Properties of an Adaptive Archiving Algorithm for Storing
Nondominated Vectors

Joshua D. Knowles and David W. Corne

August 20, 2002

Abstract

Search algorithms for Pareto optimization are designed to obtain multiple solutions, each offering a
different tradeoff of the problem objectives. To make these different solutions available at the end of an
algorithm run, procedures are needed for storing them, one by one, as they are found. In the simple
case this may be achieved by placing each point (the image of a solution in objective space) that is
found into an ‘archive’ which maintains only nondominated points and discards all others. However,
even a set of mutually nondominated points is potentially very large (infinite in continuous objective
spaces), necessitating a bound on the archive’s capacity. But with such a bound in place it is no
longer obvious which points should be maintained and which discarded; we would like the archive to
maintain a representative and well-distributed subset of the points generated by the search algorithm,
and also that this set converges. To achieve these objectives we propose an adaptive archiving algorithm,
suitable for use with any Pareto optimization algorithm, which has various useful properties as follows.
It maintains an archive of bounded size, encourages an even distribution of points across the Pareto
front, it is computationally efficient, and we are able (with caveats) to prove convergence. Previously
proposed archiving algorithms, which we also discuss, have more general convergence properties, but at
the expense of not being able to maintain an even distribution of points along the front, or are very
computationally expensive, or do not guarantee to maintain a certain minimum number of points in
the archive. In contrast, the method proposed here maintains evenness, efficiency, and cardinality, and
provably converges under certain conditions (e.g. when there are two objectives) but not all. Finally,
the notions underlying our convergence proofs support a new way to rigorously define what is meant
by “good spread of points” across a Pareto front, in the context of grid-based archiving schemes. This
leads to proofs and conjectures applicable to archive sizing and grid-sizing in any Pareto optimization

algorithm maintaining a grid-based archive.

1 Introduction

In a review of multiobjective evolutionary algorithms (MOEAs) [Horn, 1997], Horn noted (page 6) that
all practical implementations of MOEAs for Pareto optimization can be assumed to maintain (off-line)
an archive of the best (nondominated) solutions found during an algorithm run. The archive is needed
because the on-line population of a MOEA is usually of a very limited size and Pareto optimal solutions in
it can be lost through stochastic selection processes. The observation of Horn is reflected in much MOEA
literature where results are frequently presented in terms of the off-line solutions found. However, despite the
widespread use of off-line storage of solutions, there has been little consideration of how best to implement
it. In particular, how should we bound the size of the archive, whilst maintaining a representative sample

of all the (nondominated) solutions found?

Although the problem of maintaining an archive may not have been too serious in the past, as MOEAs
are applied to larger problems (with perhaps more objectives) it will become more important to bound
archive size. Moreover, the advent of elitist MOEAs has meant that the archive is often, in reality, used as
a secondary population, providing a source for the generation of new solutions. In this context, it becomes
essential to bound the size of the store of solutions, whilst maintaining its representative nature, so that

selection mechanisms can run effectively and efficiently.

With these considerations in mind, it is clear that some means of reducing the number of stored nondominated
solutions is needed if we are to maintain and/or utilize an archive efficiently. However, we would also like our
archive to have guaranteed convergence to a set which, in a well-defined sense, approximates the whole, true
Pareto front. Thus, the use of simple clustering methods to reduce the set may not be sufficient for these
purposes. To ensure convergence, more advanced schemes are needed. Convergence proofs for a number
of MOEAs were given in [Hanne, 1999, Rudolph and Agapie, 2000] but the schemes under consideration in
these papers do not aim to generate a bounded set which is a good approximation to the whole Pareto
front. However, a more recent technical report by Laumanns et al. [Laumanns et al., 2001] proposed several
schemes for maintaining a bounded archive which converges to a well-defined approximation of the whole
Pareto front, although these methods have certain problems concerning the initial setting of important

parameters. We will review this report in Section 6, and relate it to the work presented here.

The remainder of this paper is organized as follows. Section 2 gives some preliminary information and
definitions needed for the analysis of the archiving algorithms. Section 3 describes three algorithms which
all converge to a subset of the true Pareto front under certain conditions. However, each of these algorithms
has drawbacks, which are discussed in this section. An adaptive grid archiving algorithm (AGA) is proposed

in Section 4, and proofs relating to its convergence are given. Section 5 indicates the conditions when the

grid boundaries of the adaptive grid archiving algorithm does not converge, and demonstrates why these
conditions prevent convergence. In Section 6, a brief description of the archiving algorithms recently proposed
by Laumanns et al. is given. These algorithms are compared with the AGA and we draw some parallels
between them, particularly the problems that all the algorithms have in providing an effective adaptive

scheme which also guarantees convergence. Section 7 summarises and concludes.

2 Preliminaries

In the following we analyse the convergence properties of several archiving algorithms. We take, as the basis
of our analysis, a model in which at every iteration of the archiving algorithm, a separate generating process
generates a multiobjective vector (point) which must be archived. All proofs of convergence presented here
rely on the fact that at every time step the generating process gives every point in the search space a non-zero
probability of being generated. In practice, this assumption will be true whenever, for example, a mutation
is applied to every bit in a binary string with some small probability, the standard method of generating a

new point in a random mutation hillclimber.

Definition 2.1 (Objective Space) The finite set Z denotes the objective space of all feasible objective

vectors z € RE | K > 2.

We assume, without loss of generality, a minimization problem. Thus the dominance relation is defined as

follows.

Definition 2.2 (Dominance Relation) Let z! = {2121, ... 2L} 22 = {2222 ...,2%4} and 2',2% € Z.

Then z' dominates z*, denoted as z' < z°, iff Vk € 1. K, z; <2} ATk € 1..K, z; < z}.

Definition 2.3 (Pareto Front) The finite set Z* = {z* € Z | Az € Z, z < z*} denotes the Pareto front
of Z.

Definition 2.4 (Archive) The finite set My C Z denotes the archive of objective vectors at time t.

Definition 2.5 (Generating Process) The process Gen(t) generates solutions from Z to be stored in M.
The output of Gen(t) at time t is z;, and associated with Gen(t) there is a probability pr(t,z) of generating

solution z € Z at time t. Gen(t) has the property that Vt,Vz € Z,pr(t,z) > 0.

Definition 2.6 (Nondominated set filter) Given any set of objective vectors, Z*:
ND(Z') ={zt € Z' |Bz? € Z', 2/ < 7%, i,j € 1.|Z']}.

Definition 2.7 We also define the following relations between a vector z* and a nondominated front Z,q =

2% < Zpg < Jz € 7,4, 2° < 7, (1)

Zng < 2% <= 3z € Zpq, z < z%, or in other words

Zipg < 2% < ND({ZG} U an) =Znpa N 2° € an,

2% ~ Zpq <= z° 5(Znd N Znd 7(z¢ N z° ¢ Znd- (3)

Finally we define the weak outperformance relation([Hansen and Jaszkiewicz, 1998]) between two nondom-

inated sets:

Definition 2.8 (Weak outperformance) A Ow B <= ND(AUB) = A and A # B. In other words,
approzimation A weakly outperforms approzimation B if all points in B are ‘covered’ by those in A (where

‘covered’ means is equal to or dominates) and there is ot least one point in A that is not contained in B.

We analyse the different archiving algorithms that we shall consider by using a generic archiving algorithm
AAReducecrEp shown in Figure 1. At each iteration this algorithm generates one point and updates the
nondominated solutions archive as specified by the Reduce function. A particular archiving algorithm may
be specified from AARgedqucecrED by specifying a particular Reduce function from the set RED of all Reduce

functions.

Definition 2.9 (Convergence) We say that M; is converged under algorithm AAreducecrRED if it is in @
state in which its members will not change for all future iterations, i.e., if ¥t > t,, My = My, then My, is
converged. We also use the phrase: “AAReducecRED converges” under rule Reduce, as shorthand for saying

that the archive of AAReducecRED CONUVETYES.

3 Three Convergent Archiving Algorithms

3.1 Unbounded archiving

Consider the simple Reduce function, Unbounded of Figure 2. At each step of the the resulting archiving
algorithm, A Aynbounded, @ New vector is accepted into the archive if it is nondominated amongst the current
archive. If it dominates any members of the archive, the dominated members are removed. Clearly this
algorithm maintains an archive of nondominated vectors. It is also trivial to show that this algorithm

converges to the true Pareto front, given our assumptions about the generating function, and the finite

nature of Z.

The problem with the Reduce function of Figure 2 is that the size of the archive is bounded only by Z. In

general Z may be very large and we would like to obtain only a sample of points from it.

3.2 Simple bounded archiving

To obtain a simple bounded archive we could modify the Reduce function given above to obtain the Reduce
function, Bounded, shown in Figure 3. Here, a bound on the archive, arcsize, is chosen before running
the algorithm. Once the archive reaches this bounding size, only dominating vectors are accepted, thus
preventing exceeding the bound. The resulting algorithm AAggynded is similar to the archiving algorithm
proposed by Rudolph and Agapie in [Rudolph and Agapie, 2000]. Given the assumptions of a finite Pareto
set and a positive definite generating function, this algorithm converges to a subset of the Pareto front!.
However, this algorithm does not encourage the storage of a good distribution of vectors. In fact, A Aynbounded
is efficiency preserving [Hanne, 1999] once the archive reaches its capacity bound. That is, new points can
only enter the archive if they dominate one or more of the previously stored points. A consequence of this
is that given a collection of vectors in the archive at time ¢, some regions of the Pareto front may not be
reachable, even if none of the vectors present in the archive at time ¢ is Pareto optimal. This is illustrated in
Figure 4. In order to avoid this limitation one needs to relax the rule that nondominated vectors can never

be removed from the archive.

3.3 S metric archiving

In the final archiving algorithm considered in this section, we include a rule to allow nondominated vectors
to be removed from the archive, to make way for new ones which may improve the distribution of points.
The new rule makes use of the S metric: a measure of the hypervolume in objective space that is dominated
by a set of nondominated points. The S metric was originally proposed by Zitzler and Thiele [Zitzler, 1999).

We give here the formulation of it necessary for use with minimization problems.

IThe proof is simple, but we omit it here for brevity.

The S metric

Given a point z' = {2},2,...,2L} in objective space Z, and a reference vector z™*f = {27/ zr¢/ z;(ef
dominated by z!, let the region dominated by z! and bounded by z"*f be defined as the set:
R(z',z"*") £ {y |y <z"™f and z' <y, y € R*}. (4)

For a nondominated set A of vectors z¢,i = 1..|A|, and a reference vector z"f, that is dominated by all

members of A, the region dominated by A and bounded by z"*f is defined as the set:

R(A,z) 2 |] R(z',z"). (5)

icl..| Al
The S metric of A with respect to the reference vector is the ‘hyperarea’, or Lebesgue integral of the set
R(A,z"f). In a minimization (maximization) problem, the reference point z"f is taken by Zitzler to be the
vector whose components are the maximum (minimum) value in each objective. This gives a non-negative

measure for all possible nondominated sets in the feasible objective space?.

Computing S

The S metric of a nondominated set A may be computed by recursively projecting the set of points into fewer
dimensions and calculating the Lebesgue integral of these. To calculate the S metric in just two dimensions
(objectives) the points are sorted in decreasing order of objective 1 values, and then the following expression

is evaluated:

o =g - (6)

i€1..|A|

where 29 is initially set to z;°/. In higher dimensions this generalizes to the recursive function:

size_of_set(A,z"f, k), shown in Figure 6. The function has a time complexity of O(n**1) for general k: the
NDk() function is O(n?) and this must be performed up to n times in a call to size_of set(4,z"¢/, k), not
counting further recursive calls; and size_of_set(4,z"¢f, k — 1) is called n times at level k, for £ > 3. An

illustration of the calculation of the S for three points in three dimensions is given in Figure 7.

2N.B. The choice of the reference vector is fairly arbitrary, and could really be any vector beyond the feasible objective
space. But different choices will affect the relative S value of two different nondominated sets (see Figure 5). Although the
choice of reference point does affect the ordering of nondominated sets, scaling the objectives does not, i.e., it does not matter
if the magnitudes of different objectives are very different.

Archiving strategy based on S values

We define the Reduce function, S, shown in Figure 8. For archives which are full (i.e. |My| = arcsize), the
resulting archiving algorithm AAg accepts a vector if it: (a) dominates any member of the archive; or (b) if
it is nondominated with respect to (all members of) the archive and its addition would increase the net value
of the S metric [Zitzler, 1999] of the archive when one other (selected) member of the archive is removed to

allow its entry.

A proof that this algorithm guarantees convergence to a subset of the Pareto front for bounded archives is
given in Appendix A. This result can also be generalized to any quality metric @ which has the property
that Q(Z;) > Q(Z,) whenever a nondominated set Z; weakly outperforms another nondominated set Zs.
Using the S metric also guarantees that the converged set is a local optimum of §. This means that there
is no point which would result in a net increase in the & metric of the archive if it were added and another
point were removed. This guarantee may be important because sets which are local optimum of S seem
to be ‘well-distributed’. Unfortunately, at present we have found no way to quantify well-distributed in
this context so this observation is not provable. However, see Figure 9 to get some feeling for why a local

optimum in S should be well-distributed in general.

The S metric archiving has some provable convergence properties and appears to encourage a good distri-
bution of points but its computational overhead is O(n**1). This would be prohibitively high for more than
a few objectives, and relatively small archive sizes. Furthermore, the § metric requires a normalized and
positive objective space to work with. In other words, a reference point must be chosen to bound the volume
of the nondominated region from above (assuming minimization). The choice of the reference point is rather

arbitrary and introduces scaling issues.

4 The Adaptive Grid Archiving Algorithm

In this section we present an adaptive grid archiving (AGA) algorithm that addresses some of the problems
with the three archiving strategies considered in the previous section. The algorithm is based on the archiving
method used in PAES [Knowles and Corne, 2000]. The AGA algorithm does not have the cycle-preventing
property of the S metric, thus the archive does not converge in the sense given in Definition 2.9. However,
several other pseudo-convergence results can be derived, which show that the AGA algorithm will store and

maintain a well-distributed and diverse set of vectors.

Figure 10 illustrates the basic principle of AGA. As points in the objective space are generated and archived,

the location and size of a grid in the hyper-dimensional space is adapted so that it just envelopes the

points. The grid is used to aid in selecting which points to remove from the archive, should the latter reach
its capacity bound. In this case a point from the most crowded region(s) is selected, so long as it is not
an extremal point. This strategy ensures archived points cover a wide extent in objective space and are

‘well-distributed’.

4.1 Preliminary definitions

We make the following definitions in order to describe the AGA algorithm more formally:

Definition 4.1 Let the nondominated set of vectors from amongst the archive at time step t — 1 together
with the new vector z; generated at time step t be denoted by Ny. That is, Ny = ND(M;_1U{z:}). Note that

| N¢| may be larger than arcsize.

Definition 4.2 Let the minimum and mazimum scelar values of an objective k amongst the vectors in a
vector set Z be denoted minzy,z and mazzy, z, respectively. That is, minzy z = min,ecz(2;) and mazzy,z =
maxgzez(2x). The range of the vectors in the set Ny in objective k is given by rangey ;, = max.en,(zx) —

min e, (2x)-

Definition 4.3 There are 2K boundaries of the adaptive grid: ubp; and lby for all k € 1. K. The
boundaries are set so that Vt,Vk, (ubg,t > maxzy,n,)A(lbgs < minzg,n,). See Figure 11 and Figure 13—Rule:

Update_Boundaries to see how the boundaries are updated.

Definition 4.4 The rectangular polytope defined by the ‘corners’ (ub1 i, ubsy, ..., ubkys) and (Ib1 4, lbay, ..., bk)
is divided into a set Ry of similar rectangular polytope regions ri € R;, where i = (iy,i2,...,ix) is the co-
ordinate vector of the region, and Vk € 1..K, i € 1..div where div € Z,div > 2 is a constant parameter,
the number of divisions of the objective space in each dimension, set by the user. The set of all region

co-ordinates is I and |I| = div®.

Definition 4.5 The boundaries of the regions ri are given by:
Vk € 1.K, rubgi = bt +ip/div.(ubks — lbg,e) and
Plbgie = gt + (i — 1) /div.(ubg,s — lbgt). See Figure 12.

Definition 4.6 We say that a vector z in M;_1 occupies a Tegion ri if Yk, 2 > rlbpss A zp <rubpie. We

call a region ri that has a vector z in M;_1 occupying it, an occupied region.

Definition 4.7 We say that the vector z € Z* Pareto occupies a region ri if for all k, 2, > rlbgis A zp <
ruby. i, even if the vector is not in M,_1. We call a region that has a z € Z* (and not necessarily in My_1)

occupying it, o Pareto occupied region (POR).
Definition 4.8 The population p(ri) of a region is the number of vectors in M;_; occupying it.

Definition 4.9 The set of vectors from a vector set Z occupying a region is Occ(ri, Z) C Z.

Definition 4.10 The region occupied by a vector z at time t is denoted ri(z).

If there is no difference between minz;, n, and mazz;, n, for some objective k then the adaptive grid bound-
aries are undefined, and the boundaries of all regions are undefined. In this case, the rules called by Reduce()
that use the grid populations to perform crowding are also undefined. In the following, we make the as-
sumption that the grid boundaries are always well-defined. This is a reasonable assumption since the archive
is full whenever any of the rules that use the adaptive grid are executed, so there will normally be some

difference between the vectors in M; in each of the objectives.

We also make the constraint that arcsize > 2K. This ensures that the archive is large enough to accommo-

date all nondominated extremal vectors.

In the adaptive grid archiving algorithm we want to protect uniquely extremal vectors from being removed
from the archive once they have entered it (except by domination), so that the vectors in the archive will
converge to a set which covers the largest possible range in objective space, in each objective. However,
the archiving algorithm will be removing vectors from crowded regions. To avoid removing extremal vectors
from these regions we will need a way of counting the number of vectors that occupy a region, (i.e. how
crowded it is) ezcluding the number of uniquely extremal vectors. In the following, we define some terms

needed to do this.

Definition 4.11 Let the set of uniquely extremal vectors in Ny be defined:

Ztezt = {zewt € N; | (Hk € 1..K, ,le S Nt;Z # zezt’zk < z,‘;”)v
(Ek S].K, ,BZ € Nt,z ;é z€$t’zk Z Z;;zt)}

Definition 4.12 Let the set of non-uniquely extremal (nue) vectors of a region at time t be defined:

nue(rl) = Occ(rl, Z;) \ Z¢*t

Definition 4.13 Let the population of of non-uniquely extremal vectors of a region at time t be defined:
Puue(r}) = |nue(r})]
Definition 4.14 Let the set of crowded regions be defined:
CRy = argmax;e r (Prue (7'115))

Definition 4.15 Let the set of vectors in the set of crowded regions that are available for removal from the

archive at time t be defined:
Zey = U nue(r})
’I‘:ECRt
In other words, this is the set of vectors that are in the set of most crowded regions, where the most crowded
regions are defined as those with the largest population, not counting uniquely extremal vectors. Let the vector

z%! be a vector selected uniformly at random from within Z. .

4.2 The algorithm

The adaptive grid archiving algorithm is shown in Figure 13. At each step, the algorithm first updates the
boundaries of the adaptive grid in accordance with definitions 4.3—4.5. Then exactly one rule for updating
the archive is invoked: Is_Dominated discards z; if it is dominated by the archive; Dominates accepts z;
if it dominates the archive, and discards all dominated members of the archive; Fill accepts z; if it is
nondominated and the archive is not yet full; Extends accepts z; if it increases the extent of the grid in any
objective dimension; Reduce_Crowding accepts z; if the archive is full but z; occupies a less crowded region
than some other point in the archive (and discards a point from a crowded region); and Steady_State discards

z; if the archive is full and the new point cannot be accepted by rules Reduce_Crowding or Dominates.

The overall effect of these rules can be understood as follows. Is_Dominated and Dominates encourage progres-
sion towards the true Pareto front. Extends encourages the range of values in objective space represented by
the vectors in the archive to be as large as possible. And Reduce_Crowding encourages a uniform distribution
of points in the objective space. Clearly, the latter is dependent on the number of grid regions versus the
bound on the archive size. Ideally, we would like each member of the archive to occupy its own grid region,
to ensure a good distribution of points. Thus, choosing the number of grid regions should be a function of

archive size only. In what follows, we show how the number of grid regions can be selected.

The rules of AGA do not constitute an algorithm that converges in the sense of definition 2.9. This is because

10

nondominated vectors can be removed and cycles of entry and removal of these vectors can ensue. Despite
this, it is possible to show that when (if) the grid boundaries converge (i.e. stop moving) a set of regions in
the grid will become constantly occupied over time by points in the archive. These grid regions, which we
call critical Pareto occupied regions (CPORs), contain the true Pareto front. Thus, we can show that after
a time the archive will contain points that are at most a distance of [from the true Pareto front, where [is

the large diagonal of a grid region. This constitutes a convergence result for AGA.

4.3 Convergence analysis

In the following we show that the grid regions of AGA can converge under certain conditions.

Lemma 4.1 If a vector z; € Z with component z; = minz; z for some j € 1..K is generated at time t, then

mwnz;i yp, = MINz; z.-

Proof 4.1 Ifz; enters the archive then clearly we have minz; pr, = minz; z, as required. On the other hand,
if z; does not enter the archive, then it must be either (a) dominated by something in the archive, or (b) not
outside the old boundaries of the archive. Case (a) means that there must be a vector in the archive which
already has z; = minz; z, in order to dominate z;. Case (b) also means that there is a vector in the archive

with a component z; = minz; z since otherwise z; would have been outside the archive’s grid boundaries.

Lemma 4.2 If, for some j € 1..K,3z € M;,, with z; = minz; z then Vt > t,,,3z € M; with z; = minz; z.

Proof 4.2 Assume that for some j € 1.K,3z € M, with z; = minz;z. We show that the archiving

algorithm is not capable of removing all the vectors with component z; = minz; z, .

Let us consider each of the rules that can remove vectors. These are the rules Extends, Reduce_Crowding,

and Dominates.

Dominates can remove multiple vectors at once. However, it cannot remove any vector with component
zj = mingz; z except by replacing it with another vector also with a component z; = minz; z since the new

vector must dominate the one(s) replaced.

Extends can remove only one vector z©* from the archive. If there is only one vector z € My with z; = minz; z
then it is a unique extremum in the archive and Extends cannot remove it. If there are n > 1 vectors in the

archive with z; = minz; z then Extends may remove one but one or more will remain.

Reduce_Crowding can also remove only one vector from the archive and only if it is not a unique extremum.

The same argument as for Extends applies.

11

Theorem 4.1 The lower boundaries of the grid lby, + converge for all k.

Proof 4.3 To show that the lower boundaries converge it is sufficient to show that there is a time t,, such

that ¥t > tp,, Yk, minzy p, = minzy,z,. This is proved by Lemma 4.1 and Lemma 4.2.

Although it is possible to prove that the lower boundaries converge in all cases, unfortunately this is not
true for the upper boundaries. However, it is possible to specify an additional condition under which the
upper boundaries can be proved to converge. Section 5 contains proofs showing that the upper boundaries

converge under this condition. For now, we introduce this convergence as an assumption:
Assumption 4.1 The upper boundaries uby ¢ converge for all k.

Corrollary 4.1 Since the lower boundaries of the grid converge (Theorem 4.1) and by Assumption 4.1, the

upper boundaries of the grid also converge, then so do all the boundaries of all of the regions in the grid.

In the following, our proofs rely on Corollary 4.1. This allow us to consider all of the regions as being static,
enabling us to prove that some of the regions containing Pareto optimal points will become constantly
occupied by points in the archive. We now introduce some additional terminology relating to the grid

regions, needed for these proofs.

Definition 4.16 Let a set of regions whose boundaries are converged be called a converged set of regions,

and each region in the set be called a converged region.

Definition 4.17 If a converged set of regions also has a subset of regions which remain occupied over time
then we say that there is a converged set of occupied regions, Rcor. The regions that comprise this set are

called constantly occupied regions (CORs).

The following three definitions introduce dominance relationships between regions, and are illustrated by

Figure 14.

Definition 4.18 We say that a region (V) is superior to another region r? iff r(’s coordinates are all
strictly less than r®’s. In addition, ?) is said to be inferior to r(!). Notice that all vectors in r?) are
dominated by vectors in rV). Thus, any region that is inferior to another Pareto occupied region cannot

itself be a Pareto occupied region.

Definition 4.19 We say that a region r(!) is weakly superior to a region r® if (Vs coordinates dominate

) %s and r) is not superior to r?. In addition, r® is said to be weakly inferior to (V). Notice that it is

12

possible for a region that is weakly inferior to another region, to contain efficient vectors, and hence to be a

Pareto occupied region.

Definition 4.20 Two regions are incomparable with respect to each other if neither is superior nor weakly

superior to the other.

Definition 4.21 In a set of converged regions, Pareto occupied regions that are not weakly inferior to any
other Pareto occupied region are called critical Pareto occupied regions (CPORs). An important property
of a CPOR is the following: no wvector that occupies a critical Pareto occupied region can be dominated by

any vector z € Z that occupies any other region. The set of CPORs is denoted RopoRr-

Definition 4.22 A Pareto non-inferior region PNIR is any (converged) region that is weakly inferior to a

Pareto occupied region, or is itself a Pareto occupied region. Figure 16 illustrates the concept of a PNIR.

Note that the set of Pareto occupied regions (PORs) contains the Pareto front. The set of PNIRs includes
these, together with any additional regions (such as 72% in Figure 16) which, informally, fill in the gaps.
That is, given any path (r(),r® r® @ 7)) where r(7+1) shares at least one corner with 7(9) and

in which () is inferior to a POR and (™ is superior to a POR, the path must include at least one PNIR.
Lemma 4.3 If a critical Pareto occupied region is occupied at time t;, then it is occupied for all t > t;.

Proof 4.4 Assume at time t; a CPOR has a population of n > 1 vectors z',z2,23,...,2", and at some

time t; > t; all of them are removed from the archive.

Only Rules Reduce_Crowding and Dominates can remove vectors from the archive®. However, Reduce_Crowding
can only remove one vector from a region. Therefore, if n > 1 it cannot remove all the vectors.

On the other hand, if n = 1, then Reduce_Crowding cannot remove the single vector in the C POR because
Prue (ri(CPOR)) # 1. That is, the critical Pareto occupied region we are considering does not have a population
(of non-uniquely extremal vectors) greater than 1. Therefore, either it is not one of the most crowded regions

i.e. it is not in CR; or there does not exist any region with a population greater than 1. In either case,

Reduce_Crowding cannot remove a vector from this critical Pareto occupied region.

Thus, Rule Dominates must remove the n vectors. But, by the definition of a critical Pareto occupied region,
no vectors exist that can dominate any vector in a CPOR, except another vector in the same CPOR.

Therefore Dominates can remove the n wvectors only by replacing them with another vector in the same

CPOR.

3Extends cannot execute because we have already assumed that the region boundaries have converged.

13

Therefore all cases contradict our original assumption that there is a time t; > t; such that no vectors in the

archive occupy the CPOR.

Theorem 4.2 The mazimum number of mutually non-inferior regions in a K dimensional vector space

divided up into div equal divisions in each dimension, is divE — (div — 1)X. See Figure 19.
Proof 4.5 The proof of this theorem is given in Appendiz B.

Lemma 4.4 For all t, if arcsize > divE — (div — 1)X + 2K and an efficient point z, € Z* is generated by
Gen(t), then p(ri(z‘)) > 1. In other words, if a Pareto optimal point is generated at time t, its region will be

occupied in the same time step, provided the archive capacity is greater than divK — (div — 1)¥ +2K.

Proof 4.6 Consider the time t when z; € Z* is generated by Gen(t). Then ezactly one of Fill, Dominates,
Reduce_Crowding or Steady_State executes. (Is_Dominated cannot erecute since z; is Pareto optimal and

Extends cannot execute because we have already assumed that the grid boundaries have converged.)
If either Fill, Dominates or Reduce_Crowding executes then z; is accepted and clearly p(ri(zt)) > 1.

Obviously, if z, dominates any member of M;_1, then Dominates will execute. And if |My_1| < arcsize then

Fill will execute.

But if |My_1| = arcsize and z; does not dominate M, 1 then either Steady_State or Reduce_Crowding can
execute. We must now show that Steady_State does not exzecute when p(ri(_z{)) =0 ¢.e. it can only execute

when z;’s region is already occupied, which would leave it occupied and we would still have p(ri(zt)) >1.

So we have z; ~ My_1 and |My_1| = arcsize. The latter implies |My_1| > div® — (div — 1) + 2K. From
Theorem 4.2, and the fact that o set of mutually nondominated vectors must occupy a set of mutually non-
inferior regions (see Figure 17), it follows that M; occupies at most div® — (div — 1) regions. Now, at
most 2K vectors are uniquely extremal. Therefore, it follows that 3i, ppy.(ri) > 1. Now, ifp(ri(_zi)) =0 then
i, p(ri_y) > p(ri(_zi)). So, we now have I, ppye(rd) > 1 A Ji,p(ri_;) > p(ri(_z{)), therefore Reduce_Crowding

erecutes.

Theorem 4.3 3t,, such that V't > t;,,Vri € Ropor,p(rl) > 0, provided arcsize > div® — (div — 1)K +2K.
In other words, there is a time after which all of the critical Pareto occupied regions become constantly

occupied, provided the archive is sized appropriately.

Proof 4.7 From lemmata 4.3 and 4.4 we see that the number of critical Pareto occupied regions that are

occupied by vectors in the archive monotonically increases over time, provided arcsize > divE — (div —

14

1)X + 2K. Since the number of critical Pareto occupied regions is finite this implies that the set of occupied

CPORs converges to RopoRr-

Theorem 4.4 If at time t,,, the set of occupied CPORs has converged to Ropor then for all t > t,,, all

vectors in M; reside in a PNIR.

Proof 4.8 Regions that are not PNIRs are either weakly superior to, superior to, or inferior to, a critical
Pareto occupied region. But for all t, no vector generated by Gen(t) can lie in a region that is superior or
weakly superior to any critical Pareto occupied region, since they are all occupied for all future t. And, any
vector generated by Gen(t) that is inferior to an occupied region will not be accepted — from the definition

of domination and the rule Is_Dominated.

The implications of Theorems 4.3 and 4.4 are that the vectors in the archive will become well distributed
and close to the Pareto front in a well-defined way: after a certain number of iterations, a subset of them
will always occupy all of the critical Pareto occupied regions, and the remainder will be in a PNIR. In order

to guarantee achieving this, the archive should be given a capacity of 1+ div® — (div — 1)X + 2K, at least.

In practice, however, the archive can probably be given a capacity smaller than this, provided it is larger than
the number of critical Pareto occupied regions. We made the constraint that arcsize > divE —(div—1)K +2K
in order to prove Lemma 4.4, which ensures that if an efficient point is generated, its region becomes or
remains occupied. This was needed to prove that all C PO Rs will become constantly occupied. But we would
generally expect all of the C PORs would become (constantly) occupied even without Lemma 4.4. This is
because, as a result of rule Dominates, non-efficient vectors will generally be removed in favour of efficient
ones that dominate them, over time. Thus, any set of mutually nondominated vectors that do not occupy all
of the critical Pareto occupied regions, will usually give way to an archive in which one more critical Pareto
occupied region is occupied. The reason this is not guaranteed is because it may be the case that all of the
unfound vectors in the critical Pareto occupied regions do not dominate any vector in the archive, for all
future iterations. Assuming this unlikely event does not occur, there will still be a monotonic increase in
the occupation of critical Pareto occupied regions. Thus, if the archive is greater than the number of critical
Pareto occupied regions then eventually all of the critical Pareto occupied regions will become constantly

occupied.

So, if a small chance of “sub-optimal” convergence can be tolerated then the requirement for arcsize goes
down to the maximum number of critical Pareto occupied regions (plus the number of extremal Pareto

occupied regions) that there are in a grid space.

15

Conjecture 4.1 The mazimum number of critical Pareto occupied regions in an objective space of K di-

mensions and divided into div divisions in each dimension is given by:

o= e () (Y

when s is set to | K/2(div+1)].

A proof of this conjecture is not provided but some supporting argument is given. A critical Pareto occupied
region (CPOR) cannot have coordinates that put it on the same one dimensional ‘row’ as any other CPOR,
otherwise one of them would be weakly superior to the other. From this we can see that in any list of critical
Pareto optimal regions, no pair of regions can have an identical set of any K — 1 coordinates. In addition, all
the regions must be non-inferior so no two vectors should share the same root region. Such an arrangement
of regions can be achieved if the sum of all the coordinates of each region is equal to a constant value. This
ensures that the above constraints are satisfied because any two regions that are different will be different in
K — 1 coordinates if their sum is equal, and any two regions with the same root region would surely have a
different coordinate sum. The number of regions that have the same coordinate sum is given by equation 7.
This equation actually gives the number of ways there are of achieving a total of s from K dice, each with
div faces. The equation was obtained from [Rob, 2001], and a derivation is given in Appendix C When the
sum is set to | K/2(div + 1)| this number appears to be maximized, although no proof of this has yet been

found.

4.4 Summary of the AGA algorithm’s properties
In summary, the adaptive grid archiving algorithm is guaranteed to:

e store and maintain points at the extremes of all objectives (Theorems 4.1 and 5.1);

e store and maintain points in all of the critical Pareto occupied regions (Theorem 4.3);

e and distribute its remaining points amongst the Pareto non-inferior regions (Theorem 4.4),
provided the upper boundaries of the grid converge, arcsize > div® — (div — 1)K + 2K, the generating
function generates all points with positive probability, and the search space is finite.

Table 1 gives the required size of the archive for different values of div and K, for the case where convergence is
guaranteed (3rd column), and the case where it is only probable (4th column). Clearly, in the two-dimensional

case, the required archive size to guarantee convergence is small, even with 64 divisions per objective. As

16

the number of objectives increases, the required archive sizes for guaranteed convergence rapidly increase to
numbers that are larger than usually used as the population in an EA. However, with 8 objectives and 4
divisions per objective, arcsize > 8092, a manageable number, is large enough to cover the CPORs, if our

conjecture 4.1 is true.

4.5 Computational cost of AGA

The computational overhead of using the adaptive grid archiving algorithm can be made quite low if the
grid is implemented as a quadtree (as in PAES [Knowles and Corne, 2000]). In this way the grid region of a
new point can be identified in the logarithm of the number of grid regions. With simple bookkeeping of the

populations of each grid region it is then relatively cheap to determine the update of the archive.

5 Convergence Problems With Adaptive Grid Methods

The convergence proofs given in the last section were based on assuming that the upper grid boundaries
of the adaptive grid eventually converge. In this section, we show under which conditions this assumption
holds, and show that special cases of this are when there are only two objectives, and when the Pareto front
is as broad as the entire search space (in all objective dimensions). More generally, however the assumption
does not hold. To show the latter we begin by giving an explicit example in which the upper grid boundaries
will never converge. This example shows that, in AGA, cycles of entry and removal of points can prevent
the boundaries from ever converging. In the next section we compare this drawback of the adaptive grid

algorithm to a related behaviour exhibited by e-Pareto archiving algorithms.

Consider a three-objective vector space in which the vector in the efficient set with largest value in objective 1
is z8 = (6,1,3). Another vector in the Pareto set is z2 = (6,3,1). However, the non-efficient vector
z® = (7,3,2) also exists. If z' (but not z?) is currently in the archive and z® is generated at the next
step, then it will be accepted and the grid boundaries will be updated. Thus, the upper grid boundary
on objective 1 will become larger than any vector in the efficient set’s value in this objective. However,
this value of the grid boundary may not be maintained because if z? is generated at some future time, z>
will be dominated, and removed from the archive, and the grid boundaries will be appropriately updated,

accordingly. Because it is possible for z2 to be ‘lost’ from the archive, in future iterations, the same cycle of

events can occur again. Therefore, in this kind of situation the upper grid boundaries may never converge.

Condition A.1, below, formalizes the minimal properties which must be true of Z* if we are to avoid situations

such as the above, hence enabling us to prove that the upper grid boundaries will converge. In the following,

17

we prove the convergence of the upper boundaries in the restricted case when Condition A.1 is true.

Condition 5.1 Vk, Az € C(Z*),z, > maxzy, z+,32* € Z*,2; = maxzy,z+,2 ~ z*, where C(Z*) denotes
the complement of the efficient set. In other words, on any objective, there are no non-efficient vectors that
have a component value that is larger than or equal to the largest component value of any efficient vector,
and that are also nondominated with respect to any of the efficient vectors with the mazximum component

value.

Lemma 5.1 If Condition 5.1 is true and a vector z* with component z;, = maxzy, z+- for some k is generated

at time t, then mazzy, p, = mazzy,z--

Proof 5.1 Assume that a vector z* with component z, = maxzy,z+ for some k is generated at time t. Then

we have mazzy, N, = maxzy, z«.

The wvector z* will enter the archive if Dominates or Extends or Reduce_Crowding or Fill(t) executes, and
hence it is clear that maxzy,nm, > maxzy,z-. But because Condition 5.1 is true, we also know that My,
which is always a nondominated set, cannot contain any non-efficient vector with z, > mazzy z-. Thus,

maxrzg,pm, = MaTZk,z*-

if z* does not enter the archive, it is because Steady_State executes. However, one of the conditions for
Steady_State to execute is that Vk, mazz,, N, = mazz, M, _,. S0 we have 2 = mazzy,z- and Yk, maxzy N, =
maxzk,Mm,_, , and Steady_State executes. Therefore, since z* € Ny, then maxzy,m,_, = MATZ, N, = MATZk, 7z,

and because Steady_State ezecutes mazxzi, v, = MAT 2k, M, ., SO MATZE M, = MATZL, 7+, GS Tequired.

Lemma 5.2 If Condition 5.1 is true, and for some k € 1..K,3z* € M, with z; = mazzy z« then Vt >

tm,3z € My with z;, = mazzy,z+.

Proof 5.2 Assume that for some k € 1..K,3z* € M, with z;, = mazzy,z-. We show that no archiving

rule is capable of removing all the vectors with component z = mazxzy, z- .

Let us consider each of the rules that can remove vectors. These are the rules Extends, Reduce_Crowding,

and Dominates.

Extends can remove only one vector from the archive. If there is only one vector z € M; with z;, = mazzy,z+
then, since Condition 5.1 is true, there can be no vectors in My with 2, > maxzy,z+ (because they would be
dominated). Thus z is a unique extremum in the archive and Extends cannot remove it by the definition of

Extends.

18

On the other hand, if there are n > 1 vectors in the archive with z, = mazzy, z- then Extends may remove

one of them. However, one or more will remain in the archive.

Reduce_Crowding can also remove only one vector from the archive and only if it is not a unique extremum.
Thus, the same argument as for Extends applies, so Reduce_Crowding cannot remove all vectors with z =

maxzg,z= .

Dominates can remove multiple vectors at once. However, it cannot remove any efficient vector. Since
Condition 5.1 is true any vector in My with component zj, = maxzy, z- must be efficient. Therefore Dominates

cannot remove these vectors.

Theorem 5.1 If Condition 5.1 is true then the upper boundaries of the grid uby: converge for all k.

Proof 5.3 To show that the upper boundaries converge it is sufficient to show that there is a time t,, such

that Vt > tp,,Vk, mazzy, m, = mazzy, z-. For this we just require:

1. If a vector z* with component z, = mazzy, z~ for some k is generated at time t, then mazzy pr, =

mazzy,z+. This is Lemma 5.1.

2. If for some k € 1..K,3z* € M , with z;, = maxzy,z~ then Vt > t,,,3z € My with z;, = maxzy,z~. This

is Lemma 5.2.

Due to Condition 5.1, Item 2. ensures that Yt > tn,, Yk, maxzy,m, = mazzy,z- because vectors with z, >

mazzy, z~ are always dominated.

We now provide two cases when Condition 5.1 is always true, so that the upper boundaries of the adaptive

grid converge.

Theorem 5.2 if K =2 then Condition 5.1 is true.

Proof 5.4 Assume K = 2 and Condition 5.1 is not true. Then there is a vector z € C(Z*) and an objective
k € 1.2 such that 2, > maxzy, z+-, and z is nondominated with respect to a vector z* € Z* with component

2k = MaTZk,7Z* -

Without loss of generality, we choose k = 1. Since z; > maxz;, z+ and z ~ z*, then we have z; < z5. But
this must mean that z is efficient (a contradiction) because if it were not there would have to be another
vector z** € Z* < z. But then z** < z* because 2{* < maxzy,z+ and 235* < zo. This is also a contradiction

since z* is efficient.

19

Theorem 5.3 if Vk, Az € C(Z*),z, > mazzy,z+ then Condition 5.1 is true. In other words, if the efficient

set spans the feasible objective space in all objectives then Condition 5.1 is true.

Proof 5.5 Vk, Az € C(Z*), 2z, > maxzy,z+ = Yk, Az € C(Z*), 2, > maxzy,z+,32* € Z*,2; = max2y,z+,2 ~

z*.

6 Archiving Algorithms Presented in Laumanns et al. (2001)

In a recent technical report [Laumanns et al., 2001], a number of algorithms for maintaining a nondominated
solutions archive based on the principle of e-dominance were proposed. Briefly, a point z' e-dominates a

point z? iff (1 +€).2; > 2 for all k € 1..K, and for some € > 0. (Here we assume maximization).

6.1 Maintaining an e-approximate Pareto set

In the first algorithm put forward, a new point z is accepted into the archive iff there is not a point already in
the archive which e-dominates z, for a given fixed e. If z is accepted, all dominated vectors are subsequently
removed from the archive so that it remains a mutually nondominated set. This is just like unbounded
archiving (section 3.1), except that the criterion for accepting a new point is its relationship with existing

points in the sense of e-dominance, rather than ordinary dominance.

Such an algorithm has several desirable properties. First, the size of the archive is bounded by a function of
the range of values in the objective space, and the value of €. Second, for each point in a sequence of points
presented to the archive, the archive contains a point which e-dominates it. Another way of saying this is
that the archive is always an e-approximate Pareto set of the set of points in the sequence presented to it.
This property ensures that the points stored in the archive are a diverse, representative subset of the points

in the sequence. Third, the algorithm is very simple and has low computational cost.

6.2 Maintaining an e-Pareto set

The second archiving algorithm presented generates an e-Pareto set, that is, a set which is both e-approximate
and contains only Pareto optimal points from the sequence of points presented to the archive. When a new
point z is generated it is assigned a “box”. The box has a vector index which is a function of the point’s

position in objective space and €, with some rounding, so that there is a many-to-one mapping between

20

points in objective space and boxes. Specifically the box index vector b = (by,...bxk) is calculated using:

logzy,

=g+

] (®)

forall ke l. K.

A point z is accepted into the archive if it’s box dominates the box of any point in the archive. Subsequently
all vectors in these dominated boxes are removed. A point z may also be accepted if it is in the same box
as a point z’ in the archive, and z dominates z'. Finally, z may be accepted if it is in a box which is both

new (not in the archive) and not dominated by any box in the archive.

Laumanns et al. show that this archiving algorithm also produces an archive of bounded size for a given

fixed value of e.

6.3 Dynamic adaptation of ¢

In both of the above schemes the maximum size of the archive cannot be set a priori without knowledge
of the ranges of values of the points in objective space. Thus if € is set too large or too small, the size of
the archive may be correspondingly too large or small with respect to the desired number of solutions. To
overcome this problem, Laumanns et al. propose methods for dynamically adapting the value of € so that

the size of the archive never exceeds a predetermined bound.

6.3.1 The e-approximate case

In the first method, which is designed to work with the first algorithm described above for producing an
e-approximate set, € is initially set as a function of the range in objective space of the first pair of mutually
nondominated points, and the required bound on archive size. Subsequently, if the bound will be exceeded a
new e is calculated using the new ranges of the points in the archive. Using the new ¢, all archive members are
again compared in the order they appeared in the sequence presented to the archiving algorithm. Whenever

one archive member is e-dominated by an older one, the younger is removed.

Note that € can only increase with time in this proposed method. Thus if the Pareto front of solutions gets
smaller at the end of a run, after being initially large, then the archive may become a poor approximation
to it, because with large €, new, better solutions cannot join the archive because they are e-dominated by

members of the archive which are not nearly as good.

A further problem is that whenever € is increased one must scan through the entire archive in sequence

21

order, removing elements which are e-dominated by older elements. Obviously, this is an intensive operation,

requiring O(|A|?) steps for an archive size of |A|.

6.3.2 The e-Pareto case

The methods proposed in [Laumanns et al., 2001] for obtaining a fixed size e-Pareto set are only sketched
there, and no proofs are given for their convergence properties. Nonetheless, the authors propose that the
box-based update rule be used again, and as above, €, starting from a minimal value, is only ever increased
with time. Boxes are then joined together, to accommodate the increases in e. Laumanns et al. states without
proof that in the worst case, this method results in a fixed cardinality e-Pareto Set, which e-dominates an

area at most twice that of the size of the actual Pareto set.

Nonetheless, Laumanns et al. point out that when the objective ranges of the Pareto front are much smaller
than the ranges of the points generated in the sequence then € may become so large that in the end only one

point in the archive is found; all other Pareto points being e-dominated by this one point.

To counteract this problem, Laumanns et al. suggest the use of a two-stage approach in which reasonable
bounds are calculated in a first run, and in a second run a fixed value of € is used. This seems rather inelegant
but provided two runs can be afforded it may be an acceptable alternative which avoids the problems with

the dynamic schemes.

6.4 Comparison with Adaptive Grid Archiving

With the methods proposed by Laumanns et al. described above one must either pre-set the value of €, or
bound the size of the archive and use an adaptive setting of e. In the former case, the number of points
in the archive is bounded only by some function of the (unknown) objective space ranges. Whereas in the
latter case € may become arbitrarily large and so the final set achieved may be a poor representation of
the sequence of points presented to the archiving algorithm. Specifically, the number of points in the final

archive may be far fewer than were desired. However, in either case convergence s guaranteed.

In some sense, our adaptive grid archiving (AGA) algorithm complements this tradeoff. In AGA, convergence
is not guaranteed in the general case because the upper boundaries of the grid may fluctuate. However, the
grid adapts itself to the ranges of points in the archive so that even if the Pareto front gets smaller over
time, the archive will generally contain the desired number of solutions, and they will tend to be distributed
among the different grid regions. It remains to be seen whether, in practical applications, the potential

fluctuation of the grid boundaries is really problematic.

22

Furthermore, in AGA, if the ranges of the grid were set in advance, that is, no adaptive scheme were used,
and the archive bound and number of grid regions were set appropriately (as described above), then a result
similar to that of Laumanns’ algorithm for the e-approximate set is obtained. That is, for every point
generated in a sequence presented to the archiving algorithm, we would have a point in the archive which is
‘close by’. This closeness can be specified exactly using the following fact which we state here without proof:
if all the points in the C PORs are moved to the minimal coordinates of their region (assuming minimization)
then they dominate all points generated in the sequence. Thus, the maximum distance that a point in the
archive must be moved in order to dominate all points in the sequence presented to the archiving algorithm
is the length of the large diagonal in a rectangular polytope grid region. This is a similar convergence result

to that of e-approximation.

7 Summary, Conclusions and Further Work

In this paper we have analysed the state-of-the-art in archiving algorithms for use in MOEAs and other
multiobjective search algorithms. We began with an analysis of three simple, convergent archiving strategies,
noting their strengths and weaknesses. Following this, an adaptive grid archiving algorithm was proposed
which has low computational cost, adapts itself to the ranges of values of points in the objective space, and
maintains a nondominated-set archive which uses ‘crowding’ to encourage an even distribution of points. For
this algorithm we showed that although convergence to a subset of the true Pareto front is not guaranteed,
under certain conditions the grid boundaries do converge. When this occurs, certain grid regions will become
constantly occupied, guaranteeing a certain minimum quality of points in the archive, and encouraging

diversity.

We also noted the conditions under which the AGA’s upper grid boundaries do not converge. Loosely
speaking this occurs when the Pareto front has a smaller extent than the whole objective space. This causes
a problem because points not in the true Pareto front may cause the grid ranges to be extended, then at
some later time these must be reduced again when the points are removed because they become dominated.
A similar problem occurs in the adaptive methods proposed by Laumanns et al. There, in order to guarantee
convergence, € cannot be reduced over time and thus if the final Pareto front is small compared to the ranges
of all the points that have been encountered, then € may be too large resulting in a poor representation of
the Pareto front. In the worst case, € may have become so large as to lead to an archive of just one point

which e-dominates the whole Pareto front.

Thus, in adaptive schemes, there is a conflict between the desire to find a given number of solutions (no more

and no fewer), and the need to have guaranteed convergence to a set which closely approximates the entire

23

Pareto front of the points encountered. The adaptive grid archiving algorithm presented here offers a different
compromise to this conflict than the schemes proposed by Laumanns et al. Further work should attempt to
empirically test and compare the performance of these different archiving algorithms on both real sequences
of points found through search, and also worst-case scenarios. From this, we may understand better which
schemes are most appropriate for a given problem and desired outcome. We may also understand how to

make improvements to these methods.

References

[Hanne, 1999] Hanne, T. (1999). On the convergence of multiobjective evolutionary algorithms. European

Journal of Operational Research, 117(3):553-564.

[Hansen and Jaszkiewicz, 1998] Hansen, M. P. and Jaszkiewicz, A. (1998). Evaluating the quality of approx-
imations to the non-dominated set. Technical Report IMM-REP-1998-7, Institute of Computing Science,

Poznan University of Technology, ul. Piotrow 3a, 60-965 Poznan, Poland.

[Horn, 1997] Horn, J. (1997). Multicriterion decision making. In Béck, T., Fogel, D., and Michalewicz, Z.,
editors, Handbook of Evolutionary Computation, volume 1, pages F1.9:1 — F1.9:15. IOP Publishing Ltd.

and Oxford University Press.

[Knowles and Corne, 2000] Knowles, J. D. and Corne, D. W. (2000). Approximating the nondominated

front using the Pareto archived evolution strategy. Evolutionary Computation, 8(2):149-172.

[Laumanns et al., 2001] Laumanns, M., Thiele, L., Deb, K., and Zitzler, E. (2001). On the Convergence
and Diversity-Preservation Properties of Multi-Objective Evolutionary Algorithms. Technical Report 108,
Computer Engineering and Networks Laboratory (TIK), Swiss Federal Institute of Technology (ETH)
Zurich, Gloriastrasse 35, CH-8092 Zurich, Switzerland.

[Rob, 2001] Rob (2001). Probability of a sum on multiple dice. URL:

www.drmath.com/dr.math/problems/regan.3.26.01.html.

[Rudolph and Agapie, 2000] Rudolph, G. and Agapie, A. (2000). Convergence properties of some multi-
objective evolutionary algorithms. In Proceedings of the 2000 Conference on Evolutionary Computation,

volume 2, pages 1010-1016, Piscataway, New Jersey. IEEE Press.

[Zitzler, 1999] Zitzler, E. (1999). FEwvolutionary Algorithms for Multiobjective Optimization: Methods and

Applications. PhD thesis, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland.

24

A Convergence Proof for S metric archiving

Let the S metric of the set M; be denoted S(M;). We note that the S metric has the following properties

necessary for the proofs that follow:

o VM, = M, (S(M,) = S(M,,)) if the upper bounding values of the dominated region are constant

over time.
e The value of the S metric is maximal for Z* so the value of the S metric is bounded.

e The value of the § metric is strictly greater for My, than My, if My, Ow M;,.

Lemma A.1 If M;_1 is a nondominated set and the rule Size is executed at time t then My is also a

nondominated set. In other words, rule Size maintains the archive as a nondominated set.

Proof A.1 Assume M;_, is a nondominated set and the rule Size is executed at time t and M; is not
a nondominated set. Since rule Size is executed, z; cannot dominate M; 1. Therefore, we have z; >
My 1Vzi € My_1Vzg My—v. If 2; > My_1 V 2y € My_1 then z;’s addition would not increase the S value of
the archive, contradicting the assumption that rule Size is executed. So, z; My_1. When rule Size executes,
My = My_1 Uz \ {z™" € M;_1}. Since zz My_1, My_1 Uz, is a nondominated set. Therefore My is a
nondominated set since the removal of any vector from a nondominated set leaves a nondominated set. This

contradicts our assumption that My is not a nondominated set.

Lemma A.1 shows that, as before, the full set of rules in AAg ensures that the archive is always a nondom-

inated set. We now prove some convergence properties of AAg.
Lemma A.2 M; is converged under algorithm AAgs implies My is a subset of Z*.

Proof A.2 Assume at some time t = t;, My, is converged and M, € Z*. The latter implies that there
exists at least one efficient vector z* € Z*,z* < My,. We wish to show that at some future time t; > t;,

M, # M,,.

We may choose the time t = t; when Gen(t) generates the vector z* which dominates the archive. Now
if My;_1 # My, then M; was not converged, a contradiction to our assumption. Otherwise, by archiving
rule Dominates, z* will replace those vectors in My, 1 that it dominates. This also contradicts our original
assumption that the set My, is converged, and we must conclude that vector sets that are not subsets of Z*

are not converged, under AAs.

25

Lemma A.3 M, # M;, fort, > t, implies Vt > t,(My # My,)).

Proof A.3 Assume My, # M,, and 3t, such that My, = My, with t, > t, > t,,. Since rules Size, Fill(t),
and Dominates all strictly increase S(M), and rule Steady_State leaves S(M) unchanged, S(My,) > S(My,,).
By the same token, S(My,) > S(My,) thus S(My,) > S(My,,), therefore My, # My, , a contradiction.

Lemma A.4 M; converges under algorithm AAgs.

Proof A.4 Assume M; never converges i.e. Vt;,3t;, t; > t;, My, # My,. This implies that there are an
infinite number of different sets My, since none can be revisited (lemma A.3). However, since the set Z is

finite, so is 2%. But all M € 22 so there are finite different M.
Theorem A.1 M; converges to a subset of Z* under algorithm AAs.

Proof A.5 From lemma A.2 we see that all converged sets are Pareto optimal subsets. From lemma A.4 we

see that M; converges.

Note A.1 Theorem A.1 also applies with any metric Q in place of S, so long as Q is bounded and VM;, =
My, (Q(My,) = Q(My,,)) and Q(My,) > Q(My,) if My; Ow My, since only these properties of the S metric

were used to prove Theorem A.1.

B Proof of Theorem 4.2

Conjecture B.1 The maximum number of mutually non-inferior regions in a K dimensional vector space

divided up into div equal divisions in each dimension, is divE — (div — 1)K,

Lemma B.1 There are div® — (div — 1)X regions with a co-ordinate vector ¢ = (cy,¢ca,...,cx) such that
Vi€ 1..K,c; = 1..div,3j € 1..K,c; = 1. In other words, there are divE — (div—1)¥ regions with a co-ordinate

vector in which at least one of component has the value 1. See Figure 19

Proof B.1 Let ¢ = (¢1,¢2,--.,cK) be the co-ordinate of a region, with Vi € 1..K,¢; € 1..div. Clearly there
are divE such regions.

Let d = (d1,do,--.,dr) be the co-ordinates of a region with no components having the value 1. So, Vi €
1..K,d; € 2..div. Clearly there are (div — 1)X of these regions. Therefore, by subtracting the second set of
regions from the first, we have that there are div® — (div — 1) regions with a co-ordinate vector in which

at least one of its components has the value 1.

Definition B.1 FEvery region with co-ordinates ¢ = (c1,¢2,¢3,...,cK) with Vi € 1..K,¢; € 1..div, can be
mapped to a unique root region of ¢ with co-ordinates rte = (¢1—ac, ca—ac,c3—ac, . ..,cx—ac), where a, = min({c; | i € 1
Notice that a root region has the property that at least one of its co-ordinates has the value 1. The concepts

here are visualized in Figure 18.

Lemma B.2 Two regions with co-ordinates ¢ = (¢1,¢2,¢3,-..,¢k) and d = (dy,ds,ds, . ..,dk), with Vi €
1..K, ¢; < d;, share the same root region if and only if I € Nt Vi€ 1..K,d; = ¢; +b, and Vi € 1..K(c;,d; €
1..div)

Proof B.2 We have:

c = (c1,¢2,¢3,...,¢k) and d = (¢ + b,ca + byc3 +b,...,cx +b) and a. = min({¢; | i € 1..K}) — 1,aq =
min({c; +b|i€1.K}) - 1.

Clearly, a. = aqg — b.

Now, rt. = (¢1 —Q¢y C2 — ey €3 — Agy - - -, Ck —A¢) aNA Tty = (c1 +b—ag,co+b—ag,c3+b—ag,...,cxk +b—ay)
By substituting ag — b for a. in the expression for rt. we have:

rtc. =(c1 +b—ag,co+b—ag,c3+b—ag,...,cx +b—aq) = rty, proving the sufficient condition.

To prove the necessary condition:

Assume rt, = rty and ¢ = (c1,¢2,¢3,...,¢x) and d = (¢1 + by, ca + ba,c3 + b3, ..., cx + bk) and —(by =
by =b3=...=bk). Nowrt, = (c; — a¢,Co — ¢, C3 — Agy ..., CK — Q) and

rtg = (c1 + b1 —ag,co +ba —ag,c3 + b3 —ag,-..,cx + bx — aq)

Since rt, = rtg, (by — ag,b2 — ag,b3 — ag,...,bx — ag) = (—a¢,—ac, —ac,... — a.) which implies that
b1 =02=0b3=...=bg, a contradiction.

Lemma B.3 If two regions have different co-ordinates but map to the same root region then one is superior

to the other.

Proof B.3 From lemma B.2 the two regions must have co-ordinates ¢ = (¢1,¢2,¢3,.-.,¢k) and d = (¢1 +
b,ca +b,c3 +b,...,cx +b) with b € Nt. Therefore ¢ is superior to d because its co-ordinates are lower in

every dimension.

Corrollary B.1 In any set of mutually non-inferior regions, each region must map to o different root region.

This follows from lemma B.3.

Theorem B.1 The mazimum number of mutually non-inferior regions in a K dimensional vector space

divided up into div equal divisions in each dimension, is divE — (div — 1)X.

27

Proof B.4 We can see that there are ezactly div® — (div — 1)X root regions in the vector space from
lemma B.1 and the definition of a root region. Since every non-inferior region maps to a different root

region B.2 then the maximum number of non-inferior regions is also div¥ — (div — 1)¥.

C Derivation of Equation 7

Reproduced from [Rob, 2001]

Q. What is the number of ways of getting the sum s on n dice with x faces each?

A. The generating function for one die with z sides is
fR)=z4+22+224+...+2°% 9)

The coefficient of a term tells you how many ways you can roll the exponent of z in the term. In this case,
for numbers from 1 to x, you can roll each in one way. For other numbers, like 0 and numbers greater than
z, you can roll them in zero ways. Thus the above generating function is right for one die. For two dice,
square the above function. For n dice, raise it to the nth power. Then you want the coefficient of 2° in
that expression. When calculating this coefficient for some specific value of s, you can do the arithmetic
and ignore all powers of z with exponents bigger than s. If you want all the probabilities, you can ignore
all exponents bigger than (n.z + 1)/2, because the number of ways of rolling s is the same as the number of

ways of rolling n.x + 1 — s, and if one is larger than (n.z + 1)/2, then the other is smaller.

To express this in binomial coefficients, you can write:

flz) = (z=2"tH/(1-2) (10)
A" = -2/ -2)" (11)
— (1=) (1—2)" (12)
I (AR Sl (i e (13)
S (i) () -
_ Z Z(_l)k' (Z) ‘ (n :i; 1) (ki) (14)
k=0 i=0

Now the coefficient of z° in this will be given by:

(Si)/z(—l)k- (Z) ' (s —nm._kl— 1) (15)

k=0

28

Algorithm: AARgeducecRED

M; is the nondominated vectors archive
Gen(t) is a generating function with positive generation probability for all feasible vectors
z; is the objective vector generated at time ¢

t<0
M; +)
while(1)
{
t—t+1
z; < Gen(t) /* Generate new vector */
M; + Reduce({z;} U M;_1)/* Use the Reduce function to update My */

}

Figure 1: Generic Archiving Algorithm AAgeducecrED, Where RED is the set of all Reduce functions

29

Reduce Function: Unbounded({z;} U M; ;) € RED

M; 1 is the nondominated vectors archive after the last update
M; is the new nondominated vectors archive
z; is the objective vector generated at time ¢

M; + ND(Mt_l U {Zt})
return (M)

Figure 2: The Reduce function for storing an unbounded archive of all nondominated vectors.

30

Reduce Function: Bounded({z;} U M;_1) € RED

M;_q is the nondominated vectors archive after the last update
M; is the new nondominated vectors archive

z; is the objective vector generated at time ¢

arcsize is a bound on the archive’s size

if (Zt < Mt—l)
M; + ND(Mt_l U {Zt})
else if (|M; 1| < arcsize)
M; < ND(M; 1 U{z:})
else
My < My
return (M)

Figure 3: The Reduce function for a simple bounded archive.

31

zZ9 '}

\ 4 M
\
" O Pointsin archive

\

0

---- True Pareto front

e Superior region
N O N J

Figure 4: In an efficiency preserving strategy, only the superior region (shaded area) of a set of points is
reachable. Thus, in this example only a restricted region of the Pareto front can be obtained.

32

zref
Z3
29 > A2 z’
Zl
<1
zref
< e
Z3
, S
29 <2 z zl
21 21

Figure 5: The relative value of the S metric depends upon a rather arbitrary choice of where the reference
point is chosen. In the upper half of the figure two nondominated point sets are shown, A and B. With the
chosen reference point S(A) > S(B). But in the lower half the same point sets have a different ordering in
S. The reference point has been moved to a larger value in objective 2 and a smaller value in objective 1,
and consequently S(A) < S(B).

33

size_of set(A,z"/ k)

zh9h is the vector with the largest value in objective k from amongst the vectors in the updated set A
NDk(A, k) returns the nondominated vectors from the set A with respect to the lowest k objectives only.

S+0
prev ref
Zk «— Zk

while(A # 0)
A+ NDk(4, k — 1)
if(k < 3)
Sy Zhioh
else
Sk_1 + size of set(A,z"/ k- 1)
S S+ Spy.|2hioh — prer
zlprev . Z{Ligh
A A\{z" | 2] > 2" 727 e A}
return §

Figure 6: Recursively computing the & metric of a nondominated set A, in & objectives. The function has
O(n*+1) complexity in general, where n is the number of points in the set A.

34

Zref

re
29 X Zg — Z3 f|
+
ref
.Z
2 22 X |23 — 23
) = 3 3
Z
JOSS
4l z
21
+
Zref
D
x |23 — 23
22
72
21

Figure 7: How the S metric is calculated in multiple dimensions. Three nondominated points in a 3-objective
space are shown (left). The regions they weakly dominate, and which weakly dominate the reference point,
are shown by the shaded cuboids. The combined size of these regions is shown by the calculation on the
right.

35

Reduce Function: S({z;} U M;_1) € RED

M;_1 is the nondominated vectors archive after the last update

M, is the new nondominated vectors archive

z; is the objective vector generated at time ¢

S(Z) is the S metric value of a set of vectors, Z, assuming a suitable reference vector
z(mi") ig randomly selected from Z™" C M, ; and

zmin ={z' € My1 | V2 € My—1,S(My—1 U{z} \ {2'}) > S(My—1 U {z} \ {2})

if (z > M;—1) (Rule: Dominated)
My +— M;_1
else
if (Zt < Mt—l)
M + ND(M;—1 U{z:}) (Rule: Dominates)

else if (|M; 1| = arcsize)

i S((My—1 U{ze}) \ {20mm}) > S(M,1)

M; + (Mt—l U {Zt}) \ {z(mzn)} (Rule: Size)
else
My + M;_, (Rule: Steady_State)
else
M; + ND(M; 1 U{z}) (Rule: Fill)

return (M)

Figure 8: The Reduce function for a bounded archive that seeks to maximize the S metric value of the
objective space.

36

Zref

zZ9

L =
21

Figure 9: The figure shows the true Pareto front (white points) of a minimization problem. The hatched area
shows the region dominated by seven of the Pareto optimal points. These points represent the (full) archive
of an algorithm using S metric archiving. Clearly, these points in the archive are not as well-distributed as
they could be. Fortunately, this seems to imply that they are not a local optimum of S. A net increase in S
would result if any vector pointed at by the label A were to replace any other vector in the current archive.

37

22‘

&
<1

Figure 10: How the adaptive grid changes its location and shape in objective space as the vectors in the
archive M; change through iterations ¢; < t; < t3.

38

((div + 1) /div).rangey

Figure 11: When a new vector z; increases the range of the grid in some objective k, a new rangey s is
calculated, and the grid boundaries are set so that range; , + max.en,(2r) — min.en, (2x) and ubg;

max;en, (2x) + (1/(2.div))(rangeg,:) and lbg; < min e n, (2;) — (1/(2.div))(rangey.t), which means that the
two extremal vectors in objective k will be located at the center of the outer grid regions.

39

22‘

sz,t -
Q
—cs
Q
Q
Q
4
o
o
Qo
)
5
A o
)
o
P00k
by~ -
|
: o
| L2
lbl’t Ubl,t

Figure 12: The figure shows the meaning of uby; and lby ¢, for a two objective plot. The region labelled A
has co-ordinates i = (2,4) and boundaries, ruby i+ = (2/10).(ub1 ; — Ib1), 7lb1 i = (1/10).(uby s — b1 1),

Tub27i,t = (4/10)(Ub2,t - lbz’t) and rlb2,i,t = (3/10).(11/[)27,5 - lb2,t)-

40

Reduce Function: Adaptive_Grid_Archiving € RED

M; is the nondominated vectors archive
Gen(t) is a generating function with positive generation probability for all feasible vectors
z; is the objective vector generated at time ¢
z%t is a vector in M;_ 1, selected from the set of most crowded regions, at random (see Definition 4.15)

foreach (k € 1..K)

rangey, ; < maxen, (2) — minen, (2x)

ubg,¢ < max.cn, (2
lbk,t < minzeNt (zk)

Re-calculate all grid region boundaries for dimension &

if (Zt > Mtfl)
My +— M;_4
else
if (Zt < Mt—l)

)+ (1/(2.div))(rangey+)
— (1/(2.div))(ranges,t)

My +— My 1 U {Zt} \ {Z € My 4 | Zy < Z}
else if (|M;_1| = arcsize)
if (z; outside old boundaries of grid)
M+ M;_, U {Zt} \ {Zc’t}

else if (z;’s region is not a most crowded region A 3, ppye(ri_; > 1)

My M;_1 U {z;})\ {z°'}

else
M; +— M;_q
else
My +— M; 1 Uz
return(M;)

(Rule: Update_Boundaries)

(Rule: Dominated)

(Rule: Dominates)

(Rule: Extends)
(Rule: Reduce_Crowding)
(Rule: Steady_State)

(Rule: Fill)

Figure 13: The Reduce function for Adaptive Grid Archiving

41

2 (superior to .
weakly superior to .

Region A is < incomparable with

weakly inferior to

\\ inferior to

\j

21

Figure 14: The dominance relationships between a region A and the other regions in a grid

42

Z9 |

O (globally) efficient vector

o ® dominated vector
, ©
z, converged region
9
7z
Q

O | Pareto occupied region

&
A

21

Figure 15: A set of (globally) efficient vectors (white points) within a space of converged regions is shown.
Although both vectors z' and z? are nondominated, the region that z' occupies, r22, is weakly superior to
the region z2 occupies, r23. Because r2? is weakly inferior to 722, there are points in 723 that are dominated
by points in 722, e.g., the grey point in 722 is dominated by z'. Region 722, in contrast, is a critical Pareto
occupied region because it is not weakly inferior to any other Pareto occupied region. This means that any
vector in it cannot be dominated by any feasible vector in any other region. Consider the grey vector in r2-2.
Although it is dominated (by z'), clearly it cannot be dominated by any vector not in 22

43

z9)

O (globally) efficient vector

@ feasible non-efficient vector

. Pareto noninferior region (PNIR)

21

Figure 16: The feasible objective vectors within a converged set of regions is shown. The Pareto non-inferior
regions (PNIRs) are shaded.

44

Z9)

QO nondominated vector

. mutually noninferior regions

&
&

z1

Figure 17: A set of mutually nondominated vectors is shown. All of them must lie within a set of regions
that is mutually non-inferior.

45

Z9

Root region

U,

&
&

21

Figure 18: An illustration of root regions. Diagonal lines have been drawn to show all of the regions that
map to the same root region. Clearly, if two vectors are in different regions on the same diagonal then one
must be superior to the other. Therefore, any nondominated set (like the one shown) cannot occupy more
regions than there are root regions

46

Figure 19: An illustration of the equation div® — (div — 1)

47

K div || div® = (div — 1)X + 2K | v k/a(div1)]
2 2 7 2
2 4 11 4
2 8 29 8
2 16 35 16
2 32 67 32
2 64 131 64
3 2 13 3
3 4 43 12
3 8 175 48
3 16 727 192
4 2 23 6
4 4 183 44
4 8 1703 344
4 16 14919 2736
8 2 272 70
8 4 58991 8092
8 8 11012431 1012664

Table 1: The required size of the archive for various values of div and K. The third column is the required
size if convergence to all the critical Pareto occupied regions must be guaranteed. The fourth column is the
required size to allow storage of vectors occupying the maximum number of critical Pareto occupied regions,
but without guaranteeing that convergence to this set of regions will occur.

48

