful metrics�
More recently� Hansen and Jaszkiewicz ��
 have con�

sidered the problem of evaluating approximations to
the true Pareto front� They de�ne a number of out�

performance relations that express the relationship be�
tween two sets of internally nondominated objective
vectors� A and B� as follows� where ND�S� denotes the
non�dominated points in S�
Weak Outperformance� AOWB �� ND�A �

B� � A and A �� B� I�e� A weakly outperforms B if all
points in B are �covered� by those in A �where �covered�
means is equal to or dominates� and there is at least
one point in A that is not contained in B�
Strong outperformance� AOSB �� ND�A �

B� � A and B n ND�A � B� �� �� I�e� A strongly

outperforms B if all points in B are covered by those
in A and some point in B is dominated by a point in
A�
Complete outperformance� AOCB ��

ND�A � B� � A and B � ND�A � B� � �� I�e� A
completely outperforms B if each point in B is domi�
nated by a point in A�
Notice that AOCB � AOSB � AOWB� In other

words� complete outperformance is the strongest and
weak outperformance is the weakest of the relations�
These valuably describe the relationships between

approximations to Z� since they are compatible with�
and only depend upon� standard Pareto dominance�
They are not metrics of performance� however� and are
silent in the often encountered case where each set con�
tains points that are not covered by the other set� But�
we can use them to assess the usefulness of NDSCMs�
Any metric not compatible with these relations is lca�
pable of giving misleading results� In this vein� Hansen
and Jaszkiewicz formally de�ne compatibility and weak
compatibility with an outperformance relation� as fol�
lows�
Weak compatibility� A comparison metric R is

weakly compatible with an outperformance relation �
if for each pair of nondominated sets A� B with A � B�
R will evaluate A as being no worse than B�
Compatibility� A comparison metric R is compat�

ible with an outperformance relation � if for each pair
of nondominated sets A and B� such that A � B� R
will evaluate A as being better than B�
In the remainder� we compare and contrast di�erent

proposed NDSCMs in terms of their compatibility with
the outperformance relations�

� Analysis of NDSCMs

In this section we analyse several NDSCMs� discussing
their compatibility with the outperformance relations
and other relevant factors� For each metric� we in�
troduce it and then discuss it under three headings�
Pareto compatibility� Pros� Cons�caveats� The
analysis is summarized in Table � When introduced�
we note its purpose and how it actually compares t�
wo approximation sets A and B� There are several
alternative approaches to this� A �direct comparative�
metric compares A and B directly using a scalar mea�
sure R�A�B� to describe how much better A is than B�

If R�A�B� � c 	 R�B�A� for some constant c for all
pairs of nondominated sets A�B then R is �symmetric��
Alternatively� a �reference metric� uses a reference set�
perhaps Z�� it scores both sets against this reference
set� and then compares the results� Clearly� any di�
rect comparative metric can also be used as reference
metric by specifying a particular reference set� The
converse is not true because their de�nition depends
on a particular reference set �often Z��� Lastly� an �in�
dependent� metric measures some property of each set
that is not dependent on any other� or any reference
set� Another important feature of a metric is whether
it induces a complete ordering of all possible nondom�
inated sets� This ensures transitivity� so that when A�
B� and C are compared� if A beats B and B beats C
then it is always true that A beats C� Often� direct
comparative metrics do not induce a complete order�
ing� and the relations between di�erent sets may be
intransitive� Using reference sets in such cases would
then ensure transitivity� Transitivity is not generally a
problem with independent metrics as they all induce a
complete ordering� Finally� we also note if the metric
is a cardinal measure �based on counting the number
of vectors in some set� or non�cardinal�
The Pareto compatibility section of each analysis is

concerned with compatibility with the outperformance
relations OW � OS � and OC � The less compatible the
metric is� the more misleading it may be� giving scores
for nondominated sets that do not accurately re�ect
their relative worth in a Pareto sense� The hardest re�
lation to be �weakly� compatible with is OW � and the
easiest is OC� We note that compatibility with OW is
necessary and su�cient for ensuring monotony and
su�cient but not necessary for ensuring relativity�
which are de�ned as follows �and are clearly desirable
features of an NDSCM��

�weak� monotony Given a nondominated set A�
adding a nondominated point improves �does not
degrade� its evaluation�

�weak� relativity The evaluation of Z� is �non��
uniquely optimal� i�e�� all other nondominated sets
have a strictly inferior �non�superior� evaluation�

Weak compatibility with OW is su�cient for the
weak versions to be exhibited�
The last two headings summarize the advantages and

disadvantages of the metric� considering compatibility
with the outperformance relations and additional fac�
tors such as computational cost� whether or not it is
scaling independent �is the ordering of approximations
a�ected if one objective is scaled relative to the other�
s��� and whether it relies on knowledge of Z� or any
other reference set or point� and whether it can dif�
ferentiate between di�erent levels of complete outper�
formance� This means that given three approximation
sets A� B� C with AOCB and BOCC� would the metric
give a di�erent evaluation if A and B were compared
than if A and C were compared�

The S metric

A de�nition of the S metric is given in ���
� It calcu�
lates the hypervolume of the multi�dimensonal region
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Figure �� The relative value of the S metric depends
upon an arbitrary choice of reference point� In the
upper half� two nondominated sets are shown� A and
B� with S�A� �S�B�� In the lower half the same sets
have a di�erent ordering in S�

enclosed by A and a �reference point� �see Figure ���
hence computing the size of the region A dominates�
It is independent �although needs a reference point to
be chosen�� so it induces a complete ordering� and it
is non�cardinal� Pareto compatibility� Compatible
withOW provided that the reference point is set so that
all feasible nondominated sets are evaluated as positive�
Pros� There are many� compatible with the outperfor�
mance relations� independent� di�erentiates between d�
i�erent degrees of complete outperformance of two sets�
scaling independent� and its meaning is intuitive� Con�
s�caveats� It requires de�ning some upper boundary
of the region within which all feasible points will lie�
This choice does a�ect the ordering of nondominated
sets �see Figure ��� and is relatively arbitrary� It has
a large computational overhead� O�nk���� rendering it
unusable for many objectives or large sets� It multi�
plies �apples� by �oranges�� that is� di�erent objectives
together� but arguably this does not matter� since the
metric is scaling independent anyway� and the units are
irrelevant�

Error ratio �ER�

This �
 is de�ned as �
Pn

i�� ei��n� where n is the num�
ber of vectors in the approximation set Z� ei � � if
vector i is in Z� and � otherwise� Lower values of the
error ratio represent better nondominated sets� ER is
the proportion of non true Pareto points in Z� It is a
reference metric using Z� as reference set� It induces a
total ordering� and is cardinal� Pareto compatibil�
ity� It is only weakly compatible with OC � It is not
weakly compatible with OS or OW � e�g� if an algorith�
m �nds two nondominated vectors� one in Z�� and the

other far from Z�� then its error ratio is ���� If it �nd�
s one hundred solutions� �� of which are very close to
Z� �and perhaps distributed evenly along it over a wide
range in the objectives�� and one �as before� which is in
Z�� then its error ratio will be ����� Clearly the second
set of points is far better� but the �rst has a much worse
ER� It strongly violates monotony� given a nondomi�
nated set A with one or more Pareto optimal points
in it� addition of more nondominated but non�Pareto
optimal points makes the ER score worse� It violates
relativity too� since any non�empty subset of Z� has an
opimal error ratio� However� it exhibits weak relativity
because the Pareto front itself is evaluated not worse
than any other set� Pros� It is easy to understand and
easy to calculate� It is scaling independent� For test
problems it can be used as a quick and rough mean�
s of assessing progress towards Z�� Cons�caveats�
Knowledge of Z� is needed� It is incompatible with
the outperformance relations�

Generational distance �GD�

This �
 is

pP
n

i��
d�
i

n
� where n is the number of vectors

in the approximation set� and di is the distance in ob�
jective space between vector i and the nearest member
of Z�� Lower values represent better sets� GD mea�
sures general progress towards Z�� It is a reference
metric using Z� as reference� It induces a total order�
ing� and is non�cardinal� Pareto compatibility� It
is not weakly compatible with OW � but is compatible
with OS� It violates weak monotony� E�g�� the GD
score favours one vector close to Z� over a set contain�
ing that vector plus others� as long as the others are
not closer on average to Z� than the �rst one� It does
exhibit weak relativity� since any subset of Z� has an
optimal GD� Pros� For a constant size of nondomi�
nated set� GD is compatible with OS � It is relative�
ly cheap to calculate� Cons�caveats� Because it is
not compatible with OW it cannot be used con�dently
for nondominated sets that are changing in cardinality
�typical� for example� of the non�dominated portion of
an EMO population over time�� It cannot reliably dif�
ferentiate between di�erent levels of complete outper�
formance� Knowledge of Z� is required� The distance
metric will either add or multiply di�erent objectives
together� introducing scaling and normalization issues
that cannot be properly resolved without reference to
additional preference information�

Maximum Pareto Front Error �MPFE�

This �
 is de�ned as follows�

max
j

�min
i

jf i���x�	 fj� ��x�j
p � jf i���x�	 fj� ��x�jp���p ���

where i � �� � � � � n� and j � �� � � � � n� index vectors
in Z and Z� respectively� and p � �� Lower values
represent better sets� MPFE measures the largest dis�
tance between any vector in Z and the corresponding
closest vector in Z�� It is a reference metric using Z�

as a reference� It induces a complete ordering� and is
non�cardinal� Pareto compatibility It is not weakly
compatible with any outperformance relation� It vio�
lates weak monotony� It is better� according to MPFE�

	



to �nd one solution close to Z� than to �nd ten solu�
tions� nine of which are in Z� and one which is some
distance away� This does not sit well with typical in�
tuitions about the quality of a nondominated set� It
exhibits weak relativity because any subset of Z� is
optimal� Pros� It is cheap to compute� It provides in�
formation about whether any points found are far from
the true front� Cons�caveats Even if a nondominated
set has a very low MPFE� it does not make it a good
front� and doesn�t necessarily make it better than an�
other one with a much worse MPFE� As with the other
distance metrics� di�erent objectives must be combined
to get a single �gure of merit� bringing in scaling and
normalization issues� Knowledge of Z� is required�

Overall Nondom� Vector Generation �ONVG�

A further metric in �
� ONVG� is simply de�ned as
jZj� Measuring the number of distinct non�dominated
points produced� this is an independent metric� induces
a complete ordering on the set of approximations� and
it is a cardinal measure� Pareto compatibility� It
is not weakly compatible with any outperformance re�
lation� It does not exhibit either weak monotony or
weak relativity� Pros� It is easy to compute� It is
scaling independent� There are a few special patholog�
ical cases where this metric can be used to gauge the
quality of a nondominated set� for example� if the en�
tire search space contains only nondominated points�
Cons�caveats� See Pareto compatibility� In gener�
al� it is straightforward to come up with scenarios in
which A outperforms B on this metric but in which B
is clearly �better� than A� E�g� A contains a million
nondominated points and B contains just �� but this
point dominates all of those in A�

Van Veldhuizen ��
� also de�nes �Overall nondomi�
nated vector generation ratio� �ONVGR� as jZj�jZ�j�
We omit a fuller discussion of this and further metrics
proposed in �
� since the above are representative� and
fuller analysis can be found in ��
�

Schott�s Spacing metric �SS�

Schott ��
 describes the following spacing metric�s
�

n	 �

X
i��

n�
�

d 	di�� ���

where di � minj �jf
i
���x� 	 fj� ��x�j � jf i���x� 	 fj� � �xj���

i� j � ���n�
�

d is the mean of all di and n � jZj�
SS tries to gauge how evenly the points are distribut�

ed� It is independent metric� induces a complete order�
ing� and is cardinal� Pareto compatibility� SS is not
even weakly compatible with OW � It exhibits nether
monotony nor relativity� since Z� may be non�uniform�
Pros� Used in conjunction with other metrics �as it is
designed to be�� it provides information about the dis�
tribution of vectors obtained� It has low computation�
al overhead� It can be generalized to more than two
dimensions by extending the de�nition of di� Con�
s�caveats� Schott�s de�nition of di does not specify
the use of normalized distances� which may be prob�
lematic� Its incompatibility with the outperformance

z�

z�

point in A

point in A’

point in R

Figure �� C�R�A� � �� C�R�A�� � ��	� C�A�R� � 	���
C�A�� R� � 	�� so against the reference set R� A� seems

to evaluate worse than A according to the C metric�
But A�OWA so we may conclude that the C metric is
not weakly compatible with the weak outperformance
relation when used with a general reference set R� The
alternative view is to say thatA is not evaluated �worse�
than A by the C metric� arguing that we should adopt
the convention that unless one of a C metric pair gives
output �� the evaluation is meaningless� However� that
severely restricts its general usefulness�

relations and the fact that it violates both monotony
and relativity make it unreliable�
Deb et al �	
 also de�ne a spacing metric� We omit

details for space reasons� but can say that it turns out
to have very similar properties to Schott�s metric in the
sense of table � ��
�

The C metric

Let A�B 
 X be two sets of vectors� C maps the or�
dered pair �A�B� to the interval ����
�

C�A�B� � jfb�Bj�a�A�a�bgj
jBj

The value C�A�B� � � means that all decision vec�
tors in B are weakly dominated by A� The oppo�
site� C�A�B� � �� represents the situation when none
of the points in B is weakly dominated by A� Note
that always both orderings have to be considered� s�
ince C�A�B� is not necessarily equal to �	 C�B�A��
C is a cardinal measure� and a direct comparative

approach giving a single �gure of merit that is not sym�
metric� It is di�cult to establish whether the metric
induces a complete ordering because it is not clear how
the pair of C values should be interpreted together�
Pareto compatibility� The non�symmetric nature

of C complicates the analysis of its compatibility with
the outperformance relations� This depends on how
we interpret or combine the two outputs of the metric�
Space restrictions force us to omit a fuller discussion�
which can be found in ��
� here we provide a summary�
It is generally possinble for C�A�B� to di�er from

C�B�A�� However� if we take it that in general a set
A is evaluated better than a set B according to C if
C�A�B� � � and C�B�A� � �� then C is compatible
with OW � There are further constrained situations in
which C can be coerced into compatibility with OW �
when used either as a direct comparative metric or as
a reference set metric� However� in general �fuller dis�
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Figure 	� Cycling in the C metric� C�A�B� �
��C�B�A� � 	���C�B�C� � ��C�C�B� � ��� and
C�A�C� � ����C�C�A� � � so� C considers B better
than A� C better than B� but A better than C

cussion in ��
�� C is not compatible with OW �see �gure
��� It is� however� compatible with OS and OC�
Any pair of C metric scores for a pair of sets A and

B in which neither C�A�B� � � nor C�B�A� � �� in�
dicates that the two sets are incomparable according
to the weak outperformance relation� Drawing any
further conclusions from C in this case is inadvisable�
E�g� Figure 	 shows that if three sets are compared
using C� they may not be ordered� I�e� C is cycle�
inducing� Further� C does not give an output which is
representative of our intuitions about the relative qual�
ity of two sets unless the two sets contain very evenly
distributed points� and are of very similar cardinality�
Pros� It has low computational overhead compared to
S� It is compatible with OS � and scale and reference
point independent� It requires no knowledge of Z��
For two evenly�distributed sets� of the same cardinal�
ity� it gives results compatible with intuitive notions
of quality� Cons�caveats� Its incompatibility with
OW � If two sets are of di�erent cardinality and or the
distributions of the sets are non�uniform� then it gives
unreliable results� It cannot determine the degree of
outperformance if one set completely outperforms the
other�

D�R �Czyzak and Jaszkiewicz�

D�R�A�!� �
�

jRj

X
r�R

min
z �A

fd�r� z�g �	�

where A is the approximation set� R is a refer�
ence set� d�r� z� � maxkf�k�rk 	 zk�g and ! �
���� ��� � � ��K 
� �k � ��Rk� k � ���K with Rk being
the range of objective k in set R�
D�R measures the mean distance� over the points in

a reference set� of the nearest point in an approxima�
tion set� It is a reference metric which induces a com�
plete ordering� and is non�cardinal� Pareto compat�
ibility� D�R is weakly compatible with OW � but not
compatible with OC � Pros� It is cheap to compute� Its
weak compatibility with the outperformance relations�
It can di�erentiate between di�erent levels of complete
outperformance given an appropriate choice of refer�
ence set� Cons�caveats� It e�ectively calculates a
weighted average where the reference points have equal
weight� Hence the score is strongly dependent upon the

distribution of points in the reference set� and on the
choice of !�

R� and R�R �Hansen and Jaszkiewicz�

R��A�B�U� p� �

Z
u�U

C�A�B� u�p�u�du � where

C�A�B� u� �

��
�

� if u��A� � u��B�
��� if u��A� � u��B�
� if u��A� � u��B�

where A and B are two approximation sets� U is
some set of utility functions� u � �K � � which
maps each point in the objective space into a mea�
sure of utility� p�u� is an intensity function express�
ing the probability density of the utility u � U � and
u��A� � max z�Afu�z�g and similarly for u��B��
R� is based on calculating the probability that A is

better than B over a set of utility functions� It is a
direct comparative metric and non�cardinal� It does
not induce a total ordering� R�R is R� when it is
used with a reference set� in which case it does induce
a total ordering� Pareto compatibility� Assuming
we are maximizing all objectives� a utility function u
is strictly compatible with the dominance relation if�
f z�� z� � z� � z� � u�z�� � u�z��� The set of all
utility functions that are strictly compatible with the
dominance relation is Usc� Let U �A � B� � fu �
U j u��A� � u��B�g� If the probability density func�
tion p�u� is such that the probability of selecting a
utility function u � U �A � B� is positive whenever
U �A � B� �� � and U 
 Usc then R� is compati�
ble with OW � Under the same conditions� R�R is only
weakly compatible with OW and is not compatible with
OC� Pros� The metrics are scaling independent� and
have a lower computational overhead than S� R�R can
di�erentiate between di�erent levels of complete out�
performance provided that an appropriate reference set
is chosen� Cons�caveats� R� is cycle�inducing� The
metrics depend upon being able to de�ne a set of utili�
ty functions� In general� however� this can be achieved
without any knowledge of Z��

R� and R�R �Hansen and Jaszkiewicz�

R��A�B�U� p� � E�u��A�� 	 E�u��B��

�

Z
u�U

�u��A� 	 u��B��p�u�du

where A and B are two approximation sets� U is
some set of utility functions� u � �K � � which
maps each point in the objective space into a mea�
sure of utility� p�u� is an intensity function express�
ing the probability density of the utility u � U � and
u��A� � max z�Afu�z�g and similarly for u��B��
Where R� just uses the function C�A�B� u� to de�

cide which of two approximations is better on utility
function u� without measuring by how much� R� takes
into account the expected values of the utility� R�
calculates the expected di�erence in the utility of an
approximation A with another one B� It is a direct
comparative metric� It induces a complete ordering� It
is a non�cardinal measure� R�R is R� when used as

�



a reference metric� It also induces a complete order�
ing� Pareto compatibility� R� is compatible with
OW subject to the same set of conditions on the set of
utility functions used as outlined for R�� R�R is also
compatible with OW given this set of conditions� Pros�
The advantages of R� arise from its compatibility with
all of the outperformance relations and the fact that
it can di�erentiate between di�erent levels of complete
outperformance� Cons�caveats� The application of
R� depends upon the assumption that it is meaningful
to add the values of di�erent utility functions from the
set U � This simply means that that each utility func�
tion in U must be appropriately scaled with respect to
the others and its relative importance�

R	 and R	R �Hansen and Jaszkiewicz�

Hansen and Jaszkiewicz also propose a similar met�
ric to R� whereby the ratio of the best utility values
is calculated instead of the di�erences� These metrics
are called R	 and R	R� The latter is similar to the
approach used in single objective optimization� where
an approximate solution is evaluated by the ratio of
its value to that of a �xed bound� note Hansen and
Jaszkiewicz�

� Summary of Analysis

From the analysis above� summarised in table �� we
would recommend to EMO researchers the use of the
R�� R�� and R	 metrics of Hansen and Jaszkiewicz�
and �for relatively few objective dimensions and not
overlarge non�dominated sets� the S metric of Zitzler�
The other metrics may not be as useful because they
generally su�er from poor compatibility with the out�
performance relations and cannot di�erentiate between
di�erent levels of complete outperformance�
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